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This paper proposes a recursive identification method for systems with output backlash that can be described by a pseudo-
Wiener model. In this method, a novel description of the nonlinear part of the system, i.e., backlash, is developed. In this
case, the nonlinear system is decomposed into a piecewise linearized model. Then, a modified recursive general identifica-
tion algorithm (MRGIA) is employed to estimate the parameters of the proposed model. Furthermore, the convergence of
the MRGIA for the pseudo-Wiener system with backlash is analysed. Finally, a numerical example is presented.
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1. Introduction

Nonlinear systems with output backlash shown in Fig.1
usually exist in actuators of servo control systems, me-
chanical transmission systems, hydraulic control valves,
etc. For example, in a mechanical transmission system,
the space between the gear teeth often leads to the phe-
nomenon of backlash. The existence of output backlash
often leads to the deterioration of the system performance
such as vibration, oscillation or even instability, suppos-
ing closed-loop control is implemented. Hence, in order
to improve the system performance, some compensation
for the effect of backlash should be considered.

Since most methods to compensate for the effect of
backlash are model based (Chandler et al., 2000; Selmic
and Lewis, 2001; Toyozawa et al., 2004; Campos et al.,
2000; Nordin and Gutman, 2002), the accuracy of the
model to describe the behavior of systems with output
backlash is very important for the performance of the
compensation. In many cases, the operation environment
may be changed with time due to the wear and tear of the
components of the system. Thus, on-line identification of
systems with backlash is significant for real-time compen-
sation. Toyozawa et al. (2004) presented a method based
on Volterra kernels to identify a backlash system. How-
ever, it is rather complicated to implement this algorithm

Fig. 1. Dynamic system with output backlash nonlinearity.

Fig. 2. Description of backlash.

in real-time.
It is known that a linear dynamic subsystem cascaded

with an output nonlinear smooth function is usually called
the Wiener system. Up to now, there have appeared in
the literature some works concerning the identification of
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the Wiener model with continuous static nonlinear func-
tions (Wigren, 1997; Pearson and Pottmann, 2000; Gre-
bicki, 1998; 2001; Celka et al., 2001; Hu and Chen, 2005).
Voros (2001) and Chen (2006) applied parametric ap-
proaches to the identification of Wiener models with dis-
continuous nonlinear functions. However, their research
results only concern Wiener models containing discon-
tinuous functions with one-to-one mappings. Moreover,
those works did not discuss the convergence of identi-
fication algorithms for such systems. As backlash is a
non-smooth function with multi-valued mapping, it is dif-
ficult to utilize the conventional identification methods to
identify systems with output backlash since those methods
can only be applied to systems with one-to-one mapping.
Therefore, the identification of this non-smooth nonlinear-
ity with multi-valued mapping in real-time is a challenge.

In this paper, a pseudo-Wiener system with back-
lash is defined, i.e., the static nonlinear function in a
Wiener model is replaced by a non-smooth backlash func-
tion. Then, the so-called key term separation principle
(Voros, 1995; 2001) is used to decompose the pseudo-
Wiener model with backlash into a piecewise model with
linear coefficients combining with nonlinear variables.
Then, a modified recursive general identification algo-
rithm (MRGIA) is applied to estimate all the unknown
parameters of the model. After that, convergence analysis
of the MRGIA for the pseudo-Wiener model with back-
lash in a noise-free case is presented. Finally, a numerical
example is demonstrated.

2. Model of dynamic systems with output
backlash nonlinearities

The model to describe the dynamic systems with backlash
can be separated into two parts. One is linear and the other
nonlinear (backlash nonlinearity). It is assumed that the
linear subsystem is a stable and minimum phase system.

In this section, a pseudo-Wiener model is proposed
based on the key terms separation principle. Thus, a piece-
wise linearized model is derived. Both parts of the model
will be described in the following.

2.1. Description of the linear part of the model. In
Fig. 1, the linear dynamic block in discrete time can be
described by

x(k) = −
na∑

i=1

aix(k − i) +
nb∑

j=0

bju(k − d − j), (1)

where na and nb are the orders of the linear part of the sys-
tem, d is the time-delay, a1, . . ., ana and b0, . . ., bnb

are
the coefficients of the linear part of the model, u(k) and
x(k) are the input and the output of the linear block, re-
spectively. Suppose that na and nb as well as d are given.
Note that x(k) cannot be measured directly.

2.2. Backlash model and a pseudo-Wiener model.
On the other hand, the nonlinear part of the system shown
in Fig. 1 is backlash. Usually, it can be described by
the architecture shown in Fig. 2. Suppose that the ab-
solute values of the slopes of backlash are m1 and m2

(0 < m1 < ∞ and 0 < m2 < ∞), respectively. More-
over, the absolute values of the dead zones in backlash are
defined as c1 and c2 (0 < c1 < ∞ and 0 < c2 < ∞),
respectively. Assume that backlash can be described by
non-smooth mapping with memory, i.e.,

y(k) = f(x(k), y(k − 1)), (2)

where x(k) and y(k) are the input and the output of back-
lash, respectively.

Define the internal variable, i.e., m(k), as

m(k) = m1 + (m2 − m1)g3(k), (3)

where

g3(k) =
{

0, Δx(k) ≥ 0,
1, Δx(k) < 0, (4)

where Δx(k) = x(k) − x(k − 1).
According to the properties of backlash shown in

Fig. 2, define y1(k) as an internal variable, i.e.,

y1(k) = m(k){x(k) − 0.5c1[sgn(Δx(k)) + 1]g1(k)
+ 0.5c2[−sgn(Δx(k)) + 1]g2(k)}

(5)

where sgn(·) is the sign function; both g1(k) and g2(k)
are the switching functions, respectively, defined by

g1(k) =

{
0, y(k−1)

m1
+ c1 ≥ x(k),

1, y(k−1)
m1

+ c1 < x(k)
(6)

and

g2(k) =

{
0, y(k−1)

m2
− c2 ≤ x(k),

1, y(k−1)
m2

− c2 > x(k),
(7)

where the region, i.e., (y(k−1)
m2

− c2,
y(k−1)

m1
+ c1), can be

defined as the memory zone of the backlash.
The switching functions, i.e., g1(k) and g2(k), can

be switched between the two zones of both increasing
and decreasing linear segments so as to obtain a one-to-
one mapping within linear zones. The output y(k) can be
rewritten as

y(k) = y1(k)
+ [y(k − 1) − y1(k)](g1(k) − 1)(g2(k) − 1).

(8)

By substituting Eqn. (3) for the separated term into
Eqn. (5) based on the key term separation principle,

y1(k) = m1x(k) + (m2 − m1)g3(k)x(k)
− 0.5c1m(k)[sgn(Δx(k)) + 1]g1(k)
+ 0.5c2m(k)[−sgn(Δx(k)) + 1]g2(k).

(9)
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Re-substitute (9) into (8) to arrive at

y(k)
= m1x(k) + (m2 − m1)g3(k)x(k)
− 0.5c1m(k)[sgn(Δx(k)) + 1]g1(k)
+ 0.5c2m(k)[−sgn(Δx(k)) + 1]g2(k)
+ [y(k − 1) − y1(k)](g1(k) − 1)(g2(k) − 1).

(10)

Hence, the corresponding parameters of backlash can be
determined by (3), (9) and (10). It is known that the
switching functions g1(k) and g2(k) cannot be calculated
directly. However, the switching functions g1(k) and
g2(k), the internal variables, i.e., m(k) and y1(k), can be
estimated based on the estimated parameters of the model
obtained in the previous sampling period.

Note that it is not possible for m1 to be zero. Hence,
substituting (1) into (10) yields

y(k)

= −
na∑

i=1

aim1x(k − i) +
nb∑

j=0

m1bju(k − d − j)

+ (m2 − m1)g3(k)x(k)
− 0.5c1m(k)[sgn(Δx(k)) + 1]g1(k)
+ 0.5c2m(k)[−sgn(Δx(k)) + 1]g2(k)
+ [y(k − 1) − y1(k)](g1(k) − 1)(g2(k) − 1),

(11)

where m1 is set to unity for normalization. Thus, (1),
(3), (9) and (11) are composed of the corresponding
pseudo-Wiener model with backlash. In this model, x(k)
can be predicted based on the previously estimated param-
eters.

3. Recursive identification algorithm

In this section, a recursive identification approach is pro-
posed to estimate the parameters of the above-mentioned
pseudo-Wiener model with backlash. As the internal vari-
ables, i.e., m(k), y1(k) and x(k), cannot be measured di-
rectly, they will be estimated during the identification pro-
cedure.

Define

yc(k) = y(k)
+ [y1(k) − y(k − 1)](g1(k) − 1)(g2(k) − 1)

(12)

as the adjusted output of the model. Equation (12) can
also be re-arranged as

yc(k) = hT (k)θ, (13)

where h(k) denotes the data vector, i.e.,

h(k)
= [−x(k − 1), · · · ,−x(k − na), u(k − d), . . . ,

u(k − d − nb)g3(k)x(k) − 0.5m(k)[sgn(Δx(k))

+ 1]g1(k), 0.5m(k)[−sgn(Δx(k)) + 1]g2(k)]T

(14)

and θ represents the parameter vector, i.e.,

θ = [a1, . . . , ana , b0, b1, . . . , m2 − 1, c1, c2]T . (15)

Note that the internal variables m(k), y1(k) and x(k) as
well as the switching functions g1(k) and g2(k) all depend
on the parameter vector θ. Therefore, h(k) = h(k|θ) and
yc(k) = yc(k|θ) are defined.

Then, the RGIA (Fang, 2004) is applied to the es-
timation of the parameters of the proposed model. It is
known that the RGIA method is usually available for lin-
ear and smooth dynamic systems. To handle the identi-
fication of a nonlinear and non-smooth system, the algo-
rithm should be correspondingly modified. Suppose this
algorithm is to minimize the following quadratic criterion:

θ̂(k) = arg min
θ

n∑

k=1

Q(k)[ŷc(k)−ĥT (k)θ̂(k−1)]2, (16)

where the data vector h(k) and the adjusted output yc(k)
are respectively replaced by the corresponding ĥ(k) and
ŷc(k), Q(k) > 0 is a weighted factor, and Q(k) =
Σ̂−1(k); n is the length of the data set. The MRGIA with
the estimation of internal variables is summarized as fol-
lows:

ê(k) = ŷc(k) − ĥT (k)θ̂(k − 1), (17)

θ̂(k) = θ̂(k − 1) − K(k)Φ(k)ê(k − 1), (18)

S(k) = S(k − 1)(1 − Φ(k))

+ Φ(k)(ĥT (k)P (k − 1)ĥ(k) + μ(k)Σ(k)),
(19)

K(k) = K(k − 1)(1 − Φ(k))

+ Φ(k)P (k − 1)ĥ(k)S−1(k),
(20)

P (k) = P (k − 1)(1 − Φ(k))

+ Φ(k){ 1
μ(k)

}[I − K(k)ĥT (k)]P (k − 1)

× [I − K(k)ĥT (k)]T + K(k)Σ̂(k)KT (k)

(21)

Σ̂(k) = Σ̂(k − 1) + ρ(k)Φ(k)[ê2(k) − Σ̂(k − 1)], (22)

Φ(k) =
{

1, (ĝ1(k) − 1)(ĝ2(k) − 1) = 0,
0, (ĝ1(k) − 1)(ĝ2(k) − 1) = 1,

(23)
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θ̂(k − 1)
= [â1(k − 1), . . . , âna(k − 1),

b̂0(k − 1), . . . , b̂nb
(k − 1), m̂2(k − 1)

− 1, ĉ1(k − 1), ĉ2(k − 1)]T ,

(24)

ĥ(k)
= [x̂(k − 1), . . . , x̂(k − na),

u(k − d), . . . , u(k − d − nb), ĝ3(k)x̂(k),
− 0.5m̂(k)[sgn(Δx̂(k)) + 1]ĝ1(k),

0.5m̂(k)[−sgn(Δx̂(k)) + 1]ĝ2(k)]T ,

(25)

m̂(k) = 1 + (m̂2(k − 1) − 1)ĝ3(k), (26)

x̂(k) = −
na∑

i=1

âix̂(k − i) +
nb∑

j=0

b̂ju(k − d − j), (27)

ŷ1(k)
= x̂(k) + (m̂2(k − 1) − 1)ĝ3(k)x̂(k)
− 0.5ĉ1(k − 1)m̂(k − 1)[sgn(Δx̂(k)) + 1]ĝ1(k)
+ 0.5ĉ2(k − 1)m̂(k − 1)[−sgn(Δx̂(k)) + 1]ĝ2(k),

(28)

ŷc(k) = y(k)+[ŷ1(k)−y(k−1)](ĝ1(k)−1)(ĝ2(k)−1),
(29)

where ρ(k) is the convergence factor, which not only sat-
isfies the conditions given by (Fang, 2004) but is also lo-
cated within (0, 1), and

μ(k) =
ρ(k − 1)

ρ(k)
[1 − ρ(k)], (30)

P (0) = λI, 0 < λ < ∞, (31)

ĝ1(k) =
{

0, y(k − 1) + ĉ1(k − 1) ≥ x̂(k),
1, y(k − 1) + ĉ1(k − 1) < x̂(k), (32)

ĝ2(k) =

{
0, y(k−1)

m̂2(k−1) − ĉ2(k − 1) ≤ x̂(k),

1, y(k−1)
m̂2(k−1) − ĉ2(k − 1) > x̂(k),

(33)

and

ĝ3(k) =
{

0, Δx̂(k) ≥ 0,
1, Δx̂(k) < 0.

(34)

In order to reduce the large estimated error during
the initial procedure of the identification, the covariance
matrix P (k) can be calculated by Eqn. (21) (Fang, 2004).

Remark 1. As yc(k) in this system cannot be measured
directly, the estimate ŷc(k) is implemented for approxima-
tion. Since the estimated error of ŷ1(k) can be convergent
to zero as the identification procedure is going on, the er-
ror caused by ŷc(k) depends on the switching error, i.e.,
(ĝ1(k)− 1)(ĝ2(k)− 1), when backlash switches between
the linear and memory zones.

Remark 2. In order to reduce the switching error, the
input signal should be kept as small as possible, which
ensures the estimated errors and estimated variables to
be bounded. However, the amplitude of the input signal
should be distributed within both the memory and linear
zones of backlash so that the system can be fully excited,
which means the amplitude of the input signal will cover
all the equilibrium points of the system and the input sig-
nal should satisfy the persistently exciting conditions at
each equilibrium point.

As backlash in the pseudo-Wiener model has mem-
ory zones, the output of backlash will be kept constant in
those zones. Hence, θ̂(k) as well as P (k), S(k), Σ(k) and
K(k) are not updated when the estimate is implemented
in the memory zones of backlash. The memory zones of
backlash are its transient dead zones. Thus, (23) is used to
implement those functions.

Furthermore, y(k), the measured output, is intro-
duced to adjust both the linear and memory zones of the
backlash model since the change of the sign of y(k) is
the same as the change of the sign of the input in linear
zones. Also, y(k) is equal to y(k − 1) in the memory
zones of backlash. In order to determine the linear and
memory zones of the backlash model, the switching func-
tions g4(k) and g5(k) are defined as

g4(k) =
{

1, y(k) − y(k − 1) > 0,
0, otherwise

(35)

and

g5(k) =
{

1, y(k − 1) − y(k) > 0,
0, otherwise.

(36)

If the output of the system is affected by a sequence of the
zero mean white noise, the switching functions g4(k) and
g5(k) can be respectively modified as

g4(k) =
{

1, y(k) − y(k − 1) ≥ ε,
0, otherwise

(37)

and

g5(k) =
{

1, y(k − 1) − y(k) ≥ ε,
0, otherwise,

(38)

where ε is the estimated mean value of the noise.

Hence, Eqns. (9), (11), (12) and (23) are respectively
rewritten as

y1(k)
= m1x(k) + (m2 − m1)g3(k)x(k)
− 0.5c1m(k)[sgn(Δx(k)) + 1]g1(k)g4(k)
+ 0.5c2m(k)[−sgn(Δx(k)) + 1]g2(k)g5(k),

(39)
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y(k)

= −
na∑

i=1

aim1x(k − i) +
nb∑

j=0

m1bju(k − d − j)

+ (m2 − m1)g3(k)x(k) − 0.5c1m(k)
× [sgn(Δx(k)) + 1]g1(k)g4(k)
+ 0.5c2m(k)[−sgn(Δx(k)) + 1]g2(k)g5(k)
+ [y(k − 1) − y1(k)]
× (g1(k)g4(k) − 1)(g2(k)g5(k) − 1),

(40)

yc(k) = y(k) + [y1(k) − y(k − 1)]
× (g1(k)g4(k) − 1)(g2(k)g5(k) − 1),

(41)

and

Φ(k) =
{

1, (ĝ1(k)ĝ4(k) − 1)(ĝ2(k)ĝ5(k) − 1) = 0,
0, (ĝ1(k)ĝ4(k) − 1)(ĝ2(k)ĝ5(k) − 1) = 1.

(42)
Equations (39)–(42) will greatly reduce the switching er-
rors compared with Eqns. (9), (11), (12) and (23) since the
output of backlash can be measured in this case.

Definition 1. (Boutayeb and Darouach, 1995) Let
ĥT (k)[θ̂(k − 1) − θ] = −α(k)ê(k), where θ is the true
value vector of the model parameters. Moreover, α(k)
implies that the identification is affected by the estimated
errors of the internal variables.

As the linear part of the system is BIBO stable, x(k)
is bounded for any bounded input u(k). Hence y(k) is
also bounded based on Eqns.(3), (9) and (11). That means
the pseudo-Wiener model with backlash is BIBO stable.
Thus, a recursive approach can be applied to identification
(Fang, 2004; Ljung, 1977a; Ljung, 1977b).

In the following, convergence of the algorithm of re-
cursive identification for systems with output backlash in
the case of the absence of noise will be analysed.

Lemma 1. Assume that an input signal u(k) is bounded
but can fully excite the system. Then it satisfies

γ ≤ 1
n

n∑

k=1

ĥT (k)ĥ(k) ≤ β,

where both γ and β are finite positive real numbers.

Proof. Assume that the pseudo-Wiener model with back-
lash is BIBO stable. It is obvious that the input signal u(k)
is bounded. If Eqns. (1), (3) and (9) hold, the elements of
the estimated data vector, i.e., ĥ(k), are bounded. This
implies that there exist two positive real numbers γ and β,
which lead to γ ≤ 1

n

∑n
k=1 ĥT (k)ĥ(k) ≤ β. �

Theorem 1. For the algorithm described by Eqns. (17)–
(29), which is applied to parameter estimation of the
pseudo-Wiener model given by Eqns. (1), (3), (9) and (11),
assume that the following conditions are satisfied:

1. The condition of Lemma 1 is met.

2. P (k) is a positive definite matrix and
lim

k→∞
λmin(ρ(k)P−1(k)) → 	, where 	 is a

positive number.

3. Moreover,
lim

k→∞
λmaxP (k) → 0, (43)

lim sup
k→∞

λmaxP (k)
λminP (k)

< ∞, (44)

and

1 −
√
�1(k) ≤ α(k) ≤ 1 +

√
�1(k). (45)

Then the estimated parameter vector θ̂(k) will converge
to θ, the true value of the parameter vector, as k → ∞.

In the theorem, λmaxP (k) and λminP (k) are the
maximum and minimum eigenvalues of P (k), respec-
tively. In the formula (45), �1(k) is equal to

1 − hT (k)P (k − 1)h(k)
hT (k)P (k − 1)h(k) + Σ(k)

.

The proof of this theorem is given in Appendix.

Remark 3. If the estimated errors of the internal vari-
ables converge to zeros, α(k) would converge to unity.
Also, the approach is available only if α(k) satisfies the
conditions given by (45).

Hence, choosing the proper input signal and em-
bedding the switching functions will help to decrease
the switching errors between the model zones. It will
largely reduce the estimated errors of the internal vari-
ables. Moreover, from Section 2, it is known that the ab-
solute values of the dead zones of backlash, i.e., c1 and
c2, are not equal to zero. Therefore, the initial values of
c1 and c2 are set to very small positive numbers.

4. Numerical examples

In this section, the proposed approach is used to identify
a pseudo-Wiener system with backlash based only on the
measured system input and output. Suppose that the pa-
rameters of backlash in the system are m1 = 1, m2 = 1.5,
c1 = 0.5, c2 = 1, and the linear part of the system is de-
scribed by

x(k) = −0.45x(k−1)−0.55x(k−2)+0.8u(k−1). (46)

This implies a1 = 0.45, a2 = 0.55, and b0 =
0.8. Select a uniformly bounded distributed random in-
put sequence, i.e., u(k), to ensure most of the output
data are within the linear zones of backlash, especially
in the initialized period of the identification. Hence,
the corresponding input sequence of the bounded white
noise with the variance σ2 = 1.93 is chosen in this ex-
ample. The initial variables are respectively chosen as
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Fig. 3. Parameter estimation of the model (noise-free case).
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Fig. 4. Parameter estimation of the model (noisy case).

P (0) = 1.0 × 106I , where I is the identity matrix,
θ(0) = [0, 0, 1, 0, 0, 0]T and Σ(0) = 1. The convergence
factor ρ(k) is set to (k + 1)−0.25. Only when the mean
square error (MSE) becomes less than the expected value,
the iteration stops. The obtained estimation results are
shown in Fig. 3. If the systems contains a measurement
disturbance which is a Gaussian white noise, the proposed
technique can also be used to handle parameter estimation
of noisy systems. Suppose that the system parameters as
well as the initial parameter values and the input signal
are the same as in the noise-free case shown above. In
this case, the signal to noise ratio (SNR), which means
the square root of the ratio of the output and noise vari-
ance, is 43. The results of the corresponding parameter
estimation for the noisy system are shown in Fig. 4. The
maximum relative error of the parameters is 2.62× 10−2.
In Fig. 5, σ(a1),σ(a2),σ(b0),σ(m2),σ(c1) and σ(c2) are
the auto-correlation errors of the estimated parameters. It
can be seen that, after 600 steps, all the auto-correlation
errors gradually converge to zeros.

From the presented numerical examples, it is known
that the proposed on-line identification method is promis-
ing for the modeling of nonlinear dynamic systems with
output backlash.
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Fig. 5. Auto-correlation error of the estimated parameters
(noisy case).

5. Conclusions

In this paper, a pseudo-Wiener model with backlash was
proposed for on-line identification of dynamic systems
with backlash. In this scheme, a separate technique was
applied to decompose nonlinear backlash into a group of
piecewise linearized dynamic functions. Thus, the MR-
GIA can be employed for the estimation of model param-
eters. Then, the convergence analysis of the MRGIA for
the identification of the presented non-smooth nonlinear
system was discussed.

Numerical examples were presented to illustrate the
performance of the proposed identification method. The
properties of on-line identification as well as the technique
to handle the estimate of the non-smooth nonlinear sys-
tems are promising for practical engineering.
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Appendix

Consider two cases.

Case 1. Suppose that Φ(k) is equal to unity. From (19)–
(22), we obtain

P (k)ĥ(k) = Σ(k)P (k − 1)ĥ(k)S−1(k) (47)

and

ρ(k)P−1(k) = ρ(k − 1)[1 − ρ(k)]P−1(k − 1)

+ ĥ(k)
ρ(k)
Σ(k)

ĥT (k).
(48)

It is known that ρ(k)P−1(k) is a positive definite ma-
trix. It not only converges to a nonzero matrix but
is also a bounded matrix as k → ∞ (Fang, 2004;
Ljung, 1977a; 1977b). Hence, a corresponding quadratic
function can be defined as

V (k) = θ̃T (k)ρ(k)P−1(k)θ̃(k), (49)

tanyongh@yahoo.com.cn
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where θ̃(k) = θ̂(k)− θ. Subtracting θ from both the sides
of Eq. (18) yields

θ̃(k) = θ̃(k − 1) + K(k)ê(k). (50)

Then substituting (50) into (49) gives

V (k) = (θ̃(k − 1) + K(k)ê(k))T ρ(k)P−1(k)

× θ̃(k − 1) + K(k)ê(k)).
(51)

Equation (51) can also be rewritten as

V (k)

= θ̃T (k − 1)ρ(k)P−1(k)θ̃(k − 1)

+ 2θ̃T (k − 1)ρ(k)P−1(k)K(k)ê(k)

+ KT (k)ê(k)ρ(k)P−1(k)K(k)ê(k).

(52)

Furthermore, substitute (20), (47) and (48) into (52),
which results in

V (k)

= θ̃T (k − 1)ρ(k − 1)[1 − ρ(k)]P−1(k − 1)θ̃(k − 1)

+ θ̃T (k − 1)ĥ(k)
ρ(k)
Σ(k)

ĥT (k)θ̃(k − 1)

+
2θ̃T (k − 1)ρ(k)ĥ(k)ê(k)

Σ(k)

+
ĥT (k)P (k)ĥ(k)ρ(k)ê2(k)

Σ2(k)
.

(53)

From (47) and (49), Eqn. (53) can be rewritten as

V (k) = (1 − ρ(k))V (k − 1)

+ θ̃T (k − 1)ĥ(k)
ρ(k)
Σ(k)

ĥT (k)θ̃(k − 1)

+
2θ̃T (k − 1)ρ(k)

Σ(k)
+

ê(k)ĥ(k)
Σ(k)

+
ĥT (k)P (k − 1)ĥ(k)ρ(k)ê2(k)

Σ(k)S(k)
.

(54)

It is easy to see that

1 − ρ(k) < 1. (55)

Based on the definition in Section 3, we get

ĥT (k)θ̃(k − 1) = −α(k)ê(k). (56)

From (21), (54), (55) and (56), we get

V (k)

< V (k − 1) +
ρ(k)α2(k)e2(k)

Σ(k)
− 2ρ(k)

Σ(k)

− ê2(k)α(k)
Σ(k)

+
ĥT (k)P (k − 1)ĥ(k)ρ(k)ê2(k)

Σ(k)(ĥT (k)P (k − 1)ĥ(k) + Σ(k))
.

(57)

Define

t(k) =
ρ(k)α2(k)e2(k)

Σ(k)
− 2ρ(k)ê2(k)α(k)

Σ(k)

+
ĥT (k)P (k − 1)ĥ(k)ρ(k)ê2(k)

Σ(k)(ĥT (k)P (k − 1)ĥ(k) + Σ(k))
.

(58)

Also, assume that (43) and (44) hold and α(k) satis-
fies (45). Thus, this leads to t(k) ≤ 0 , or

V (k) − V (k − 1) < 0. (59)

In this case, ρ(k)P−1(k) is a positive matrix. There-
fore,

V (k) ≥ 0, k = 1, 2, . . . . (60)

According to (59) and (60), based on the Lyapunov stabil-
ity theorem, it can be concluded that V (k) converges to
zero as k → ∞. Then, we obtain

∥∥θ̃(k)
∥∥2 ≤ V (k)

λmin(ρ(k)P−1(k))
. (61)

Hence, we have
lim

k→∞
θ̂(k) = θ. (62)

Case 2. Suppose that Φ(k) is equal to zero. From (51), it
follows that

V (k) = (θ̃(k − 1))T ρ(k)P−1(k)(θ̃(k − 1)). (63)

Based on (49), P−1(k) is equal to P−1(k − 1) and ρ(k)
decreases as k increases, so this yields

V (k) < V (k − 1). (64)

Thus, it can be seen that, although there exist dead zones
in the system, based on (64), the formula (62) can still be
obtained.
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