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The main subject of the paper is the description and determination of the impedance operator of a linear periodically time-
varying (LPTV) one-port network in the steady-state. If the one-port network parameters and the supply vary periodically
with the same period, the network reaches a periodic steady state. However, the sinusoidal supply may induce a non-
sinusoidal voltage or current. It is impossible to describe such a phenomenon by means of one complex number. A
periodically time-varying one-port network working in a steady-state regime can be described with a circular parametric
operator. Within the domain of discrete time, such an operator takes the form of a matrix with real-valued entries. The
circular parametric operator can be transformed into the frequency domain using a two-dimensional DFT. This description
makes it possible to quantitatively assess LPTV system input and output harmonics aliasing. The paper also presents the
derivation and the proof of convergence of an iteration scheme for the identification of circular parametric operators. The
scheme may be used to determine the impedance of an LPTV one-port network. Some results of computer simulations are
shown.
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1. Introduction

The knowledge of the parameters of an electrical distri-
bution power system is necessary for effective control
of electronic compensators, for the localization of har-
monic distortion sources, and to observe system behav-
ior (Mikołajuk and Staroszczyk, 2004). Time-varying cir-
cuits, e.g., switching converters or thyristor-driven loads,
and non-linear system components, e.g., transformers, sat-
urated chocking coils or diode-equipped loads, change
their parameters synchronously with the power voltage
and cause deformations in the current. These one-port net-
works can be treated as single input, single output linear
periodically time-varying systems, as depicted in Fig. 1.

The subject of the paper is the determination of
steady-state behavior of linear periodically time-varying
(LPTV) one-port networks and, in general, of single in-
put, single output LPTV systems (SISO LPTV). The lat-
ter are considered as a bridge between the well-studied
linear time invariant (LTI) model and real nonlinear time-
varying systems stimulated periodically. The LPTV
model is linear, i.e., it meets the superposition principle,
and it can generate and shift harmonic components like

Fig. 1. One-port network treated as an SISO system: (a) one-
port network, (b) transmittance, (c) impedance, (d) ad-
mittance.

nonlinear systems. Parameters of an LPTV system change
periodically. To obtain the steady state, a common period
of LPTV system parameter changes and stimulation sig-
nal has to exist. The steady-state current (or voltage) of
an LTI one-port network excited by a sinusoidal voltage
(or current) is also sinusoidal with the same frequency.
The relationship between its terminal signals phasors is
described by an impedance (or admittance) phasor, which
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is a complex number. The situation is different in the case
of LPTV one-port networks, which can also reach a pe-
riodic steady state, but a sinusoidal supply may give rise
to a non-sinusoidal voltage or current. The mathematical
description of such phenomena by means of one complex
number is impossible. The problem consists in the de-
scription of an LPTV one-port network in the steady state,
which is similar to the description of an LTI one-port net-
work using an impedance phasor.

There are many publications related to LPTV sys-
tems used in control systems, multi-rate signal process-
ing and telecommunications. Some common represen-
tations of LPTV systems including linear time invari-
ant models obtained by blocking, linear switched time-
varying (LSTV) systems and alias-component matrices
are described in (Mehr and Chen, 2002) and the refer-
ences therein. The description of the LPTV system as a
time invariant block system is presented in (Meyer and
Burrus, 1975). The so-called system function of a vari-
able network and a bi-frequency system function are used
in (Zadeh, 1950) for frequency analysis of variable net-
works. A state space model with time-varying coefficients
is usually in use to describe linear time-varying (LTV) sys-
tems universally, e.g., (Kaczorek, 2001; Bru et al., 2004).
A discrete time domain state space model, transition ma-
trices and pseudo-modal parameters are used to describe
and identify LTV systems in (Liu, 1997; 1999; Liu and
Deng, 2005). Subspace model identification algorithms
that allow the identification of an LTV state space model
from a set of input-output measurements are presented in
(Verhagen and Yu, 1995).

A complete and clear picture on time-invariant repre-
sentations for discrete-time periodic systems is described
in (Bittanti and Colaneri, 1999; 2000), where the concepts
of a periodic transfer function and generalized frequency
response are used. The following four reformulations are
discused: time lifted, cyclic, frequency lifted and Fourier.
They are obtained from input-output and state-space rep-
resentations. The authors emphasize that the reformu-
lation of a periodic system always leads to a particular
class of time invariant models. The characteristics of these
models (structure, dimensions, etc.) cannot be neglected,
otherwise entering a mess of nonfeasibility/noncausality
issues. The paper (Hu et al., 2007) presents a new
kind of linear model with partially variant coefficients
and iterative identification algorithms. In (Mikołajuk and
Staroszczyk, 2003; 2004; Staroszczyk, 2002; Staroszczyk
and Mikołajuk, 2004), some methods of power system
impedance identification as an LPTV model are presented.
The LPTV model used requires 2D time-frequency sys-
tem description. The time-varying ARMA (autoregressive
moving average) model is also used. The power system
is tested with short (1–3 ms) current impulse excitations.
Impedance frequency characteristics are determined by
means of a method called the empirical transfer function

estimate (EFTE) based on the input/output transformed
(using DFT) signals identification experiment. Discrete
time LPTV systems can also be modeled by discrete time
wavelets. It makes the system identification robust to
narrow-band or impulse noise (Doroslovacki et al., 1998).
The papers (Liu et al., 2003; Tam et al., 2006) present
an approach to finding steady-state waveforms based on
wavelet approximation of power electronics circuits that
are described by means of a time-varying state-space
equation.

In this paper, the periodic steady state of an LPTV
one-port network is taken into consideration. To obtain a
periodic steady state, one-port network parameter changes
and the power supply should have the same period, which
is the least common multiple of the one-port network pe-
riod and the supply period. It is assumed that the period
of stimulation signal changes is an integer multiplicity of
the system parameter changes period. This assumption
imposes some restrictions on the application space. How-
ever, it returns significant simplification and convenience.
In this situation, the period of system response is equal to
the stimulation period. The relationship between steady-
state voltage and current is described by means of the so-
called circular parametric operator (CPO). It is a circular
form of the description based on the time-varying pulse
response. To describe an SISO LPTV system in this way,
no restriction on system parameter changes is needed (no
restriction was found in references concerned with LPTV
systems).

For signal processing, it is better to use the discrete
time domain, where the CPO describes the relationship
between vectors of samples of one period of input and out-
put signals and takes the form of a matrix with real-valued
entries. It is a circular form of the description known as
periodic Markov coefficients linked to the pulse response
of the system (see, e.g., (Bittanti and Colaneri, 2000)), and
it is a generalization of circular convolution used for LTI
systems. The description of an LPTV system by means
of a CPO was introduced for the first time by Siwczyński
to implement a new numerical operator method for non-
linear systems analysis described in (Siwczyński, 1987).
Later, CPOs were used in algorithms of optimal opera-
tional condition determination of real voltage sources with
periodically time-varying or non-linear inner impedance
and load one-port networks (Siwczyński et al., 1993; Si-
wczyński, 1995; Siwczyński and Kłosiński, 1997a).

Discrete time domain description of an LPTV system
and signals implies a restriction on signals and parame-
ter changes. Exact discrete representation of signals and
system is possible if input signal and parameter changes
spectra are bounded. Then, as a result of modulation, the
limit of the output spectrum is equal to the sum of in-
put and parameter changes spectrum limits. The sampling
frequency should be at least two times greater than this
limit. If the spectrum of the system parameter changing
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is not bounded, it is impossible to obtain an accurate dis-
crete model, but it is feasible to select proper sampling
frequency to obtain acceptable accuracy of the discrete
model of the LPTV system.

The relation between input and output harmonics
complex phasors of the LPTV system can be obtained by
means of a two dimensional discrete Fourier transforma-
tion. This topic is widely discussed in Section 3.

The impedance or admittance CPO of a one-port net-
work can be determined on the basis of measurements.
To obtain the fully identified circular parametric N × N
matrix, a set of N pairs of system stimulus and response
signals is needed. The stimulus signals have to be lin-
early independent. Sometimes, it is difficult to obtain
such a complete set of measured signals. In these cases,
an identification iteration scheme which is presented in
this paper may be useful. The proposed method is based
on the determination of the CPO describing the system
with the smoothest parameter changes. An attempt to
apply the iteration scheme to optimal control of a com-
pensation circuit in a simple power system, described in
(Kłosiński, 2005), can be a good example of its effective-
ness. The combination of the identification scheme and
the optimal current determination algorithm allows opti-
mal compensation in a linear time-varying circuit with-
out previous knowledge of circular parametric operators
of the source and load impedance. Their partial on-line
identification is sufficient.

If a nonlinear system can achieve a periodic steady
state, its parameters change periodically, coherently with
the input. In this situation, the behavior of the non-linear
system can be described by means of a set of CPOs. For
example, CPOs were used to describe a nonlinear current
transformer in (Kłosiński and Kozioł, 2007). From this
description, it is possible to estimate the current flowing
through the primary of the transformer on the basis of sec-
ondary current samples. CPOs describing a real CT were
calculated using an identification scheme based on mea-
surements. The obtained results show that the usage of
CPOs gave good results.

The CPO identification method applied resem-
bles the algorithm called the smooth periodic es-
cape (SPE), used to design time-varying compen-
sator networks (Siwczyński, 1995; Siwczyński and
Kłosiński, 1997a; 1997b). The derivation and prop-
erties of the identification scheme were presented in
(Kłosiński, 2005; 2006; 2007). The identification scheme
is iterative, and it was not easy to prove its convergence
because of its special construction. In this paper, for the
first time the proof of iterative identification scheme con-
vergence to a unique solution is presented. Apart from
theoretical deliberations, the paper also presents some re-
sults of computer simulations.

In the paper, linear causal single input single output
systems are considered. It is assumed that all signals are

noise-free, sampled coherently with adequately high sam-
pling frequency.

2. Circular parametric operator

The relation of the input signal x(t) to the output signal
y(t) for an SISO LTV system (Fig. 1(b)) can be described
with a differential equation of variable coefficients:

q∑

i=0

ai(t)y(i)(t) =
r∑

i=0

bi(t)x(i)(t). (1)

Equation (1) can be solved with the integral operator H :

y(t) = Hx(t) =
∫ ∞

−∞
h(t, τ)x(τ) dτ. (2)

The operator kernel h(t, τ) is the response of the system
to Dirac’s impulse δ(t). For a time-varying system, it is a
function of two variables—it depends on the current time
t and on the time instant τ when an impulse is applied to
the system.

The discrete time description is more useful for prac-
tical applications. Within the discrete time domain, the
relation of the input signal x(n) to the output signal y(n)
for an LTV system can be described by means of a differ-
ence equation of variable coefficients,

q∑

i=0

Ai(n)y(n − i) =
r∑

i=0

Bi(n)x(n − i). (3)

Equation (3) can be solved with the operator set in the
form of the following sum:

y(n) = Hx(n) =
∞∑

m=−∞
h(n, m)x(m). (4)

The operator kernel h(n, m) is the response to Kro-
necker’s impulse applied at the moment m. In the case
of a time-varying system, it is a function of two vari-
ables, i.e., it depends on the current discrete time n, and
on the instant m in which the impulse has been applied.
For the N -periodic input signal, x(n + N) = x(n), the
response can be determined using the following formula
(Siwczyński, 1995):

y(n) = H̃x(n) =
N−1∑

m=0

h̃(n, m)x(m), (5)

where the circular impulse response is defined as

h̃(n, m) =
∞∑

p=−∞
h(n, m − pN). (6)

For a linear time-varying system whose parameters
vary with period N , the impulse response satisfies the
property

h(n + N, m + N) = h(n, m) (7)
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and, therefore,

h̃(n + N, m) =
∞∑

p=−∞
h(n + N, m − pN)

=
∞∑

p=−∞
h(n, m − (p + 1)N) = h̃(n, m).

(8)

This means that the response y(n) to an N -periodic stim-
ulus signal x(n) is periodic as well:

y(n + N) =
N−1∑

m=0

h̃(n + N, m)x(m)

=
N−1∑

m=0

h̃(n, m)x(m) = y(n).

(9)

The response of an LPTV system of period N to an
N -periodic stimulus can be determined by means of the
so-called circular parametric operator:

y(n)=H̃x(n)=
N−1∑

m=0

h̃(n, m)x(m), n=0, 1, . . . , N−1.

(10)
The circular parametric operator can be given in the form
of the following matrix (Siwczyński, 1995):

y = H̃x, (11)

where x =
[
x(0) x(1) · · · x(N − 1)

]T
and y =

[
y(0) y(1) · · · y(N − 1)

]T
are vectors of samples of

one period of the stimulus and response signals, respec-
tively, and

H̃ =

⎡

⎢⎢⎣

h̃0,0 h̃0,1 · · · h̃0,N−1

h̃1,0 h̃1,1 · · · h̃1,N−1

· · · · · · · · ·
h̃N−1,0 h̃N−1,1 · · · h̃N−1,N−1

⎤

⎥⎥⎦ (12)

is the circular parametric operator (circular parametric
matrix), which is an N × N matrix with real-valued en-
tries, h̃n,m = h̃(n, m).

For an LTI system, the impulse response is a function
of one variable:

h(n, m) → h(n − m). (13)

Then, the circular parametric matrix introduced in the
equation (12) passes to the form of a circular (Toeplitz)
matrix:

H̃LTI =

⎡

⎢⎢⎣

h̃0 h̃N−1 · · · h̃1

h̃1 h̃0 · · · h̃2

· · · · · · · · ·
h̃N−1 h̃N−2 · · · h̃0

⎤

⎥⎥⎦ . (14)

3. Frequency domain representation of
the CPO

The N -periodic input signal can be expressed in terms of
the Fourier series of harmonics phasors Xm:

x(n) =
1
2

N−1∑

m=0

Xmwnm, n = 0, 1, . . . , N−1, (15)

where w = exp(j2π/N). The values of complex pha-
sors can be calculated from the samples of x(n) using the
relation

Xm =
2
N

N−1∑

n=0

x(n)w−nm. (16)

The expressions (15) and (16) can be described in matrix
form

x =
1
2
FX̄, (17)

X̄ = 2F−1x, (18)

where x is a vector of samples of one period of the signal,
X̄ stands for a vector containing the harmonics phasors
Xm and the adjoint harmonics phasors, and F is a Fourier
matrix defined as follows (w = exp(2π/N ):

[F ]n,m = wnm, n, m = 0, 1, . . . , N − 1. (19)

This matrix has the property

F−1 =
1
N

F ∗, (20)

where F ∗ is the conjugate transpose of F .
To determine the frequency domain version of the

CPO, one should multiply both sides of (11) by 2F−1 and
substitute (17). Taking into account (18) with reference to
the signal y, we obtain

Ȳ = F−1H̃FX̄. (21)

Then, the spectral circular parametric operator (SCPO)
takes the following form (Siwczyński, 1995):

¯̃H = F−1H̃F . (22)

The SCPO ¯̃H(ky , kx) (where kx and ky are the in-
put and output harmonic enumeration numbers, respec-
tively) offers a possibility for quantitative assessment of
input and output harmonics aliasing. This matrix is a
special case for the periodic steady state of the so-called
alias component matrix described in (Shenoy et al., 1994),
the frequency-response matrix for the LPTV system de-
scribed in (Chen and Qiu, 1997), a discrete version of the
so-called bi-frequency system function used in (Zadeh,
1950), and a harmonic transfer function or a frequency
lifted transfer function in the case of the periodic steady
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state described in (Bittanti and Colaneri, 1999; 2000). The
coefficients of the SCPO matrix lying outside the diagonal
determine the manner in which the harmonics of the input
signal are mapped into other harmonics at the system out-
put. The k-th column of the spectrum operator describes
the way in which the k-th harmonic of a given stimulus is
mapped onto the harmonics of the output signal. The l-th
line of the spectrum matrix includes entries decisive in the
manner of processing all stimulus harmonics into the l-th
harmonic of the system response. Each harmonic phasor
of the response signal is dependent on each stimulus har-
monic through two complex coefficients multiplied by the
harmonic phasor and the adjoint harmonic phasor, respec-
tively. It is clear that it is impossible to precisely describe
an LPTV system in a similar way to an LTI system using
a single one-dimensional frequency response.

For an LTI system, the matrix H̃LTI is circular (14),
and, after its transformation according to (22) into the fre-

quency domain, the matrix ¯̃HLTI(ky, kx) takes the form
of a diagonal matrix. In this case, the “separation” of har-
monics is clearly visible. Diagonal entries of the matrix
are samples of the frequency response of the LTI system.

4. Determination of the CPO on the basis of
measurements

The identification of a circular parametric operator con-
sists in determining coefficients of the matrix H̃ as a func-
tion of a set of K stimuli and K responses of the system.
To achieve this, the following relation derived from (11)
is used:

H̃X = Y , (23)

where X and Y are matrices of K stimulus and response
signals, respectively. Each of these matrices’ columns
contains samples of one period of one signal. The way
of CPO matrix determination depends on the number K .

In the case where K = N , i.e., the number of stimu-
lus or response signals K equals the size N of the square
circular parametric matrix, the problem has an unequivo-
cal solution:

H̃ = Y X−1. (24)

The existence of the solution given in (24) relies on the
linear independence of input signals. In other words,

det(X) �= 0. (25)

In the case where K > N , the equation (23) is
overdetermined and the matrix H̃ is estimated by means
of the least squares method. The distribution of input sam-
ples is approximated as a multivariate linear function. The
entries of the n-th line of the matrix H̃ are treated as
sought coefficients of the linear function that results from
(23):

yT
n = hT

n X, (26)

where hn =
[
hn,0 hn,1 · · · hn,N−1

]T
is a vector of

entries of the n-th line of the matrix H̃ , and yn =[
yn,0 yn,1 · · · yn,K−1

]T
is a vector containing the n-th

sample of all K response signals (or, equivalently, the en-
tries of the n-th line of the matrix Y ). The least squares
solution of the approximation problem for the n-th line of
the matrix H̃ takes the following form:

hn =
(
XXT

)−1

Xyn. (27)

The whole matrix H̃ may be estimated as

H̃
T

=
(
XXT

)−1

XY T . (28)

In order to implement the solution (28), the invert-

ibility of the matrix
(
XXT

)
is necessary, and thus the

following condition has to be fulfilled:

det
(
XXT

)
�= 0. (29)

The condition means that the matrix of stimulus signals X
has to contain a subset of N linearly independent signals.

In the case where K < N , the matrix equation (23)
has an infinite number of solutions. An optimal solution
should be chosen. One can propose to seek an operator
which describes a system with the smoothest parameter
changes. This seems to be a proper solution because, if
it is possible, an LTI model may be found. It would be a
significant simplification of the examined system descrip-
tion. This criterion implies minimization increments of
the coefficients of the matrix H̃ in the direction of the
main diagonal. Such a criterion choice originates from
the fact that, in the case of an LTI system, a relationship
between input and output signals in the periodic steady
state is described by means of the circular (Toeplitz) ma-
trix (14). In this case, the increments equal zero. On the
other hand, the calculated matrix H̃ should fulfill the rela-
tion (23). Therefore, a constrained optimization problem
may be defined as follows:

(Δhn)T Δhn → min, (30)

XT hn = yn, (31)

(For notation, see (26).) The vector of increments of H̃
elements for the n-th line is defined as

Δhn =
[

Δhn,0 Δhn,1 · · · Δhn,N−1

]T
, (32)

Δhn,m = hn,m − hn�1,m�1, (33)

where � is a subtraction mark of the modulo N . The vec-
tor Δhn can be also defined with the use of a circular unit
delay matrix of the form

P1 =

⎡

⎢⎢⎣

0 · · · 0 1
1 · · · 0 0
. . . . . . . . . . . . .
0 · · · 1 0

⎤

⎥⎥⎦ (34)



666 R. Kłosiński

as follows:
Δhn = hn − P 1hn−1. (35)

The choice of the criterion (30) with the constraint
(31), implies the search of the CPO describing a system
with a reduced parameter variability realizing (23). Equa-
tion (31) results from (23).

The optimization problem (30), (31) can be solved
using the Lagrange multipliers method in a specific man-
ner similar to that presented in (Siwczyński, 1995; Si-
wczyński and Kłosiński, 1997a; 1997b). Lagrange’s func-
tional is

f (hn, Λ) = (Δhn)T Δhn + (hT
nX − yT

n )Λ, (36)

where Λ =
[
λ0 λ1 · · · λK−1

]T
is a vector of Lagrange

multipliers. If the functional is differentiable, it is con-
venient to search for its extreme by means of the Fréchet
differential. The gradient is determined automatically and
equating it to zero yields the necessary and sufficient con-
dition of the minimum or maximum of the functional.

The determination and equating the gradient to zero
alone yields just a necessary condition for the extreme ex-
istence. Taking into consideration that

δΔhn = δ (hn−P 1hn−1)
= (hn+δhn−P 1hn−1)−(hn−P 1hn−1)
= δhn, (37)

the Fréchet differential of Lagrange’s functional for the
vector hn is

δf (hn, Λ)
= f (hn + δhn, Λ) − f (hn, Λ)

= (δhn)T (2Δhn + XΛ) + (δhn)T (δhn) ,

(38)

where δhn =
[
δhn,0 δhn,1 · · · δhn,N−1

]T
. If the mini-

mum of Lagrange’s functional (36) is obtained for hn, any
variation Δhn causes an increase in the functional value.
The minimum condition is that, for any increment Δhn,
the Fréchet differential has to be positive:

δf (hn, Λ) > 0. (39)

Hence, a necessary and sufficient condition which the
minimum must satisfy is obtained:

2Δhn + XΛ = 0. (40)

Taking into account (35), the previous expression can
be rewritten as

hn = P 1hn−1 − 1
2
XΛ. (41)

Equations (41) and (31) make up the system of N + K
linear equations with N +K unknowns. These unknowns

are the N entries of the vector hn (the n-th line of the
matrix H̃) and K Lagrange multipliers. Equations (41)
and (31) conform to a system of linear equations:

[
I 1

2X

XT 0

] [
hn

Λ

]
=

[
P1hn−1

yn

]
, (42)

where I is an N × N identity matrix and 0 is a K × K
zero matrix. The determinant of the system of equations
(42) is given by (Meyer, 2000)

det
[

I 1
2X

XT 0

]

= det I det
(
0− XT I−1 1

2
X

)

= det
(

1
2
XT X

)
(43)

where
(
0− XT I−1 1

2X
)

is the so-called Schur comple-

ment. The condition for the existence of a unique solution
of (42) is

det
(
XT X

)
�= 0. (44)

This condition implies

rankX = K,
(
X ∈ R

N×K , K ≤ N
)
. (45)

In other words, linear independence of stimulus signals in
the matrix X is required. If the condition (44) is fulfilled,
the optimization problem has a unique solution, being the
global minimum.

The linear independence condition (44) is justified
from the point of view of signal selection for identifica-
tion. Thus, the algorithm is protected against requirements
which are contradictory to the linearity of a CPO. If the
condition (44) has to be fulfilled, it is not possible to in-
clude signals which are proportional to each other in the
set of input signals but with related response signals of
different shape. Because of the time-varying nature of the
CPO, it is possible to obtain different response signals for
the same stimuli but shifted in time. The condition (44)
does not preclude this situation.

Substituting (41) to (31) and after some manipula-
tions, the following expression results:

1
2
Λ=

(
XTX

)−1

XT P 1hn−1 −
(
XTX

)−1

yn. (46)

Substituting (46) to (41) and after ordering, an iterative
solution is obtained:

hn =
(
I−X

(
XTX

)−1

XT

)
P 1hn−1 + X

(
XTX

)−1

yn.

(47)
The identification of the CPO consists of an iteration
scheme determining consecutive rows of the matrix H̃
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with reference to the previous rows, taking into account
the optimality criterion and the periodicity of the identi-
fied system. Each row of the matrix H̃ obtained from the
iteration fulfills (31). The iterations should be executed
until an N -periodic steady state is attained. It other words,
after N iterations, nearly the same result is obtained:

hn+N = hn + ε, (48)

where ε is a vector of satisfactorily small deviation entries.
The iteration scheme given in (47) has the form of a

standard discrete state space equation:

v (n + 1) = Av (n) + Bu (n) , (49)

where

A =
(
I− X

(
XT X

)−1

XT

)
P1, (50)

B = X
(
XT X

)−1

. (51)

The following two theorems will be useful to prove
the convergence of the identification iteration scheme
(47).

Theorem 1. If the condition (44) is fulfilled, all eigen-
values of the matrix A ∈ R

N×N defined by (50) lie on or
inside the unit circle. In other words,

|λi| ≤ 1, ∀1 ≤ i ≤ N. (52)

Proof. The following criterion, which is similar to the
Lyapunov stability test for discrete time systems, is used.
If there exists a positive definite matrix P ∈ R

N×N and a
negative semi-definite matrix Q ∈ R

N×N such that

AT PA − P = Q, (53)

then all the eigenvalues of A lie on or inside the unit cir-
cle. In other words,

|λi| ≤ 1, i = 1, 2, . . . , N. (54)

Proof of the criterion. For each eigenvalue λi and for an
appropriate eigenvector vi of A,

Avi = λivi and v∗
i A

∗ = λ∗
i v

∗
i . (55)

Premultiplying (53) by v∗
i and postmultiplying it by vi,

taking into account that for any matrix with real-valued
entries A∗ = AT , and making use of (55), the following
expression is obtained:

v∗
i A

∗PAvi − v∗
i Pvi

=
(
|λi|2 − 1

)
v∗

i P vi = v∗
i Qvi.

(56)

If P is a positive definite matrix and Q is a negative
semi-definite matrix, then it results from (56) that

|λi|2 − 1 ≤ 0, (57)

which leads to (54).
To prove Theorem 1, let us assume that the matrix P

is the identity matrix (which is, of course, positive defi-
nite):

P = I. (58)

Substituting (50) and (58) into (53), and taking into ac-
count

P T
1 P 1 = I, (59)

after some calculations it is obtained that

P T
1 X

(
XT X

)−1

XT P 1 = −Q. (60)

The matrix on the left-hand side of (60) is an idempotent
matrix, and therefore its eigenvalues are equal to 0 or/and
1, hence it is a positive semi-definite matrix. This means
that Q is a negative semi-definite matrix. The assumptions
of the criterion given previously are fulfilled, and therefore
Theorem 1 has been proved. �

Theorem 2. The matrix A defined by (51) has a pair of
eigenvalues on the unit circle of the form

λk = w−k, λN−k = wk, (61)

where w = exp(j2π/N), if and only if none of stimulus
signals being the columns of the matrix X includes the
k-th harmonic.

Proof. The necessity is proved by determining the eigen-
values of A. To this end, the Fourier matrix F given in
(19) is used in a similarity transformation:

A′ = F−1AF = F−1

(
I−X

(
XT X

)−1

XT

)
P 1F

= F−1P 1F −F−1X
(
XT X

)−1

XT FF−1P 1F .

(62)

The result of the matrix product F−1X is a matrix
whose columns contain signals in the form of a Fourier
series. If none of the signals includes the k-th harmonic,
then the k-th and (N−k)-th rows of the matrix contain
zeros only. A similar property is found in the product

XT F = X∗N
(
F−1

)∗
= N

(
F−1X

)∗
, (63)

which is the conjugate transpose of F−1X multiplied by
the integer quantity N . Its k-th and (N−k)-th columns
contain zeros, too. For these reasons, all the entries of the
k-th and (N−k)-th rows and k-th and (N−k)-th columns

of the matrix product F−1X
(
XT X

)−1

XT FF−1P 1F
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are equal to zero. In (62), the product F−1P 1F is a diag-
onal matrix which is given by

F−1P 1F =

⎡

⎢⎢⎢⎢⎣

w0 0 0 · · · 0
0 w−1 0 · · · 0
0 0 w−2 · · · 0
· · · · · · · · · · · ·
0 0 0 · · · wN−1

⎤

⎥⎥⎥⎥⎦
.

(64)
Thus, the matrix A′ given in (62) includes two rows

and two columns with entries equal to zero except for di-
agonal entries derived from the matrix F−1P 1F , i.e.,

[A′]k,k = w−k, [A′]N−k,N−k = wk. (65)

The characteristic polynomial of the matrix A can be de-
termined as follows:

ϕ (λ)
= det (λI − A) = det (λI − A′)

=det
(
λI−F−1P 1F+F−1X

(
XTX

)−1

XTFF−1P 1F

)

=det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iλ−A′
11

0
...
0

A′
12

0
...
0

A′
13

0 · · · 0 λ−w−k 0 · · · 0 0 0 · · · 0

A′
21

0
...
0

Iλ−A′
22

0
...
0

A′
23

0 · · · 0 0 0 · · · 0 λ−wk 0 · · · 0

A′
31

0
...
0

A′
32

0
...
0

Iλ−A′
33

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
(
λ−w−k

)(
λ−wk

)

· det

⎡

⎣
Iλ−A′

11 A′
12 A′

13

A′
21 Iλ−A′

22 A′
23

A′
31 A′

32 Iλ−A′
33

⎤

⎦ ,

(66)

where A′
rs are sub-matrices of the matrix A′, and I

means an identity matrix of a proper order. The result
obtained in (66) proves the necessity in Theorem 2.

The sufficiency is shown by means of an indirect
proof. Assume that the matrix X includes only one signal
which is a sine of the k-th harmonic frequency, i.e.,

X=
[
x(0) x(1) · · ·x(N−1)

]T
, x(n)=sin

(
k

2π

N
n

)
.

(67)
In this case,

F−1X =
1
2

[ 0 · · · 0 Xk 0 · · · 0 X∗
k 0 · · · 0 ]T , (68)

XT F = N
(
F−1X

)∗

=
N

2
[ 0 · · · 0 X∗

k 0 · · · 0 Xk 0 · · · 0 ] , (69)

XT X

=
[
x(0) x(1) . . . x(N−1)

][
x(0) x(1) . . . x(N−1)

]T

= NX2
k rms =

N

2
|Xk|2 , (70)

where Xk is a complex phasor of the k-th harmonic,
Xk rms is a root-mean-square value of the k-th harmonic.
Thus the matrix A′ defined in (62) takes the form of the
matrix product F−1P1F (64) with except for the entries:

[A′]k,k =
w−k

2
,

[A′]k,N−k = − X2
k

2 |Xk|2
w−(N−k),

[A′]k−N,k = − (X∗
k)2

2 |Xk|2
w−k, (71)

[A′]N−k,N−k =
w−(N−k)

2
.

The characteristic polynomial of the matrix A can be
determined as follows:

ϕ (λ)
= det (λI − A) = det (λI − A′)

=
k−1∏

n=0

(
λ−w−n

)·
N−k−1∏

n=k+1

(
λ−w−n

)·
N−1∏

n=N−k+1

(
λ−w−n

)

· det

⎡

⎢⎣

w−k

2 − λ − X2
k

2|Xk|2 w−(N−k)

− (X∗
k )2

2|Xk|2 w−k w−(N−k)

2 − λ

⎤

⎥⎦

=
k−1∏

n=0

(
λ−w−n

)·
N−k−1∏

n=k+1

(
λ−w−n

)·
N−1∏

n=N−k+1

(
λ−w−n

)

· λ
(

λ−cos
(
k

2π

N

))
. (72)

The obtained form of the characteristic polynomial
(72) indicates that, under the assumption of the indirect
proof, the matrix A does not have any eigenvalues of the
form given in (61). This is contradictory to the assumption
of Theorem 2 and proves the sufficiency in this theorem.

�
Some eigenvalues of the matrix A given in (50) may

lie on the unit circle, and the remaining eigenvalues are lo-
cated inside it. This means that the iteration scheme pre-
sented in (47) does not have the property of asymptotic
convergence. The solution of the homogenous equation

v (n + 1) = Av (n) (73)
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can have a non-decaying periodic component. In order to
avoid it, the initial condition of the iterations (47) has to
be a zero vector:

h0 = [ 0 0 · · · 0 ]T . (74)

The convergence of the iteration scheme given in
(47) to perform the identification of the CPO associated
with (11) depends on the input term present in (49):

Bu (n) = X
(
XT X

)−1

yn. (75)

If some eigenvalues of the matrix A lie on the unit cir-
cle, the iterations (47) may lose convergence. This is pos-
sible if the input term includes the harmonic of angular
frequency equal to any of these eigenvalues. The input
term given in (75) can be treated as a linear combina-
tion of signals included in X with coefficients obtained
from the matrix operation

(
XT X

)−1
yn. If none of sig-

nals being a column of the matrix X includes the k-th
harmonic, then their linear combination does not include
this harmonic as well. Taking into account Theorem 2,
the presence of eigenvalues on the unit circle of the form
given in (61) means the lack of the k-th harmonic in the
input component given in (75). Thus, the solution of the
equation given in (49) converges to a periodic signal such
that the identification scheme given in (47) is convergent.
A periodic solution of the identification iterations implies
periodic variability of parameters of the system described
by the determined CPO. The numerical experiments car-
ried out so far confirm the convergence properties of the
algorithm.

5. Numerical experiments

Some numerical experiments were carried out to verify
the validity and properties of the identification iteration
scheme. An original CPO of a simple one-port network
was determined by means of numerical simulation meth-
ods. The diagram of the one-port network and the func-
tions defining the changes of the resistance, inductance
and capacity are presented in Figs. 2 and 3. The resis-
tance changes function is a double frequency sine with
a direct component, the inductance changes function is a
triple frequency sine with a direct component, and the ca-
pacity changes function is a sine of a frequency four times
higher the basic input frequency with a direct component.

The graphs of the impedance CPO Z̃(n, m) and of the

module of the SCPO
∣∣ ¯̃H(kU , kI)

∣∣ are presented in Figs. 4
and 5.

Next, the set of current signals used as stimuli was
generated. The response voltage signals were obtained
by applying the original CPO on the stimuli. Using the
proposed iteration scheme, the identified impedance CPO
was determined, and using 2D DFT, the identified SCPO

Fig. 2. Diagram of the LPTV one-port network.
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Fig. 3. Periodic functions defining parameter changes of the el-
ements present in the one-port network of Fig. 2.
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Fig. 4. Original impedance CPO of the LPTV one-port network
of Fig. 2.
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Fig. 5. Module of the original SPCO of the LPTV one-port net-
work.

was calculated. Then, the identification iteration scheme
effectiveness test was carried out. The response voltage
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Fig. 6. Results of the test performed on the identified CPO by
means of sine stimulus: (a) one sine stimulus current
signal and the response voltage signal, (b) two sine cur-
rent stimulus signals with different phases and response
voltage signals, (c) and (d) comparison of the response
voltage signals obtained by applying the original opera-
tor (“uto”) and the identified operator (“uti”) on the test
sine stimulus signal (“it”).

signals obtained by applying the original operator (which
is marked in Figs. 6 and 12–15 with “uto”) and the iden-
tified operator (“uti”) on some test stimulus signals (“it”)
were compared. The identification based on sine stimu-
lus signals was carried out. The CPO obtained by means
of one sine current (symbol “i”) and its associated volt-
age response (symbol “u”) presented in Fig. 6(a) yields
a wrong test response voltage signal to the sine stimulus
shifted in time presented in Fig. 6(c). Making use of two
sine current stimuli with different phases presented as “i1”
and “i2” in Fig. 6(b) yields the identified CPO, which op-
erates on the test stimulus in the same way as the origi-
nal one, see Fig. 6(d). The graphs of the identified CPO
and of the SCPO module are presented in Figs. 7 and 8.
The usage of two double frequency sine stimuli allowed

to determine two columns of the SCPO related to the 2-nd
harmonic of stimulus. One of the columns can be treated
as the impedance of the LPTV one-port network for exact
frequency. It allows us to determine voltage harmonics
phasors, when the one-port network is supplied with sine
current. The second column determined carries the same
information, because it consists of conjugated entries of
the first one.

The distribution of eigenvalues of the matrix A
in (50) on the complex plane is presented in Fig. 9. Ac-
cording to Theorem 2, the presence of only one harmonic
in the set of stimuli results in almost all eigenvalues lying
on the unit circle.

The next example demonstrates the application of
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Fig. 7. CPO obtained from identification based on two sine
stimulus signals.
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Fig. 8. Module of the SCPO obtained from identification based
on two sine stimulus signals.
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Fig. 9. Distribution of eigenvalues of the matrix A: (a) when
one double frequency sine stimulus signal is used, (b)
when two sine stimulus signals of the same double fre-
quency but different phase are used. Arrows show eigen-
values of the module less than 1.

polyharmonic stimulus signals to identify the CPO. Ran-
dom signals of uniformly distributed samples in the in-
terval (0, 1) were used. When one random signal, which
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Fig. 10. CPO obtained from identification based on one random
stimulus signal.
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Fig. 11. Module of the SCPO obtained from identification based
on one random stimulus signal.

contains all harmonics of order 0, . . . , N/2 is used, then
the CPO obtained from identification takes the form of a
circular matrix and the SCPO takes that of a diagonal one.
This is typical of an LTI system. Graphs of the obtained
CPO and SCPO are presented in Figs. 10 and 11. The test
results presented in Fig. 12 show that using one signal pair
yields poor identification effects. Obtained from 3, 10 and
30 random stimulus signals, the CPO identification test
results are presented in Figs. 13, 14 and 15, respectively.

The CPO and the SCPO obtained by means of 30 sig-
nal pairs are shown in Figs. 16 and 17. Comparing these
to Figs. 4 and 5, and taking into account that rank of the
CPO is 50, it seems that system identification on the basis
of an incomplete set of signals using the presented itera-
tion scheme can provide correct results.
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Fig. 12. Results of the test performed on the identified CPO by
means of one random stimulus signal.
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Fig. 13. Module of the SCPO obtained from identification based
on three random stimulus signals.
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Fig. 14. Results of the test performed on the identified CPO by
means of ten random stimulus signals.
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Fig. 15. Module of the SCPO obtained from identification based
on 30 random stimulus signals.

6. Conclusion

A circular parametric operator can be used to describe
the relation between terminal signals of a periodically
time-varying one-port network operating in a steady-state
regime. Within the domain of discrete time, such an op-
erator takes the form of a matrix with real-valued en-
tries. A spectral circular parametric operator may be used
for quantitative assessment of input and output harmonics
aliasing, which is a characteristic phenomenon in time-
varying and non-linear systems. An important advantage
of the representation of an LPTV system by means of the
SCPO, at least from the point of view of an electrical en-



672 R. Kłosiński
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Fig. 16. CPO obtained from identification based on 30 random
stimulus signals.
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Fig. 17. Module of the SCPO obtained from identification based
on 30 random stimulus signals.

gineer, is its similarity to the frequency response of an
LTI system. However, differences between both represen-
tations are visible. The described iterative identification
scheme can be used to determine the time-varying one-
port network impedance circular parametric operator. The
proposed scheme is a convenient way to determine the
CPO and the SCPO of a given system from a set of mea-
surements. It yields expected results, provided that the
identification data uses includes the required information
about the performance of the system being identified.
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Radosław Kłosiński received the M.Sc. de-
gree from the Technical University of Zielona
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His research interests are in periodically time-
varying and non-linear systems and their appli-
cations in electrical engineering and digital sig-

nal processing. He is also interested in improving the accuracy of spec-
trum estimation of noncoherently sampled periodic signals.

Received: 28 August 2008
Revised: 14 April 2009


	Introduction
	Circular parametric operator
	Frequency domain representation ofthe CPO
	Determination of the CPO on the basis of measurements
	Numerical experiments
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




