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This paper is devoted to the way point following motion task of a unicycle where the motion planning and the closed-loop
motion realization stage are considered. The way point following task is determined by the user-defined sequence of way-
points which have to be passed by the unicycle with the assumed finite precision. This sequence will take the vehicle from
the initial state to the target state in finite time. The motion planning strategy proposed in the paper does not involve any
interpolation of way-points leading to simplified task description and its subsequent realization. The motion planning as
well as the motion realization stage are based on the Vector-Field-Orientation (VFO) approach applied here to a new task.
The unique features of the resultant VFO control system, namely, predictable vehicle transients, fast error convergence,
vehicle directing effect together with very simple controller parametric synthesis, may prove to be useful in practically
motivated motion tasks.
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1. Introduction

In the robotics literature, one usually distinguishes three
basic and uniquely defined control tasks (de Luca et al.,
1998): trajectory tracking, path following, and posture
stabilization (set-point regulation). However, in practice,
mobile robot control tasks cannot be easily and definitely
classified into one of these types (Lawrence et al., 2008).
For instance, one can find practical motion problems like
tracking a leading vehicle where its instantaneous motion
cannot be anticipated, or the task of motion with the target
not defined in advance but determined by defining the de-
sired azimuthal direction and longitudinal robot velocity,
or finally the task of motion along the geometrical contour
not known in advance, like the wall-following problem
(Siegwart and Nourbakhsh, 2004). Moreover, sometimes
even if a particular task belongs to one of the first two
types mentioned above, its full description in terms of the
reference full-state trajectory or geometrical path can be
a nontrivial algorithmic problem, especially in the case of
motion planning in a cluttered environment (Madi, 2004).
Thus it seems to be desirable to propose an alternative
method of motion task determination, which would com-
bine two useful features, namely, the simplicity of task
description characteristic for the set-point regulation prob-

lem together with the ability of shaping the robot’s path
which is intrinsic to the path following motion problem.
One of the simplest methods consists in the determination
of the set St, which is made of the way-point sequence
along with the initial (starting) state and the target (final)
state. The set St can be treated as a simplified definition
of the desired path assuming that the way-points are cho-
sen sufficiently close to each other and the vehicle motion
between them is predictable and sufficiently smooth. Sim-
plified task determination might turn out to be computa-
tionally efficient and useful for simple motion re-planning
by adding way-points to the set St even already during
task realization.

The planning problem for motion described by the
set of way-points can be solved in many ways. The short-
est path with finite curvature connecting the way-points
is made of the sequence of arcs and rectilinear segments
(Reeds and Shepp, 1990). Planning the motion involves
finding and combining the finite sequence of the men-
tioned primitives leading to the resultant curve with a dis-
continuous curvature. The smoothing procedure proposed
in (Scheuer and Fraichard, 1997) and (Fleury et al., 1995),
where clothoid segments were used in the neighborhoods
of discontinuity points, can improve the quality of planned
motion. However, the above approaches finally lead to
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geometrical paths determined using an interpolation pro-
cedure between the way-points. As a consequence, the
control task becomes the path following problem and the
feature of simplified task definition may be lost. More-
over, as mentioned in (Samson, 1992), path following task
realization usually involves the determination of the in-
stantaneous perpendicular distance to the path, which is
generally a non-trivial or even a non-unique mathematical
problem. Thus, the issue of simplified task determination,
which does not involve extending it to the full path, to-
gether with simplified motion realization seems to be an
open research problem.

This paper proposes an alternative algorithm of mo-
tion planning in a free space using only the sequence of
defined and recomputed way-points. The method does
not involve an extension to any geometrical path preserv-
ing the simplicity of the task in a sense of its descrip-
tion as well as realization. The finite-time motion con-
trol problem (with the motion time-horizon being a func-
tion of controller parameters) is solved by a modified ver-
sion of the original Vector-Field-Orientation (VFO) feed-
back controller presented by the authors in (Michałek and
Kozłowski, 2009), but designed here with a strict connec-
tion to the newly proposed planning method. The mo-
tion task proposed and subsequently accomplished by the
strategy introduced in this paper will be called way point
following1. The name emphasizes the combination of fea-
tures characteristic for set-point regulation and partially
for the path following problem, leading, however, to sim-
plified version of the latter.

The paper is an extension of the preliminary work
(Michałek and Kozłowski, 2008) and is organized as fol-
lows: Section 2 introduces basic assumptions, includes the
system model and the task definition considered. A brief
explanation of the original VFO control approach for pos-
ture stabilization is presented in Section 3. The motion
planning algorithm and the VFO motion control strategy
are the main topic of Sections 4 and 5, respectively. Sec-
tion 6 illustrates simulation results. Conclusions are given
in Section 7.

2. Problem formulation

2.1. Unicycle model. The vehicle model taken into ac-
count in the paper is a unicycle with the following kine-
matics:

q̇(τ) =

⎡
⎣

1
0
0

⎤
⎦u1(τ) +

⎡
⎣

0
cos θ(τ)
sin θ(τ)

⎤
⎦u2(τ), (1)

where q
Δ= [θ x y]T = [θ q∗T ]T ∈ R

3 is a state vector
describing the orientation angle and the position vector of
a local frame attached to the unicycle (see Fig. 1). The

1A similar terminology was proposed in (Lawrence et al., 2008).

Fig. 1. Unicycle in the global frame {G}.

control inputs u1, u2 ∈ R can be interpreted as angular
and longitudinal velocity, respectively.

2.2. Way point following motion task. Here we pro-
vide the mathematical background for the way point fol-
lowing motion task. Let us introduce the following set of
finite number of way-points:

St
Δ= {qt0, qt1, qt2, . . . , qtN}, (2)

which have to be passed by the unicycle (with assumed
precision) during the motion task considered, with qt0 be-
ing an initial (starting) point, and qtN being a target (final)
point, where

qti
Δ=

[
θti

q∗
ti

]
∈ R

3, q∗
ti =

[
xti

yti

]
∈ R

2. (3)

We assume that

qt0
Δ= q(τ = 0), (4)

being an initial state of the system (1), and qtN =
[θtN xtN ytN ]T is explicitly defined by the user. The
determination of the remaining way-points qti, i =
1, . . . , N − 1 from (2) will be described in the sequel as
part of the motion planning stage. In this subsection we
assume that they are given.

Next, introduce a term of the i-th motion segment de-
noting the motion stage associated to the transition from
the qti−1 to the qti way-point of (2). The two way-points
qti−1 and qti will be called the boundaries of the i-th mo-
tion segment. Now one can formulate the way point fol-
lowing motion task for the unicycle.

Definition 1. (Way point following task) Find the bounded
control input functions u1(·) and u2(·) which take the
state q of the model (1) from the initial point (4) to the
desired target point, qtN , passing according to index or-
der through all the way-points qti for i = 1, . . . , N − 1
with the assumed precision in sense that

lim
τ→∞ ‖qtN − q(τ)‖ � εN (5)

and

∀ i = 1, . . . , N ∃ τi < ∞ : ‖ e∗
i (τi)‖ � εi, (6)
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where
e∗

i (τ) Δ= q∗
ti − q∗(τ) (7)

is a position error in the i-th motion segment, and τi de-
notes the time instant when the norm ‖ e∗

i (τ)‖ enters the
assumed vicinity εi � 0.

Note that (5) together with (6) means finite-time con-
vergence for the target position error e∗

N (τ) to the εN -
neighborhood and asymptotic convergence of the target
orientation error |θtN − θ(τ)| to zero.

The above motion task can be accomplished in sev-
eral ways. The proposition described below makes use of
the specific geometrical features of the VFO stabilizer (see
(Michałek and Kozłowski, 2009)), especially the so-called
directing effect. The concept, however, involves conduct-
ing a simple motion planning stage before, which will sub-
sequently allow smooth transition of the vehicle via mo-
tion segment boundaries. Moreover, it will be shown that
the method allows free shaping of the longitudinal veloc-
ity profile u2 = u2(s), as a function of some parameter
s, in the forward as well as in the backward motion strat-
egy. Summarizing, the presented control concept consists
of two main stages: (i) the motion planning stage rely-
ing on the determination of the way-points qti for i = 1 to
i = N−1, and (ii) the motion control stage accomplishing
the way point following task formulated in Definition 1.
Both stages will be described in Sections 4 and 5, respec-
tively. To make the concept clear enough, a brief recall
concerning the VFO control approach is given first in the
next section (for a detailed description, see (Michałek and
Kozłowski, 2009)).

3. Background on the VFO stabilizer

The form of the VFO stabilizer results from the vector
field orientation control method, which originates from a
simple geometrical interpretation connected with the kine-
matics (1). In this interpretation, the input u1 is treated
as orienting control, which allows one to freely change
the orientation of the vector field g∗

2(θ) = [cos θ sin θ]T

driving directly the θ variable (orienting variable). The
second input u2 plays the role of pushing control, which
drives (pushes) the rest of the state variables along the cur-
rent direction of g∗

2(θ). The VFO stabilizer is defined by
the following equations:

u1(τ) Δ= h1(τ), (8)

u2(τ) Δ= ‖h∗(τ)‖ cosα(τ), (9)

where α = ∠(g∗
2(θ), h∗), and the so-called convergence

vector field h = [h1 h∗T ]T = [h1 h2 h3]T . Here h =
h(qt, q, ·) ∈ R

3 defines at every state point q the desired
convergence direction and is also a function of an instan-
taneous distance to the reference point qt = [θt xt yt]T .
The particular form of this vector field is a second crucial

element of the whole VFO control strategy and in the case
of the posture stabilization task it is defined as follows:

h1(τ) Δ= k1ea(τ) + θ̇a(τ), (10)

h∗(τ) Δ= kpe
∗(τ) + v∗(τ), (11)

where

ea(τ) Δ= θa(τ) − θ(τ), (12)

θa(τ) Δ= Atan2c (sgn(k)h3(τ), sgn(k)h2(τ)) , (13)

θ̇a(τ) =
ḣ3(τ)h2(τ) − ḣ2(τ)h3(τ)

h2
2(τ) + h2

3(τ)
, (14)

e∗(τ) Δ= q∗
t − q∗(τ), q∗

t = [xt yt]T , (15)

v∗(τ) Δ= −η sgn(k) ‖e∗(τ)‖ g∗
2t, (16)

ḣ∗(τ) = −kpq̇
∗(τ) + v̇∗(τ), (17)

v̇∗(τ) = −η sgn(k)
e∗T (τ)ė∗(τ)
‖e∗(τ)‖ g∗

2t, (18)

k1, kp > 0 and 0 < η < kp are the VFO design parame-
ters, g∗

2t = [cos θt sin θt]T , and Atan2c (·, ·) : R × R �→
R is a continuous version of the four-quadrant function
Atan2 (·, ·) : R × R �→ [−π, π).

Equations (8) to (18) reveal the VFO control strat-
egy. Equation (13) defines the desired auxiliary orienta-
tion angle, expected to be followed by the vehicle, and
computed according to the current direction of h∗. The
additional term sgn(k) ∈ {+1,−1} can be treated here
as a decision variable, which allows choosing the desired
motion strategy (forward/backward) of the vehicle along
the direction of h∗. According to (12), (10) and (8), the
orienting control u1 is responsible for reorienting the ve-
hicle to make the auxiliary orientation error (12) tend to
zero. A geometrical interpretation of the above follows:
setting ea = 0 is equivalent to making the direction (and
the orientation if sgn(k) = +1) of g∗

2(θ) coincident with
the direction determined by h∗. In addition, with appro-
priate value selection for sgn(k) and the input u2, it con-
sequently implies that the longitudinal velocity vector q̇∗

can be aligned with the convergence vector h∗ and the ve-
hicle position can be driven to the reference point.

It is worth noting that the definition of h∗ proposed in
(11) is peculiar in the sense that at the limit for e∗ → 0 the
auxiliary variable (13) converges to the reference orienta-
tion θt. This has a great importance for the convergence
of the vehicle orientation to the reference one in a neigh-
borhood of the reference position q∗

t . The pushing control
u2 proposed in (9) drives the substate vector q∗ along the
current direction of g∗

2(θ) with the intensity proportional
to the current orthogonal projection of h∗ onto g∗

2(θ) real-
izing the so-called careful pushing strategy (Michałek and
Kozłowski, 2009).

Summarizing, the control inputs of the VFO ap-
proach are designed in a way which guarantees that the
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Fig. 2. Effect of directing the vehicle during set-point control
with the VFO stabilizer (h∗ denoted for kp = 1).

state of the system (1) evolves in time along the conver-
gence vector field towards the reference state. The tran-
sient stage of the vehicle motion can be effectively shaped
by introducing the virtual reference velocity v∗ defined in
(16), see also (Michałek and Kozłowski, 2009). Using it
in the definition (11) causes the vehicle directing effect,
which turned out to be very useful in smoothing the vehi-
cle motion when approaching the reference position and
achieving the reference orientation θt. The enhancement
of the directing effect depends on the value of the design
parameter2 η (see (16)). Figure 2 illustrates the VFO stabi-
lization strategy for the unicycle where the vehicle direct-
ing effect results from introduction of the virtual reference
velocity vector v∗. The proof of asymptotic convergence
for the posture error e = qt − q to zero, was presented in
(Michałek and Kozłowski, 2009).

The VFO stabilizer is a discontinuous controller
and belongs to the class of almost stabilizers (accord-
ing to terminology proposed in (Astolfi, 1996)). The au-
thors believe that the VFO methodology can be treated
as a generalization of the control concept described in
polar-coordinates. Simulations and experimental results
presented in (Michałek and Kozłowski, 2009) revealed
several practically important features of the closed-loop
system with the VFO stabilizer, namely, fast and non-
oscillatory posture convergence for any of the vehicle ini-
tial conditions and very simple controller parametric syn-
thesis leading to the possibility of simple transient stage
shaping. These features allow anticipating vehicle behav-
ior during the convergence process and naturally motivate
one to utilize the VFO concept for motion planning and
control in the task of way point following.

4. VFO motion planning algorithm

The first stage of the proposed concept is a motion plan-
ning procedure, which involves determining the remaining
way-points qti for i = 1, 2, . . . , N − 1 from the set (2).
Let us assume (in addition to the assumptions made in

2Strictly speaking, the enhancement depends on the difference kp −
η, see (Michałek and Kozłowski, 2009) for more details.

Subsection 2.2) that for all i = 1, . . . , N − 1 the position
components q∗

ti (see (3)) of the way-points are defined in
advance, and only the orientation components θti remain
to be determined by the planning procedure. This assump-
tion enables the user to shape the path of the robot in the
task space. The aim is thus to describe how the way-point
orientations are computed in the VFO planning stage.

The particular points from the set (2) divide the
planned motion into N segments. Motion in the i-th seg-
ment can be treated as a problem of set-point control be-
tween the initial point qti−1 and the final one qti. The
crucial principle in the VFO motion planning stage is the
computation of the way-point orientations θti so that it
guarantees the consistency of their values with the auxil-
iary orientation angles θa defined by the convergence vec-
tors h∗ (see (13)) on the segment boundaries during the
subsequent motion realization stage conducted with the
VFO stabilizer. This principle comes from the require-
ment of continuity for time-evolution of the the auxiliary
variable during the motion realization stage. It allows
generating a smooth vehicle movement also when pass-
ing through segment boundaries. Computation details ful-
filling the above principle are presented below. The mo-
tion planning computations are carried out for the nominal
case, in which the vehicle is able to pass via all the way-
points accurately3.

Our objective is to find the orientation θti−1 from the
beginning of the i-th motion segment assuming that θti for
the end of the segment is already computed (the compu-
tational procedure starts from the target point4 qtN to the
first way-point qt1). Let us describe the particular vec-
tors obtained using the VFO motion strategy (presented in
Section 3) for the i-th motion segment. The posture error
for the i-th segment is defined in (7). The position error
results from the equation

e∗
i (τ) Δ= q∗

ti − q∗(τ) =
[
xti − x(τ)
yti − y(τ)

]
, (19)

where τ ∈ [τi−1, τi]. Now, according to the notation in-
troduced in Section 3, one can define

v∗
i (τ) Δ= −ηi sgnU2i ‖ e∗

i (τ)‖ g∗
2ti, (20)

h∗
i (τ) Δ= kpe

∗
i (τ) + v∗

i (τ) = [h2i(τ) h3i(τ)]T , (21)

θai(τ) Δ= Atan2c (sgnU2i · h3i(τ), sgnU2i · h2i(τ)) ,
(22)

with
g∗

2ti = [cos θti sin θti]T , (23)

and where 0 < ηi < kp, kp > 0 and sgnU2i ∈ {+1,−1}
should be treated as control system design parameters

3This assumption will be further weakened for the motion realization
stage.

4Note that θtN is defined in advance and does not involve any
computations—see the prerequisites in Subsection 2.2.
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Fig. 3. Description of particular vectors and the explanation of
way-point orientation determination in subsequent mo-
tion segments for the VFO motion planning strategy (h∗

denoted for kp = 1 and sgnU2i = +1).

chosen by the user. The terms in the above equations
play in the i-th segment the same role as described in Sec-
tion 3. The decision variable sgnU2i (introduced here in-
stead of the sgn(k) function from (13)–(18)) allows choos-
ing the motion strategy during approaching the i-th way-
point (sgnU2i = +1 for forward, sgnU2i = −1 for back-
ward motion).

The definitions (19)–(22) were written as functions
of time, since they will be time-dependent during the mo-
tion realization stage. However, for the planning proce-
dure, only their values at the initial time instant τi−1 are
important, since at this time instant the vehicle should ar-
rive at the beginning of the i-th motion segment. Hence,
for τ = τi−1, the auxiliary angle (22) takes the value

θai(τi−1) = arg(h∗
i (τi−1)), (24)

where for simplicity we introduced the notion arg(h∗) ≡
Atan2c (sgnU2i · h3, sgnU2i · h2). According to the VFO
motion planning principle mentioned before, the desired
orientation of the way-point qti−1 results from the follow-
ing substitution:

θti−1 := θai(τi−1). (25)

Note that for the nominal case one has e∗
i (τi−1) ≡

q∗
ti−q∗

ti−1. Equation (25) expresses the VFO motion plan-
ning strategy. It means that the desired orientation in the
i-th way-point should be consistent with the orientation
of the convergence vector h∗ computed for the point q∗

ti

defining simultaneously the convergence direction to the
next way-point from the set (2).

The VFO motion planning strategy is graphically ex-
plained in Fig. 3. The following algorithm summarizes the
computations involved in the VFO motion planning stage:

S0. Initial data: qt0 ≡ q(0), qtN , kp > 0
and q∗

ti, ηi, sgnU2i for all i = 1, . . . , N ;

S1. Counter initialization: i := N ;

S2. e∗
i (τi−1) = q∗

ti − q∗
ti−1;

S3. v∗
i (τi−1) = −ηi sgnU2i ‖ e∗

i (τi−1)‖g∗
2ti;

S4. h∗
i (τi−1) = kpe

∗
i (τi−1) + v∗

i (τi−1);

S5. θai(τi−1) = arg(h∗
i (τi−1));

S6. θti−1 := θai(τi−1);

S7. IF (i == 2) THEN STOP
ELSE i := i − 1 and GOTO S2.

5. VFO control for way point following

After the motion planning procedure, the second stage of
the proposed concept, namely, motion realization, is con-
sidered. We propose to utilize at this stage the modified
version of the VFO feedback controller presented in Sec-
tion 3. This modification results from the following im-
portant issues. First, the original VFO stabilizer (8)–(9)
is defined only for one motion segment determined by the
initial and the final posture, guaranteeing asymptotic con-
vergence for the posture error to zero. This means that the
final position cannot be reached in finite time. Second,
longitudinal velocity of the vehicle controlled by the orig-
inal pushing control (9) evolves from relatively high value
at the beginning of the transient stage to zero in the final
stage. Hence, using the original definition of the controller
for the way point following task would prevent the vehi-
cle from passing smoothly and in finite time through par-
ticular segment boundaries and, as a consequence, from
accomplishing the task considered.

According to the above, we propose to organize
the motion realization stage as follows. To guarantee
reaching the segment boundary in finite time, let us re-
place the asymptotic convergence demand of the original
VFO stabilizer with practical convergence to the assumed
non-zero vicinities ε1, . . . , εN > 0 of the way-points
qt1, . . . , qtN in the particular motion segments. Relaxing
the convergence demand remains consistent with Defini-
tion 1 and seems to be practically justified. We also pro-
pose, following the works of (Sasiadek and Duleba, 1995)
and (Sordalen and de Wit, 1993), the switching procedure,
which will be responsible for the activation of the next
way-point from the set St as soon as the position error
norm determined for the i-th motion segment reaches the
assumed εi-neighborhood of the i-th way-point. Activat-
ing the way-point should be understood as passing it on to
the realization stage. The switching procedure can be de-
scribed by the increasing condition for the index i which
indicates the currently active, i.e., being realized, motion
segment:

IF ((‖ e∗
i ‖ � εi) AND (i < N)) THEN i := i + 1, (26)

assuming additionally that the initial index value i := 1 is
set for τ = 0 (beginning of the motion realization stage).
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Let us now define the VFO control inputs for the way
point following task. The modified pushing control input
for particular motion segments is defined as follows:

u2(τ) Δ=
{

ρi ‖h∗
i (τ)‖ cosαi(τ) for τ ∈ [τi−1, τi),

0 for τ � τN ,
(27)

where i = 1, . . . , N , h∗
i (τ) is defined in (21), αi(τ) =

∠(g∗
2(θ(τ)), h∗

i (τ)), and the non-negative continuous
scaling function ρi = ρi(·) is introduced in order to prop-
erly shape the longitudinal velocity profile along the mo-
tion segments. To make our discussion more general, we
do not determine here any particular form of the function
ρi. However, an example will be given in Subsection 5.1.
The definition (27) indicates that the vehicle is stopped
after reaching the assumed neighborhood εN > 0 of the
target point qtN . In this way, the motion time horizon in
the realization stage is finite, as required in Definition 1.

The orienting control is defined as follows:

u1(τ) Δ=
{

k1eai(τ) + θ̇ai(τ) for τ ∈ [τi−1, τi),
k1(θtN − θ(τ)) for τ � τN ,

(28)
where i = 1, . . . , N , k1 > 0 is a design coefficient, and
eai(τ) = θai(τ) − θ(τ) with θai(τ) defined in (22). The
feed-forward term θ̇ai comes from time-differentiation of
(22) and has the form

θ̇ai(τ) =
ḣ3i(τ)h2i(τ) − ḣ2i(τ)h3i(τ)

h2
2i(τ) + h2

3i(τ)
, (29)

with h∗
i (τ) = [h2i(τ) h3i(τ)]T defined by (20)–(21) and

with
ḣ∗

i (τ) = −kpq̇
∗(τ) + v̇∗

i (τ) (30)

(compare (17)), where

v̇∗
i (τ) = −ηi sgnU2i

e∗T
i (τ)ė∗

i (τ)
‖ e∗

i (τ)‖ g∗
2ti, (31)

with g∗
2ti determined in (23), comes from time-

differentiation of (20).
Comparing (28) and (8), one can find that for all N

motion segments the orienting control for the way point
following task is almost analogous to the original defini-
tion for the VFO stabilizer. The difference comes from the
switching procedure applied here and from the last stage
(for τ � τN ), where the modified orienting control has
to stabilize the orientation of the vehicle stopped by the
pushing control (27) in the assumed non-zero neighbor-
hood εN of the target point qtN .

Remark 1. The definitions (22) and (29) are well defined
for ‖h∗

i ‖ 
= 0. Since the condition ‖h∗
i ‖ = 0 can be met

only for ‖e∗
i ‖ = 0 (see (21) and (20)), one avoids this

indeterminacy assuming that all vicinities ε1, . . . , εN for
the way-points are greater than zero. This implies that the

vehicle never reaches the current i-th way-point before the
switching procedure activates the next way-point from the
set St, or before the pushing input (27) stops the vehicle
(for τ � τN ) in the neighborhood εN of the target point
qtN .

The control input definitions (27) and (28) are pro-
posed as a result of some heuristic approach based on the
authors’ experiences obtained so far during simulation and
experimental tests with VFO controllers (see (Michałek
and Kozłowski, 2009)). Stability and error convergence
analysis in the closed-loop system with the proposed VFO
controller for the way point following task is conducted in
Subsection 5.2.

5.1. Remarks on scaling function selection. The scal-
ing function ρ introduced in the definition (27) can be
selected in many ways according to a particular applica-
tion. The only constraint of its construction lies in posi-
tive semi-definiteness. The possible selection determines
ρ = ρ(s) as a function of some independent and normal-
ized parameter s ∈ [0, 1]. In a particular case, s can be a

time variable (s
Δ= τ ). However, this selection would lead

to the points-tracking task rather than to way point follow-
ing, considered in this paper. For the latter, it seems to be
more appropriate to define s in terms of some geometrical
terms related to a realized motion task (with analogy to the
well-known proposition from (Samson, 1992)). One such
proposition for the i-th motion segment can be defined as
follows:

si
Δ= 1 − ‖h∗

i (τ)‖
‖h∗

i (τi−1)‖ , (32)

where τ ∈ [τi−1, τi].
Since ‖h∗

i (τ)‖ can evolve in time only when the ve-
hicle moves with a non-zero longitudinal velocity u2, the
parameter si evolves also in relation to vehicle motion.
Now, the function ρi = ρi(si) allows shaping longitudi-
nal velocity taking, for instance,

ρi(si)
Δ=

ρi(si)
‖h∗

i (τ)‖ , (33)

where ρi(si) is a design function founded, for example, on
the polynomial basis. The simplest example is the zero-

order polynomial ρi
Δ= U2 with U2 > 0 being a constant

denoting the desired driving velocity of the controlled ve-
hicle5. Substituting (33) with the mentioned zero-order
polynomial into the definition (27) gives the particular
form of the VFO pushing control in the i-th motion seg-
ment as follows:

u2(τ) = U2 cosαi(τ). (34)

Note that the above proposition generally results in
a piecewise continuous input signal, with the possible dis-

5Understood as an absolute value.
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continuity points only in transition through the motion
segment boundaries (at the time instants τi).

5.2. Stability and convergence analysis. It will be
shown that the VFO feedback controller defined in (27)
and (28) applied to the vehicle model (1) together with
the motion segment switching condition (26) guarantees
accomplishing the task given in Definition 1. More
specifically, one can show that

A1. The vehicle position error ‖e∗
i (τ)‖ in any i-th

motion segment converges to the assumed non-zero εi-
neighborhood of the i-th way-point position q∗

ti in finite
time. As a consequence, the vehicle position converges
from the initial point q∗(0) to the target one q∗

tN in finite
time as well.

A2. The vehicle orientation θ(τ) exponentially converges
to the auxiliary orientation θai(τ) in any i-th motion
segment.

A3. The vehicle orientation θ(τ) asymptotically con-
verges to the target orientation θtN after the vehicle
reaches the assumed vicinity εN of the target position q∗

tN .
Let us consider the i-th motion segment joining the

current vehicle state q(τ) with the i-th way-point qti. The
analysis starts by applying the orienting input (28) into
(1), which gives

ėai(τ) + k1eai(τ) = 0 ⇒ lim
τ→∞ eai(τ) = 0. (35)

The above equation allows concluding A2.
In the next step, let us recall the definition (7), which

implies ė∗
i = −q̇∗. This relation can be equivalently

rewritten as (cf. (21))

ė∗
i = −q̇∗ + ρi(h∗

i − kpe
∗
i − v∗

i ),

where ρi is the scaling function from (27). After reorder-
ing the above equation, one obtains

ė∗
i + ρikpe

∗
i = ρiri − ρiv

∗
i , (36)

where

ri = h∗
i − g∗

2(θ)u2 with u2 := ‖h∗
i ‖ cosαi. (37)

The latter formula can be easily obtained recalling
that q̇∗ = g∗

2(θ)u2, where g∗
2 = [cos θ sin θ]T (see (1)

and (27)): q̇∗ = g∗
2(θ)ρi ‖h∗

i ‖ cosαi = ρig
∗
2(θ)u2. Ad-

ditionally, it can be shown (see Appendix) that the follow-
ing two relations hold:

‖ ri‖ = ‖h∗
i ‖ γi(θ), lim

θ→θai

γi(θ) = 0, (38)

where γi(θ) =
√

1 − cos2 αi(θ) ∈ [0, 1] and αi(θ) =
∠(g∗

2(θ), h∗
i ). Let us introduce the positive definite func-

tion Vi(e∗
i )

Δ= 1
2e∗T

i e∗
i . Its time-derivative along the solu-

tion of (36) can be estimated as follows:

V̇i = e∗T
i ė∗

i = e∗T
i [−ρikpe

∗
i + ρiri − ρiv

∗
i ]

= −ρikp ‖e∗
i ‖2 + ρie

∗T
i ri − ρie

∗T
i v∗

i

� −ρi

[
kp ‖e∗

i ‖2 − ‖ e∗
i ‖ ‖ ri‖ − ‖e∗

i ‖ ‖v∗
i ‖

]

(20,38)
= −ρi

[
kp ‖ e∗

i ‖2 − ‖e∗
i ‖ ‖h∗

i ‖ γi − ηi ‖e∗
i ‖2

]

= −ρi

[
(kp − ηi) ‖ e∗

i ‖2 − γi ‖e∗
i ‖ ‖ kpe

∗
i + v∗

i ‖
]

� −ρi

[
(kp − ηi − γikp) ‖ e∗

i ‖2 − γi ‖ e∗
i ‖ ‖v∗

i ‖
]

(20)
= −ρi

[
(kp − ηi − γikp) ‖e∗

i ‖2 − γiηi ‖e∗
i ‖2

]

= −ρi[kp − ηi − γi(kp + ηi)] ‖ e∗
i ‖2

= −ρiζ(γi) ‖ e∗
i ‖2

.

The above time-derivative is negative definite for the
positive function ρi if ζ(γi(τ)) > 0. The last condition
will be analyzed in the sequel, but first we focus our at-
tention on the function ρi, which has crucial influence on
the rate of position error time-evolution. Recalling Sub-
section 5.1, let us define ρi as follows:

ρi
Δ=

U2

‖h∗
i (τ)‖ , (39)

where U2 > 0 determines the user-defined longitudinal
velocity value along the i-th motion segment. Using the
definition (21), one gets ‖h∗

i (τ)‖ = ‖e∗
i (τ)‖ · ‖ϑi(τ)‖,

where ϑi(τ) = kpϑei(τ) − ηisgnU2i g∗
2ti and ϑei(τ) is

a unit vector of the position error e∗
i (τ). Note that, since

ηi < kp, it is guaranteed that ‖ϑi(τ)‖ 
= 0 for all τ � 0.
Now, an upper bound of V̇i can be calculated as follows:

V̇i � −U2 · ζ(γi)
‖h∗

i (τ)‖ ‖e∗
i ‖2 = −U2 · ζ(γi)

‖ϑi(τ)‖ ‖e∗
i ‖ .

Let us recall and analyze the inequality ζ(γi(τ)) > 0,
which still remains the sufficient condition for the con-
vergence of ‖e∗

i ‖. The convergence condition takes the
following form:

ζ(γi(τ)) > 0 ⇔ γi(τ) <
kp − ηi

kp + ηi
. (40)

By assumption, one has ∀i=1,...,N 0 < ηi < kp, hence
the ratio (kp − ηi)/(kp + ηi) < 1. Since γi(θ(τ)) ∈ [0, 1]
for all τ ∈ R, and since (35) and (38) hold, one concludes
that there exists a finite time instant τγi ∈ [τi−1,∞) such
that

∀τ�τγi γi(τ) <
kp − ηi

kp + ηi
, (41)
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and the function ζ(γi(τ)) becomes positive for all τ �
τγi. For the finite time-interval [τi−1, τγi) we cannot,
in general, guarantee that ζ(γi(τ)) is positive and, con-
sequently, that Vi is non-increasing. However, we can
show that the finite-time escape for ‖e∗

i ‖ is also not
possible. Namely, in the worst case when γi = 1
one obtains ζ(γi = 1) = −2ηi yielding V̇i(τ) �
(2U2ηi ‖ e∗

i (τ)‖ / ‖ϑi(τ)‖) < ∞ (we assume that
‖e∗

i (0)‖ < ∞). Since the last inequality may hold
only for τ ∈ [τi−1, τγi), where τγi is finite, the norm
‖e∗

i ‖, the functions Vi and V̇i remain bounded also in
the time interval [τi−1, τγi). Hence, let us consider time-
evolution of Vi(τ) and ‖e∗

i (τ)‖ for τ � τγi, accepting
that Vi(e∗

i (τγi)) � Vi(e∗
i (0)).

Now, an upper bound of the time-derivative of the
function Vi can be estimated as follows:

V̇i � −U2 · ζ(γi)
‖ϑi(τ)‖ ‖e∗

i ‖ � −ci

√
Vi, (42)

with

ci =
√

2U2ζ(γim)
kp + ηi

=
√

2U2

(
kp − ηi

kp + ηi
− γim

)
> 0.

(43)
The bounding value γim from (43) can be estimated in
two ways:

W1. as the initial value γi(τi−1) if it fulfills the con-
dition (40) at the beginning of the i-th motion segment
(τγi = τi−1), otherwise

W2. as a maximal value of function γi which fulfills (40),
i.e., equal to γi(τγi).

According to the work of (Bhat and Bernstein, 2000),
the result obtained in (42) allows concluding finite-time
convergence for the position error e∗

i (τ) to zero in the i-th
motion segment. The convergence time interval Ti = τi−
τγi can be estimated as follows, cf. (Bhat and Bernstein,
2000)

Ti � T̂i, where T̂i =
2
ci

√
Vi(e∗

i (τγi)). (44)

Note that T̂i depends on the coefficient ci estimated
in (43), which in turn depends on the estimated value of
γim. When γim can be estimated as in W1, (44) may be
useful in practice, as will be shown in Section 6. In the
case of W2, however, (44) gives rather a theoretical solu-
tion, since it provides a very conservative estimate of the
convergence time.

As a direct consequence of the finite-time conver-
gence result, the time instant τi when the norm ‖e∗

i (τ)‖
enters into the nonzero εi-neighborhood of the i-th way-
point must be finite and is less than τγi + T̂i. Using the

switching procedure (26), which activates the next way-
point in the time instant τi, implies that the N motion seg-
ments are completed in finite time:

τN <

N∑
i=1

((τγi − τi−1) + T̂i) with τ0 = 0.

Since the input u2(τ) is zero for τ � τN (compare (27)),
the vehicle stops in the εN -neighborhood of the target po-
sition q∗

tN . This completes A1.
To show A3, it suffices to substitute into the model

(1) the orienting control input (28) for τ � τN result-
ing in the following equation: θ̇(τ) + k1θ(τ) = k1θtN .
It is evident that, after reaching the εN -neighborhood of
the target position, the vehicle orientation will converge
exponentially to the target orientation θtN with the time
constant equal to 1/k1.

Next it is of interest to discuss two issues not treated
explicitly in the preceding analysis and concerning control
quality in the closed-loop system with the proposed VFO
controller.

First, it is worth noting that the function ρi intro-
duced in (27) can take the zero value in a finite number
of time instants not violating at the same time the finite-
time convergence result obtained above for the position
error e∗

i (τ). It can be seen from (36) that for ρi = 0
one has ė∗

i = 0 and the position error cannot diverge.
This property gives great flexibility in shaping, using the
function ρi, the longitudinal velocity profile for the ve-
hicle in practical tasks. The second issue concerns time
evolution of the vehicle orientation θ(τ) in relation to the
way-point orientations θti computed in the planning stage
for i = 1, . . . , N − 1. According to the motion planning
procedure presented in Section 4, the way-point orienta-
tion θti is computed to keep the continuity in time evo-
lution of the auxiliary angle θai(τ) (defined in (22)) dur-
ing segment boundary transition in the motion realization
stage.

The continuity issue can be explained as follows. For
the case in which we assume that for all i = 1, . . . , N − 1
limτ→τi ‖e∗

i (τ)‖ = 0 and eai(τ) ≡ 0 ⇒ θ(τ) ≡
θai(τ), one can show that limτ→τi θai(τ) = θti. Since
θti := θai+1(τi) (according to the step S6 in Section 4),
one concludes that limτ→τi θai(τ) = θai+1(τi) and, as
a consequence of the assumed equality θ(τ) ≡ θai(τ),
that θ(τ−

i ) = θ(τ+
i ), yielding continuous evolution also

for the vehicle orientation during the segment boundary
transition. However, due to the assumption about the non-
zero εi values in the motion realization stage, one cannot
generally guarantee that the auxiliary orientation variable
θai(τ) (and also the vehicle orientation θ(τ)) will pre-
cisely converge to the planned way-point orientation θti

in the neighborhood of the segment boundary. The resul-
tant discontinuity in the evolution of the auxiliary variable
can be minimized by increasing the intensity of the direct-
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ing effect, choosing higher values for the ηi parameters6,
as mentioned in Section 3. It is worth noting that, in spite
of mentioned discontinuity, the feed-forward term θ̇ai(τ)
present in (28) and computed according to (29) will be
bounded, since the time-derivatives (30) and (31) are also
bounded during the segment boundary transition for any
non-zero value of εi.

6. Simulation results

To show the effectiveness of the proposed concept, two
numerical simulation tests, denoted as SimA and SimB,
are conducted for the unicycle model (1). In both cases the
same set of the six way-points is defined with the position
components [xti yti]T = q∗

ti presented in Tables 1 and 2.
The initial vehicle posture, being simultaneously the first
way-point, is chosen as: qt0 = q(0) = [0 − 4 3.5]T .
The VFO parameters for all i = 1, . . . , N are ηi = 3.5,
εi = 0.005 m, k1 = 10, and kp = 5 (both in [1/s])7.
Tables 1 and 2 include also the way-point orientations θti.
The orientations computed in the motion planning stage
are denoted in bold. The initial and the target way-point
orientations (θt0 and θtN ) are defined in advance by the
user and are not modified during the planning stage. For
the simulations, the scaling function ρ in the definition
(27) is chosen as follows:

ρi(h∗
i )

Δ=

⎧
⎪⎪⎨
⎪⎪⎩

U2

‖h∗
i (τ)‖ for i = 1, . . . , N − 1,

U2

‖h∗
N (τN−1)‖ for i = N,

(45)
with U2 = 0.4 m/s.

Note that for all the motion segments except the last
one (the N -th one) the scaling function ρi has the same
form as in (39), which was used in the convergence anal-
ysis in Subsection 5.2 leading to the finite-time conver-
gence result. The proposed definition of ρN has been
motivated only by the requirement of smooth decreas-
ing of longitudinal vehicle velocity during approaching
the εN -neighborhood of the target position q∗

N . Since
in this case the Lyapunov analysis yields the inequality
V̇N � −(U2ζ(γN )/ ‖h∗

N (τN−1)‖) ‖ e∗
N‖2, the conver-

gence of the position error to zero is asymptotic. How-
ever, since the εN -neighborhood is greater that zero (by
assumption), the entering-time instant τN must be finite
also in this case.

Using the definition (45) in (27) gives the pushing
control input in the form of (34) for all the motion seg-
ments excluding the last one. In the N -th motion segment,

6In relation to the chosen value of the kp coefficient (see (Michałek
and Kozłowski, 2009)).

7Particular values have been selected here according to the general
hints presented in (Michałek and Kozłowski, 2009) and in part by the
trial-and-error method.

the pushing input takes the form

u2 = U2
‖h∗

N (τ)‖
‖h∗

N (τN−1)‖ cosαN (τ),

which continuously converges to zero when the vehicle
approaches the εN -neighborhood of the target way-point
position.

The simulation tests SimA and SimB differ only in
motion strategy selection indicated by the values of the
sgnU2i parameter (sgnU2i = +1 for the forward mo-
tion and sgnU2i = −1 for the backward one) included
in Tables 1 and 2. According to the presented values, the
desired vehicle motion in the test SimA was set to the for-
ward strategy for all motion segments. In the test SimB,
the way-points qt2 and qt3 should be approached in the
backward manner. The obtained results8 are illustrated in
Figs. 4–7. The way-point positions are indicated in Figs. 4
and 5 by small circles; the way-point orientations are de-
noted by short straight lines.

It is worth noting, referring to Figs. 6 and 7, that
time evolution of the posture errors eθi(τ) = θti − θ(τ),
exi(τ) = xti − x(τ), and eyi(τ) = yti − y(τ) is fast and
non-oscillatory towards the subsequent way-points. From
the time plots on a logarithmic scale one can see that the
evolution rate of errors in the first four motion segments
is higher than exponential, as a consequence of finite-time
convergence. Tables 3 and 4 present the estimated and the
obtained time intervals for the three selected way-points in
both simulation tests. The comparison of particular values
reveals that the upper bound from (44) computed for the
coefficient estimated in (43) is rather conservative in the
cases considered. The task realization times τN for partic-
ular tests are τN = 39.6 s for SimA and τN = 39.8 s for
SimB.

The plots in Figs. 4 and 5 indicate that vehicle be-
havior along the particular segments seems to be intu-
itively predictable in spite of the fact that the path between
the way-points is not defined explicitly. Note also that
time evolution of the auxiliary variable θai(τ) does not
reveal any substantial discontinuity (caused by the non-
zero εi vicinities), which, together with the characteristic
directing effect, yields practically acceptable and smooth
transition through the motion segment boundaries. Worth
noting is the simplicity in motion strategy selection (for-
ward/backward) involving only the appropriate value se-
lection for the decision variable sgnU2i.

7. Conclusions

The VFO motion planning and feedback control strategy
presented in this paper allows treating the problem of driv-
ing the unicycle through the sequence of desired way-

8Simulations were conducted with the Matlab/Simulink software us-
ing the variable-step ode45(Dormand-Prince) solver option.
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Fig. 4. SimA: vehicle motion in the global frame obtained in the simulation A.
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Fig. 5. SimB: vehicle motion in the global frame obtained in the simulation B.

Table 1. Coordinates of the way-points and motion strategy
used in the simulation A.

i 0 1 2 3 4 5
θti [rad] 0.00 -1.50 1.05 -1.17 0.01 1.57
xti [m] -4.0 -2.0 -1.0 0.0 1.0 1.5
yti [m] 3.5 3.0 1.0 1.5 1.0 1.5
sgnU2i – +1 +1 +1 +1 +1

points in a simplified and effective way. The simplifica-
tion results from the fact that the motion planning stage
does not involve any interpolating procedure between the

Table 2. Coordinates of the way-points and motion strategy
used in the simulation B.

i 0 1 2 3 4 5
θti [rad] 0.00 -5.02 -3.31 -1.17 0.01 1.57
xti [m] -4.0 -2.0 -1.0 0.0 1.0 1.5
yti [m] 3.5 3.0 1.0 1.5 1.0 1.5
sgnU2i – +1 -1 -1 +1 +1

way-points with any geometrical path as opposed to many
solutions proposed in the literature. Motion planning re-
lies only on way-point orientation computations starting



Motion planning and feedback control for a unicycle in a way point following task: The VFO approach 543

Table 3. Selected values of the obtained and the estimated con-
vergence time intervals for the test SimA.

i 2 3 4
Ti [s] 6.5 3.5 3.0
T̂i [s] 31.8 15.9 16.3
τi [s] 12.9 16.4 19.4

Table 4. Selected values of the obtained and the estimated con-
vergence time intervals for test SimB.

i 2 3 4
Ti [s] 6.7 3.5 3.0
T̂i [s] 31.8 16.0 16.1
τi [s] 13.1 16.6 19.6

from the target posture and finishing on the first user-
defined way-point from the set St. The simplicity of the
approach comes from the unique features of the VFO sta-
bilizer which was adapted here to the way point following
task. The main important features include predictable and
non-oscillatory transients of the vehicle with the useful di-
recting effect, intuitive geometrical interpretation of VFO
control inputs and, as a consequence, very simple para-
metric synthesis of the controller. The concept guarantees
passing in finite time from the initial vehicle posture to
the target one driving via all the way-points with the as-
sumed finite precision, yielding finally practical stability
of the closed-loop system9 in the neighborhood of the tar-
get point. The desired motion strategy (forward/backward
motion) in approaching the particular way-points can be
freely and easily shaped by the bi-valued decision vari-
able (in our case, sgnU2i). The profile of longitudinal
vehicle velocity can be easily shaped by introducing the
scaling function in definition of the pushing input. The
predictability of vehicle motion during transients between
particular way-points together with the flexibility of mo-
tion strategy shaping allows designing the resulting vehi-
cle path geometry in a simple and effective way.

Possible future extensions of the work may include
automatic selection of the ηi parameters responsible for
the intensity of the directing effect, automatic motion
safety estimation in the sense of the room size needed for
task realization, and the adoption of the proposed concept
to other classes of mobile robots. Experimental valida-
tion of the proposed method will be conducted in near fu-
ture using a newly designed differentially-driven Leonardi
transportation vehicle, being now under construction. The
control system will be designed in a cascade form with
two low-level PI velocity control loops for vehicle direct-
drives. The higher-level kinematic VFO controller pro-

9Practical stability means ultimate boundedness of the stabilization
error by its convergence to the assumed vicinity of the origin (Morin and
Samson, 2003; Kozłowski and Pazderski, 2004).
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Fig. 6. SimA: time plots of signals obtained in the simulation A.

posed in this paper will be responsible for computing the
desired wheel velocities for the low-level PI loops. Posi-
tion feedback of the vehicle platform layer will be realized
by the fusion of signals from wheel encoders, a laser scan-
ner and a vision system mounted on board. Practical uti-
lization of the proposed control method involves treating
the control inputs limitations, which can be taken into ac-
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Fig. 7. SimB: time plots of signals obtained in the simulation B.

count using the scaling procedure described in (Michałek
and Kozłowski, 2009).
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Appendix

Derivation of the left-hand side equation of (38). Re-
calling (37), one can write

ri = h∗
i − g∗

2u2 =
[
h2i

h3i

]
−

[
u2cθ
u2sθ

]

= ‖h∗
i ‖

⎡
⎣

h2i

‖h∗
i ‖ − cαicθ

h3i‖h∗
i‖ − cαisθ

⎤
⎦ ,

where the notation cβ ≡ cosβ, sβ ≡ sinβ is used. Next,
it is easy to calculate the norm of the vector ri:

‖ ri‖2 = ‖h∗
i ‖2

[
h2

2i

‖h∗
i ‖2 − 2h2icαicθ

‖h∗
i ‖

+ c2αic
2θ

+
h2

3i

‖h∗
i ‖2 − 2h3icαisθ

‖h∗
i ‖

+ c2αis2θ

]

= ‖h∗
i ‖2

[
1 − 2cαi

h2icθ + h3isθ
‖h∗

i ‖
+ c2αi

]

= ‖h∗
i ‖2 (

1 − 2cαicαi + c2αi

)

= ‖h∗
i ‖2 (

1 − c2αi

)

and, finally,

‖ ri‖ = ‖h∗
i ‖

√
1 − cos2 αi(θ) = ‖h∗

i ‖ γi(θ).

Calculation of the limit in (38) Knowing that cosαi =
(g∗T

2 (θ)h∗
i )/(‖ g∗

2(θ)‖ ‖h∗
i ‖), one can obtain

γ2
i (θ) = 1 − c2αi(θ)

= 1 − (h2icθ + h3isθ)2

‖h∗
i ‖2 ‖g∗

2‖2

=
h2

2i + h2
3i − (h2icθ + h3isθ)2

h2
2i + h2

3i

=
(h2isθ − h3icθ)2

h2
2i + h2

3i

.

For θ(τ) → θai(τ), according to (22) we have

lim
θ→θai

tan θ = h3i/h2i ⇒ lim
θ→θai

sθ = (h3icθ)/h2i,

which, substituted into the preceding equation, allows
concluding that limθ→θai γi(θ) = 0.

Received: 16 December 2008
Revised: 18 July 2009


	Introduction
	Problem formulation
	Unicycle model
	Way point following motion task

	Background on the VFO stabilizer
	VFO motion planning algorithm
	VFO control for way point following
	Remarks on scaling function selection
	Stability and convergence analysis

	Simulation results
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




