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TEXTURE ANALYSIS IN PERFUSION IMAGES
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JACEK ŚMIETAŃSKI ∗, RYSZARD TADEUSIEWICZ ∗∗, ELŻBIETA ŁUCZYŃSKA ∗∗∗

∗ Institute of Computer Science
Jagiellonian University, ul. Łojasiewicza 6, 30–438 Cracow, Poland

e-mail: jacek.smietanski@ii.uj.edu.pl

∗∗ Department of Automatics
AGH University of Science and Technology, al. Mickiewicza 30, 30–059 Cracow, Poland

e-mail: rtad@agh.edu.pl

∗∗∗ Department of Diagnostic Radiology
Centre of Oncology, ul. Garncarska 11, 31–115 Cracow, Poland

e-mail: dgn.ela@interia.pl

The analysis of prostate images is one of the most complex tasks in medical images interpretation. It is sometimes very dif-
ficult to detect early prostate cancer using currently available diagnostic methods. But the examination based on perfusion
computed tomography (p-CT) may avoid such problems even in particularly difficult cases. However, the lack of computa-
tional methods useful in the interpretation of perfusion prostate images makes it unreliable because the diagnosis depends
mainly on the doctor’s individual opinion and experience. In this paper some methods of automatic analysis of prostate
perfusion tomographic images are presented and discussed. Some of the presented methods are adopted from papers of
other researchers, and some are elaborated by the authors. This presentation of the method and algorithms is important, but
it is not the master scope of the paper. The main purpose of this study is computational (deterministic and independent)
verification of the usefulness of the p-CT technique in a specific case. It shows that it is possible to find computationally
attainable properties of p-CT images which allow pointing out the cancerous lesion and can be used in computer aided
medical diagnosis.
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1. Introduction

Prostate cancer (PCa) is one of the most common malig-
nancies among men (ACS, 2009; NCR, 2009). In the last
years there has still been observed a growth in the number
of registered cases. And although it is partially connected
with better and better diagnostic methods and increased
knowledge among patients (resulting in better detectabil-
ity of this type of cancer), there is no doubt that PCa is a
serious medical and social problem.

Early detection of PCa is a key to survival. Unfor-
tunately, routine medical tests like measuring blood con-
centration of prostate specific antigen (PSA), digital rectal
examination (DRE), transrectal ultrasound (TRUS), and
biopsy often fail (Hricak et al., 2007; Roscigno et al.,
2004; Selley et al., 1997). For example, on TRUS, can-

cer lesions can be hypoechoic, hyperechoic or even isoe-
choic (Daehnert et al., 1986; Norberg et al., 1997; Sudoł-
Szopińska and Szopiński, 2005). In view of this, there is
an obvious need for other diagnostic methods which could
manage this problem in some cases which are too difficult
for standard (above mentioned) methods.

There are many studies of new techniques which
could address this problem, including, for example, the
EPCA test (Bradford et al., 2006; Leman et al., 2007).
Perfusion computed tomography (p-CT) is also one of
these methods (still under investigation). This method al-
lows evaluating the parameters of perfusion such as blood
flow (BF), blood volume (BV), mean transit time (MTT),
permeability surface (PS) in specified areas of prostate
(ROI—region of interest) (Cenic et al., 2000; Wintermark
et al., 2001).
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Nowadays the p-CT examination is used mainly in
the diagnosis of brain acute stroke (Miles and Griffiths,
2003; Hartel et al., 2006; Hoeffner et al., 2004; Rosen-
berg et al., 2004), but the usefulness of this method has
also been tested on other organs (Miles and Griffiths,
2003; Blomley et al., 1993; Dugdale and Miles, 1999; Dz-
iubińska et al., 2006; Fukuya et al., 1995; Groell et al.,
2001; Sahani et al., 2005; Wolfkiel et al., 1987; Zhang and
Kono, 1997), including prostate (Henderson et al., 2003;
Ives et al., 2005; Łuczyńska et al., 2008; Prando and Wal-
lace, 2000). Its application to detecting cancerous lesions
is based on documented evidence of the creation of new
blood vessels in tumor (angiogenesis) (Charlesworth and
Harris, 2006; Miles, 1999; 2002). Although prostate is not
highly vascularized, it is supposed that p-CT can indicate
these suspicious areas also in this gland.

The purpose of this study is computational verifica-
tion of usefulness of the p-CT technique in a specific case,
described in the paper (Łuczyńska et al., 2006). In that
case, diagnostics correctly pointed cancerous lesions on
the p-CT image, while on TRUS there were no visible
suspicious regions. However, that indication was founded
only on visual assessment, so it can be considered unde-
terministic and unreliable.

2. Images

A 60-year-old patient was examined at the Oncology Cen-
ter in Cracow because of an increasing PSA level. The p-
CT examination was performed with a 16-slice CT scan-
ner (GE Ligh Speed). The perfusion level was measured
during repeated scans of the minor pelvis at 120 kVp
and 200 mAs. The scans were started about 10 s af-
ter administering of 50 ml of non-ionic contrast medium
(370 mgI/ml) at the rate of 5 ml/s and lasted 50 s. The
total width of the diagnosed area was 20 mm.

Parametric maps (BF, BV, MTT and PS) were drawn
using the CT Perfusion 3 application on the Advantage
Workstation at three levels (conventionally base, middle
and apex) of the gland.

In order to perform computational analysis, only
the area of prostate was selected from the acquired im-
ages. The images, originally coded with pseudocolor,
where blue symbolizes the area with minimal and red—
with maximal perfusion, were transformed into a 31-tone
grayscale using the LUT table (Tadeusiewicz and Koro-
hoda, 1997), where 0 means maximal visible perfusion
(red area in pseudocolor) and 30—no perfusion. (Fig. 1)

Figure 2 presents parametric maps of the prostate
(coded with pseudocolor) at the level at which pathologi-
cal lesions were confirmed (Fig. 3). In this work only the
image of Fig. 2(a), which represents the parameter BF, is
selected for further analysis.

3. Co-occurrence matrices

For automatic description of the texture of particular re-
gions on the analyzed p-CT image, the so-called co-
occurrence matrices (Haralick et al., 1973) were selected.
There are many other texture analysis methods, but these
are most universal and their potential is greatest.

Let I : Z
2 ⊃ D → G = {1, . . . , Ng} (where Z de-

notes set of integers) be a two-dimensional discrete image
with Ng gray levels. For the given image I, we define the
co-occurrence matrix (GLCM):

P0(i, j|d, θ) = #
{
k, l ∈ D : I(k) = i, I(l) = j,

||k − l|| = d, ∠(k − l) = θ
}

(1)

or, in a normalized version,

P (i, j|d, θ)

=
#{k, l∈D :I(k)= i, I(l)=j, ||k−l||=d, ∠(k−l)=θ}

#{m, n ∈ D : ||m − n|| = d, ∠(m − n) = θ} ,

(2)

where i, j ∈ G stand for gray levels of points k and l,
respectively, ∠(k − l) is the angle between vector

−→
kl and

axis
−→
0X , d represents the distance between k and l, θ is

the direction of co-occurrence, #X represents the power
(number of elements) of set X .

Fig. 1. Pseudocolor (a), grayscale after transformation (b). The
arrow shows a rise in the perfusion values.

Fig. 2. p-CT images of the prostate: blood flow (BF) (a), blood
volume (BV) (b), mean transit time (MTT) (c), perme-
ability surface (PS) (d).

Fig. 3. Analyzed image (a) and cancerous area (b)—shown in
black.
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Table 1. Coefficients of GLCM.
no. name abbr. value

f1 energy ENE f1 =
∑

i,j

P (i, j)2

f2 entropy ENT f2 = −∑

i,j

P (i, j) log P (i, j)

f3 homogeneity IDM f3 =
∑

i,j

1
1 + (i − j)2

P (i, j)

f4 inertia CON f4 =
∑

i,j

(i − j)2P (i, j)

f5 correlation COR f5 = −∑

i,j

(i − μx)(j − μy)
σxσy

P (i, j)

f6 variance VAR f6 =
∑

i,j

(i + j − μx − μy)2P (i, j)

f7 shade SHA f7 =
∑

i,j

(i + j − μx − μy)3P (i, j)

f8 prominence PRO f8 =
∑

i,j

(i + j − μx − μy)4P (i, j)

f9 sum average SA f9 =
2Ng∑

i=2

iPx+y (i)

f10 sum entropy SE f10 = −
2Ng∑

i=2

Px+y (i) log Px+y (i)

f11 sum variance SV f11 = −
2Ng∑

i=2

(i − f9)2Px+y (i)

f12 difference average DA f12 =
Ng−1∑

i=0

iPx−y (i)

f13 difference entropy DE f13 = −
Ng−1∑

i=0

Px−y (i) log Px−y (i)

f14 difference variance DV f14 = −
Ng−1∑

i=0

(i − f12)2Px−y (i)

f15 information measure IMC1 f15 =
f2 − HXY1

max(HX, HY)

f16 coefficient of variation COV f16 =
σ(P (i, j))
μ(P (i, j))

f17 peak transition probability MAX f17 = max(P (i, j))

f18 diagonal variance DIAV f18 = σ2(P (i, j))

f19 diagonal moment DIAM f19 =
∑

i,j

(
1
2 |i − j|P (i, j)

) 1
2

f20 second diagonal moment DSM f20 =
∑

i,j

1
2 |i − j|P (i, j)

f21 triangular symmetry TRS f21 = |P (i, j) − P (j, i)|
Notation

μx =
∑

i

i
∑

j

P (i, j), μy =
∑

j

j
∑

i

P (i, j),

σx =
∑

i

(i − μx)2
∑

j

P (i, j), σy =
∑

j

(j − μy)2
∑

i

P (i, j),

Px(i) =
∑

j

P (i, j), Py(j) =
∑

i

P (i, j),

Px+y(k) =
∑

i,j: i+j=k

P (i, j), Px−y(k) =
∑

i,j: |i−j|=k

P (i, j),

HX—entropy Px(i), HY—entropy Py(j), HXY1 = −∑

i,j

P (i, j) log(Px(i)Py(j))
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The GLCM allows us to evaluate a number of coef-
ficients, which characterize the textures of the analyzed
image. Table 1 shows the list of 21 coefficients used in
our study.

4. Results

For the given image of Fig. 3(a) transformed to grayscale
we evaluated the first-order statistics calculated directly
from the image histogram (Table 2). The mean in a
healthy area is smaller than in a cancerous one but the
variance is very high in both cases. Therefore, the analy-
sis based only on the first-order statistics of the ROI con-
sidered (see below) may not be sufficient (Table 3, Fig. 6).

The ROIs covering the analyzed image were rectan-
gular in shape, 10 pixels wide and 20 pixels high. Each
consecutive ROI was selected 10 pixels apart the previous

Fig. 4. Nearest neighborhood of the point (x, y) and directions
of co-occurrence (a), co-occurrence can be considered
also for a greater distance between pairs of points (b).

Fig. 5. Example of GLCM: source image with four gray lev-
els (a), illustration of counting co-occurrences for d =
1, θ = 0◦ (b), GLCM, d = 1, θ = 0◦ (counted co-
occurrences are divided by the number of all pairs of
points considered (here 9) (c). In this example the val-
ues were rounded to two decimal places.

Table 3. Statistics of the ROI. For each ROI considered, the
mean and median were evaluated. In the table we show
the minimum and the maximum of those values—
separately for ROIs covering the healthy region and se-
paretely for ROIs in the cancerous area.

ROI
mean median

min max min max

healthy region 2.33 9.92 1 10

cancerous region 8.17 16.42 4 16

one. Those where less than half of the pixels covered the
area of prostate were missed. Each ROI was classified ac-
cording to the pattern shown in Fig. 3(b). There were 88
ROIs at all: 82 healthy and six cancerous (Fig. 7). For
each ROI, normalized GLCM matrices (see Eqn. (2)) and
coefficients were evaluated.

There were calculated 21 coefficients (Table 1) for
each GLCM characterized by distance d in the range
from 1 to 9, and angle θ with values 0◦, 45◦, 90◦, 135◦,
and also d in the range from 10 to 19 and θ = 90◦. So
it was the 966-dimensional feature space. The resulting
values for each feature were analyzed in order to elim-
inate outliers and normalized. The distribution of each
feature was equalized using the ladder of powers method
(Tukey, 1977; Velleman and Hoaglin, 1981) (see Eqn. 3)
with γ ∈ (0, 2].

error(γ)=
∑

c=1,2

⎛

⎝
∫

x

[cdf{xγ
c}−Φ{xγ

c , var(xγ
c )}]2

⎞

⎠ , (3)

where c = {1, 2} represents classification, cdf(xγ
c ), xγ

c ,
var(xγ

c ) stand for the distribution function, mean and vari-
ance of empirical distribution for class c, respectively,
Φ(μ, σ2) is a normal distribution function with mean μ
and variance σ2.

We were looking for γopt which minimizes the func-
tion error(γ):

γopt = min
γ

error(γ). (4)

Fig. 6. Mean and median of the analyzed ROIs. Light circles—
healthy regions, dark squares—cancerous regions.

Fig. 7. Analyzed image (a) and pattern (b). The cancerous area
is shown in black. Also ROIs classified as cancerous
(dark gray) and not analyzed (light gray) are shown on
the pattern. Other ROIs, which are not shown, were clas-
sified as a healthy area.
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Table 2. First-order statistics of the analysed image.

parameter mean median variance std.dev. skewness curtosis

all image 5.72 4 33.98 5.83 1.63 2.88

healthy area 5.20 4 26.15 5.11 1.52 2.51

cancerous area 12.47 11 85.21 9.23 0.47 −0.92

Features where error(γopt) ≥ 1 were excluded from
further analysis. For each of the remaining features, the
Bhattacharyya measure (Bhattacharyya, 1943) was used
for the normal distribution:

J =
1
4

(μ1 − μ2)2

σ2
1 + σ2

2

+
1
2

ln
(

σ2
1 + σ2

2

2σ1σ2

)
, (5)

where μ1, μ2 are means, σ1, σ2 are standard deviations
for Classes 1 and 2, respectively. Below, in Table 4, we
present a list of the best discriminating properties. As
is shown, the best results were produced for the diagonal
moment (f19) and various d and θ. It should be noted that
diagonal directions θ = 45◦ and θ = 135◦ did not occur
in any of the best ten features.

As can be remarked, the above-mentioned consider-
ation is limited to the indication of a single individually
best discriminating feature (Fig. 8). It should be observed
that, in spite of these limitations, it is possible to indicate
such features which individually have the ability to distin-
guish a healthy and a cancerous area (Fig. 9). However,
it is not a universal rule—even for features with a large
distance between classes, sometimes these areas cannot
be separated (Fig. 10). In such cases it can be helpful to
increase the dimension of the feature space (Fig. 11).

Fig. 9. Classification of two example parameters from Table 4.
It is possible to point out the border value, where lower
values suggest a healthy area and higher values mean
susceptibility of a cancerous lesion.

Fig. 10. In spite of high discriminant power in these examples
we cannot point out the border value.

5. Conclusion

In this paper it was shown that it is possible to select such
parameters of an image which are deterministic and inde-
pendent of a personal assessment. Our results confirm the
usefulness of the p-CT method applied to PCa diagnosis
in the analyzed case. Of course, it is obvious that only one
case cannot be generalized, but in this study the potential
of this method can be seen.

At the Oncology Center in Cracow the p-CT method
is used to examine other patients. Thanks to that it will
be possible to verify the usefulness of the proposed algo-
rithm. In further work the authors will also expand re-
search to other perfusion parameters to determine the ef-
fectiveness of each one.
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Hartel, M., Dziubińska-Basiak, M., Konopka, M., Basiak, M.,
Salam, B. and M., S. (2006). Complex diagnostic imag-
ing of acute ischemic stroke—Case study, Udar Mózgu
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