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The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated
into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining
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1. Introduction

The classic fuzzy system depicted in (Lin and Lee, 1991;
Lee and Kwang, 1994; Nauck et al., 1997) as well as
later ones, e.g., (Nowicki, 2000; Czogała and Łęski, 2000;
Rutkowska and Nowicki, 2000a) are designed to work
with some strictly determined set of input values. In the
case of classification tasks, the decision is made based on
known values of classified object features represented by
a vector v = [v1, v2, . . . , vn]. The values of features are
denoted as the vector v = [v1, v2, . . . , vn]. The goal of
classification is to determine whether or not the object or
state x belongs to class ωj , j = 1, . . . , m. Thus the clas-
sifier makes the decision if object x belongs to class ωj

(x ∈ ωj) or not (x /∈ ωj). The assumption that the values
of all n features are known is not always fulfilled. This
occurs, e.g., in the case of medical or industrial diagnosis.
In the first case, the lack of information is due to the im-
possibility of performing some tests with a patient in bad
condition or when the test is unacceptable (due to an inva-
sive method, cost or his/her faith). Moreover, some tests
can be unnecessary when a classifier could make a certain
decision without these test results. In industrial diagno-
sis, the classifier can work in on-line process monitoring
and the process should still works even when some mea-
surements are missing. Moreover, some values can be un-
necessary when a classifier could make a certain decision

without these values.
Thus, we consider a set of n selected features, de-

noted as Q, which we use to describe objects (note that the
number of real object features is unlimited) and to design
the classifiers. When the systems are working, we have
the information about the values of nD ≤ n features. The
set of features with known values is denoted by D, and
the set of features with unknown values is denoted by G.
Any information about features from outside the set Q has
no significance—it cannot be used by the classifiers. Thus
we can write down that D ⊆ Q and G = Q \ D. The
number of unknown values is nG = n−nD. In this paper
we consider such a case.

Generally, in the case of classification with incom-
plete data, three approaches are well known in the litera-
ture:

• imputation,

• marginalisation,

• rough sets.

In the first approach, unknown values are replaced by
estimated ones (Chan et al., 1976; Dixon, 1979; Renz
et al., 2002; Tanaka et al., 1996). The estimated value
can be determined by any method, e.g., as the mean of
known values of the same feature in other instances, by
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a neural network, or using the nearest neighbour algo-
rithm (Morin and Raeside, 1981). In the second ap-
proach, features with unknown values are ignored (Cooke
et al., 2001; Little and Rubin, 2002) and the problem
boils down to classification in a lower-dimensional feature
space. Here we can use any classifier, such as neural net-
work (Bishop, 1995; Żurada, 1992), fuzzy systems (Lin
and Lee, 1991; Wang, 1994; Zadeh, 1965; 1975), a near-
est neighbor algorithm, statistical methods (Bishop, 1995;
Duda et al., 2001), the genetic approach (Fogel, 1995;
Goldberg, 1989; Michalewicz, 1992), granular comput-
ing (Pedrycz and Bargiela, 2002; Yao and Yao, 2002),
and support vector machines (Kecman, 2001; Surges,
1998). The third approach relies on rough set theory
(Pawlak, 1982; 1991; 2002), which is a concept of de-
scription of the uncertainty of classified object taking into
consideration limited knowledge about the object.

Imputation and marginalisation always lead to an in-
crease in the number of mistakes when the number of un-
known values increases. When we use rough set theory,
the object can be classified into the positive region of the
class (i.e., the object certainly belongs to the class), to the
negative region of the class (i.e., the object certainly does
not belong to the class), or to the boundary region of the
class (i.e., it is not possible to determine if the object be-
longs to the class or not). The membership to the regions
depends on the quality of object description. If the de-
scription is good enough, the object belongs to the posi-
tive or the negative region. If the description is too weak,
then the object belongs to the boundary region.

In this paper we consider a fuzzy classifier which,
due to cooperation with rough set theory, will give an an-
swer only if the object description is good enough. Oth-
erwise, it refrains from giving an answer. The classifier
will apply well-known fuzzy rules (see Section 2) and,
when all n values are known, will work exactly as its
fuzzy progenitor. Moreover, we focus only on the logical
type of fuzzy reasoning (Driankov et al., 1993; Rutkowska
and Nowicki, 2000a; Yager and Filev, 1994; Czogała
and Łęski, 2000). This type of fuzzy system is more
appropriate for classification tasks than Mamdani type
or TSK systems, which was shown in (Nowicki and
Rutkowska, 2000; Rutkowska and Nowicki, 2000a) and
confirmed later in (Rutkowski and Cpałka, 2003; 2005)
using flexible neuro-fuzzy systems. The learning (rule de-
veloping) phase is out of the scope of this paper. We as-
sume that the appropriate fuzzy classifier has been built
using any method (Fogel, 1995; Goldberg, 1989; Lin and
Lee, 1991; Wang, 1994; Zadeh, 1965; 1975), and it per-
forms satisfactorily when the values of all n input features
(from the set Q) are available.

A similar approach based on Mamdani type reason-
ing and CA (center average) defuzzification as well as
MICOG (modified indexed centre of gravity) defuzzifica-
tions (both Mamdani and logical type of reasoning) were

studied in (Nowicki, 2008; 2009), respectively.
The main contribution of this paper is the develop-

ment of original architectures of rough-neuro-fuzzy clas-
sifiers based on logical reasoning and DCOG defuzzifi-
cation. Experiments illustrate the performance of rough-
neuro-fuzzy classifiers working in the case of missing fea-
tures.

In the paper we first study the neuro-fuzzy struc-
tures (NFSs) based on genuine (logical) inference (Sec-
tion 2). Next (Section 3), the rough fuzzy set definition
and some aspects of it are presented. Then (Section 4),
logical neuro-fuzzy classifiers based on DCOG defuzzifi-
cation are defined. Finally, logical neuro-fuzzy classifiers
are converted into the logical rough-neuro-fuzzy classifier
(RNFC), and the correctness of this conversion is proven.

We would like to emphasise here that rough-neuro-
fuzzy classifiers proposed in this paper do not give bet-
ter results compared with the corresponding neuro-fuzzy
classifiers. When all features are available, the perfor-
mance of both classifiers is the same. However, a great
advantage of rough-neuro-fuzzy classifiers lies in unam-
biguously defined classification in the case of missing fea-
tures (see Theorem 1 in Section 5 and experiments with
discussions in Section 6).

2. NFS elements

2.1. Fuzzy inference. Fuzzy inference systems realise
fuzzy reasoning founded on fuzzy rule bases. When we
assume that v = [v1, v2, . . . , vn] is a vector of features
describing any object or state and y = [y1, y2, . . . , ym] is
the vector of the output values of a system, the rules are
represented in the form

Rr : IF v1 is Ar
1 AND v2 is Ar

2

AND . . . AND vn is Ar
n THEN y1 is Br

1 ,

y2 is Br
2 , . . . , ym is Br

m, (1)

where v ∈ V = V1 × V2 × . . . × Vn, y ∈ Y = Y1 ×
Y2 × . . . × Ym and Ar = Ar

1 × Ar
2 × . . . × Ar

n ⊆ V,
Br = Br

1 × Br
2 × . . . × Br

m ⊆ Y are fuzzy sets.
In the literature various neuro-fuzzy systems have

been proposed (Lee and Kwang, 1994; Lin and Lee, 1991;
Nauck et al., 1997; Nowicki, 2004; Rutkowska and Now-
icki, 2000b; Rutkowski and Cpałka, 2005).

Genuine fuzzy implications are used in the logi-
cal approach (Czogała and Łęski, 2000; Rutkowska and
Nowicki, 2000a; Rutkowska et al., 2000). We can enu-
merate some groups of genuine fuzzy implication (Mas
et al., 2007):

• S-implications:

I(a, b) = S{N{a}, b}. (2)
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The Łukasiewicz, Reichenbach, Kleene-Dienes,
Fodor and Dubois-Prade implications are examples
of S-implications.

• R-implications:

I(a, b) = sup
z∈[0,1]

{z|T {a, z} ≤ b} . (3)

The Rescher, Goguen and Gödel implications are ex-
amples of R-implications.

• QL-implications:

I(a, b) = S {N{a}, T {a, b}} . (4)

The Zadeh implication is an example of QL-
implications.

• D-implications:

I(a, b) = S {T {N{a}, N{b}}, b} . (5)

In (2)–(5), a, b ∈ [0, 1], T is any t-norm, S is any t-
conorm, N is any fuzzy negation (Klement et al., 2000).
It should be noted that S-implications and R-implications
fulfil the fuzzy implication definition proposed in (Fodor,
1991).

2.2. Defuzzification. One of the most important ele-
ments (besides implication) determining the architecture
of such systems is defuzzification. In the sequel we
shortly review and discuss defuzzification methods used
in designing neuro-fuzzy systems. By T and S we denote
the t-norm and the t-conorm, respectively.

As a fundamental method of defuzzification we can
find the centre of gravity defuzzification (COG), also
called the centre of area defuzzification (COA), defined
by

yj =

∫

yj∈Yj

yj · μB′
j
(yj) dyj

∫

yj∈Yj

μB′
j
(yj) dyj

, (6)

where B′
j , j = 1, . . . , m, is an aggregated conclusion of

reasoning for all rules. The membership function μB′
j
(yj)

is calculated in the logical approach of fuzzy reasoning as
follows:

μB′
j
(yj) =

N

T
r=1

μB′r
j

(yj) , (7)

where
μB′r

j
(yj) = I(τr , μBr

j
(yj)), (8)

with I being a fuzzy implication (see Section 2), τr the
so-called “rule activation level” or “level of rule firing”
defined as

τr = μAr (x), (9)

and x = [x1, x2, . . . , xn]—the vector of the values of fea-
tures x.

A problem with COG defuzzification occurs when
the integrals in (6) approach infinity. This happens
in many fuzzy implications, e.g., S-implications and
QL-implications. Moreover, in real implementation, the
integrals in (6) should be discretized or approximated
(Patel and Mohan, 2002) in order to derive a neuro-fuzzy
system. Certain simplifications of COG defuzzification
derivation are available due to limitation to the specific
shape of fuzzy sets applied (Broekhoven and Beats, 2006).

The first propositions of neuro-fuzzy systems (Wang,
1994) used centre average defuzzification (CA) defined by

yj =

N∑

r=1
yr

j · μB′r
j

(yr
j)

N∑

r=1
μB′r

j
(yr

j)
, (10)

where
μB′r

j
(yj) = T (μAr(x), μBr

j
(yj)). (11)

Regrettably, this method is improper in the case of the
fuzzy reasoning based on the genuine fuzzy implications.

The drawback of the CA defuzzification method,
given by (10), is that it is useful only in the case of the
Mamdani approach (11) to fuzzy reasoning. It is eas-
ily seen that when dealing with the logical approach we
have h(B′r

j ) = 1. This drawback is removed if we apply
the discrete centre of gravity defuzzification (DCOG) pro-
posed and first used in (Nowicki, 2000; Rutkowska and
Nowicki, 2000a; Rutkowska et al., 2000). It is defined by

yj =

N∑

r=1
yr

j · μB′
j
(yr

j)

N∑

r=1
μB′

j
(yr

j)
, (12)

where B′
j is calculated as in the COG method. Note that

also in this method (as in CA) the shape of the member-
ship functions is not precisely taken into account.

Another solution appropriate for genuine fuzzy im-
plications is MICOG (modified indexed centre of gravity)
defuzzification discussed in (Czogała and Łęski, 2000)
and used for the case of missing features in (Nowicki,
2008).

3. Rough fuzzy sets

The concept of using rough sets and fuzzy sets to-
gether comes from Dubois and Prade (Dubois and
Prade, 1990; 1992). They proposed two approaches to
combining both theories. The first one leads to the def-
inition of the rough fuzzy set, where lower and upper ap-
proximations of a fuzzy set are defined. The second one
leads to the (more general) definition of the fuzzy rough
set, where the lower and upper approximations of a fuzzy
set are also fuzzy.
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The rough fuzzy set is a pair
(
RA, RA

)
of fuzzy sets.

RA is an R-lower approximation and RA is an R-upper
approximation of fuzzy set A ⊆ X . The membership
functions of RA and RA are defined as follows:

μRA(x̂) = inf
x∈[x̂]R

μA(x) , (13)

μRA(x̂) = sup
x∈[x̂]R

μA(x), (14)

where [x̂]R is an equivalence class (Polkowski, 2002).
An object x ∈ X is described by a vector of features

v ∈ V, so let us equate its membership with the mem-
bership of its feature values v = [v1, v2, . . . , vn]. Conse-
quently, we can use x or v interchangeably. Let us assume
that the fuzzy set A ⊆ V is given along with its mem-
bership function μA(x) = μA(v) = μA(v1, v2, . . . , vn),
where vi ∈ Vi = R for i = 1, . . . , n and V = R

n.
We also define the set of all features of object x as
Q = {v1, v2, . . . , vn}. Let us isolate the subset of fea-
tures D ⊆ Q. The D̃-indiscernibility relation is defined
by

xD̃x̂ ⇔ ∀v ∈ D; fx(v) = fx̂(v), (15)

where x, x̂ ∈ X and fx is an information function ex-
pressing the value of feature vi of object x. The member-
ship functions of lower and upper approximations of the
rough fuzzy set D̃A can be described by

μD̃A(x) = inf
vG∈VQ\D

μA(vD,vG), (16)

and
μ

D̃A
(x) = sup

vG∈VQ\D

μA(vD,vG) . (17)

If we assume that the fuzzy set Ar, r = 1, . . . , N is
a Cartesian product, i.e., Ar = Ar

1 ×Ar
2 × . . .×Ar

n, then
the membership function of its D̃-lower approximation is
given by the following equation:

μD̃Ar(x) = T

{

T
i:vi∈D

μAr
i
(vi), T

i:vi∈G
inf

vi∈Vi

μAr
i
(vi)

}

.

(18)
The membership function of its D̃-upper approximation is
given by the equation

μ
D̃Ar

(x) = T

{

T
i:vi∈D

μAr
i
(vi), T

i:vi∈G
sup

vi∈Vi

μAr
i
(vi)

}

.

(19)

4. Logical type neuro-fuzzy classifier

The rules depicted in (1) are suitable for approximation
and majority of control tasks. In the case of classification
tasks, rules in other forms are more appropriate. Gener-
ally, when the membership of object x to class ωj spec-
ified in the consequent of rules is fuzzy (zr

j = μωj (x)),

in the case of independent variables vi the rules have the
following form (Kuncheva, 2000):

Rr : IF v1 is Ar
1 AND v2 is Ar

2

AND . . . AND vn is Ar
n THEN x ∈ ω1(zr

1),
x ∈ ω2(zr

2), . . . , x ∈ ωm(zr
m), (20)

where r = 1, . . . , N , N is the number of rules and zr
j is

the membership degree of the object x to the j-th class ωj

according to rule r.
Let us assume that the membership of objects to

classes is not fuzzy but crisp, i.e.,

zr
j =

{
1 if x ∈ ωj ,

0 if x /∈ ωj .
(21)

We write just x ∈ ωj when zr
j = 1 (which means that

object x belongs to the j-th class, according to the r-th
rule) in the definition of the r-th rule. We can omit the
part x ∈ ωj(zr

j) when zr
j = 0 (which means that object

x does not belong to the j-th class, according to the r-th
rule).

It is easy to notice that variables zr
j correspond to

variables yr
j in Section 2 subject to the assumption (21).

Thus we can use rules presented in the description (1) in
a specific form:

Rr : IF v1 is Ar
1 AND v2 is Ar

2

AND . . . AND vn is Ar
n THEN z1 is Br

1 ,

z2 is Br
2 , . . . , zm is Br

m. (22)

Fuzzy sets Br
1 , Br

2 , . . . , Br
m appearing in the an-

tecedent of rules satisfy the equation

μBr
j
(zj) =

{
1 if zj = zr

j ,

0 if zj = 1 − zr
j ,

(23)

where zr
j fulfils the assumption (21). In special cases,

fuzzy sets Br
1 , Br

2 , . . . , Br
m could be a fuzzy singleton:

μBr
j
(zj) =

{
1 if zj = zr

j ,

0 if zj �= zr
j ,

(24)

but on account of the defuzzification method described by
Eqn. (12) the value of μBr

j
(zj) for zj �= 0 and zj �= 1 is

without significance.
Using the above assumptions, we can adopt DCOG

defuzzification as follows:

zj =

N∑

r=1
r:zr

j =1

μB′
j
(zr

j)

N∑

r=1

μB′
j
(zr

j)
, (25)
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and aggregation realised by any t-norm:

μB′
j
(zj) =

N

T
r=1

μB′r
j

(zj). (26)

The fuzzy set B′r
j occurring in partial conclusions

depends on implication:

• S-implications:

μB′r
j

(zj) =

{
1 if zj = zr

j ,

N{τr} if zj �= zr
j .

(27)

• R-implications:

μB′r
j

(zj) =

{
0 if zj �= zr

j and τr > 0,

1 otherwise.
(28)

Let us note that the case of R-implication is a special
case of S-implication, because the expression

{
0 if τr > 0,

1 otherwise

is a special case of N{τr}.

• QL-implications:

μB′r
j

(zj) =

{
S{N{τr}, τr} if zj = zr

j ,

N{τr} if zj �= zr
j .

(29)

• D-implications:

μB′r
j

(zj) =

{
1 if zj = zr

j ,

N{τr} if zj �= zr
j .

(30)

So, we obtain descriptions of individual architectures
of a neuro-fuzzy classifier:

• S-implications and D-implications:

zj =

N∑

r=1
r:zr

j =1

N

T
k=1

k:zk
j =0

N{τk}

N∑

r=1

N

T
k=1

k:zk
j �=zr

j

N{τk}
, (31)

• R-implications:
The architecture is the same as described by
Eqn. (31), for the negation defined as follows:

N{τr} =

{
0 if τr > 0,

1 otherwise.
(32)

• QL-implications:

zj =

N∑

r=1
r:zr

j =1

T

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N

T
k=1

k:zk
j =0

N{τk},

N

T
k=1

k:zk
j =1

S
{
N{τk}, τk

}

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

N∑

r=1
T

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N

T
k=1

k:zk
j �=zr

j

N{τk},

N

T
k=1

k:zk
j =zr

j

S
{
N{τk}, τk

}

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (33)

The final decision can be derived as follows:
⎧
⎪⎨

⎪⎩

x ∈ ωj if zj > zIN

x /∈ ωj if zj < zOUT

undefined if zOUT ≤ zj ≤ zIN,

(34)

where the numbers zIN and zOUT are fixed thresholds such
that 1 > zIN ≥ zOUT > 0.

5. Description of a logical RNFC

In this section we study the neuro-fuzzy classifier pro-
posed in Section 4 in a specific situation i.e., when in-
complete information about the object is available. Let us
assume what follows:

• A classifier is set up and developed for n features of
classified objects. Q denotes the set of all features of
objects used in the course of system developing.

• In the course of classification of object x, only the
values of nD ≤ n features are known. D ⊆ Q
denotes the set of features whose values are known.
G = Q \ D denotes the set of features whose values
are unknown.

The classifier defined in Section 4 does not work in
such a situation. Our goal is to define a special version of
a neuro-fuzzy classifier which could work in the described
situation. In the proposed classifier we use a rough-fuzzy
set, so the system is called a rough-neuro-fuzzy classifier.

It is obvious that, if we assume various values of un-
known features vG, we obtain various values of zj as the
output of the neuro-fuzzy classifier. In most cases it is
not possible to test all values of vector vG and check if
all the obtained values of zj satisfy one of the conditions
given in (34). However, it is enough to find the smallest
possible value of zj denoted as zj and the highest one de-

noted as zj . This notation refers to that of rough sets and
rough-fuzzy sets. The value zj is the membership degree

of object x to the D̃-lower approximation of set ωj:

μD̃ωj
(x) = zj , (35)
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and zj is the membership degree of object x to the D̃-
upper approximation of set ωj:

μ
D̃ωj

(x) = zj . (36)

Theorem 1. (Rough membership of a class) Let us con-
sider the neuro-fuzzy classifiers defined by Eqns. (31) and
(33). We assume that the classifier has been developed for
n input features and all parameters of it, i.e., fuzzy sets Ar

j

and Br
j like in the rules (22), are fixed. Moreover, at the

time of classification of object x only the values of nD ≤ n
features are known, i.e., features from set D ⊆ Q. Then
the lower and upper approximation of the membership of
object x to class ωj is given by

• S-implications, D-implications and R-implication:

zj =

N∑

r=1
r:zr

j =1

N

T
k=1

k:zk
j =0

N{τk
L}

N∑

r=1

N

T
k=1

k:zk
j �=zr

j

N{τk
L}

, (37)

zj =

N∑

r=1
r:zr

j=1

N

T
k=1

k:zk
j =0

N{τk
U}

N∑

r=1

N

T
k=1

k:zk
j �=zr

j

N{τk
U}

, (38)

• QL-implications:

zj =

N∑

r=1
r:zr

j =1

T

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N

T
k=1

k:zk
j =0

N{τk
L},

N

T
k=1

k:zk
j =1

min
t=L,U

S
{
N{τk

t }, τk
t

}

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

N∑

r=1
T

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N

T
k=1

k:zk
j �=zr

j

N{τk
L},

N

T
k=1

k:zk
j =zr

j

k:zk
j =0

max
t=L,U

S
{
N{τk

t }, τk
t

}
,

N

T
k=1

k:zk
j =zr

j

k:zk
j =1

min
t=L,U

S
{
N{τk

t }, τk
t

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(39)

zj =

N∑

r=1
r:zr

j=1

T

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N

T
k=1

k:zk
j =0
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j
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t=L,U

S
{
N{τk

t }, τk
t

}

⎫
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(40)

where Ar
L and Ar

U are defined as follows:

τr
L =

{
μD̃Ar if zr

j = 1,

μ
D̃Ar

if zr
j = 0,

(41)

and

τr
U =

{
μ

D̃Ar
if zr

j = 1,

μD̃Ar if zr
j = 0.

(42)

Proof. Equations (37) and (38) are a direct consequence
of Eqn. (31), so the proof will point out the correctness of
Eqns. (41) and (42). The symbol τr

L as well as τr
U can be

replaced by the lower approximation of fuzzy set Ar, i.e.,

D̃Ar or upper approximation D̃Ar, where

D̃Ar ≤ D̃Ar. (43)

The correctness of the choice described by Eqns. (41) and
(42) arises due to

∂zj

∂τ l
L

∣
∣
∣
∣
l : zl

j=0

≤ 0 (44)

and
∂zj

∂τ l
L

∣
∣
∣
∣
l : zl

j=1

≥ 0, (45)

as well as
∂zj

∂τ l
U

∣
∣
∣
∣
l : zl

j=0

≤ 0 (46)

and
∂zj

∂τ l
U

∣
∣
∣
∣
l : zl

j=1

≥ 0. (47)

The same procedure can be used for classifiers based on
QL-implications defined by (39) and (40). �
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It is easy to see that, zj < zj .
The final decision can be derived as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈ ωj if zj ≥ zIN and zj > zIN,

x /∈ ωj if zj < zOUT and zj ≤ zOUT,

rather x ∈ ωj if zIN > zj ≥ zOUT and zj > zIN,

rather x /∈ ωj if zj < zOUT and zOUT < zj ≤ zIN,

undefined otherwise,
(48)

where zj = μD̃ωj
(x) is the lower approximation of the

membership degree of object x to class ωj and zj =
μ

D̃ωj
(x) is its upper approximation. The two numbers

(thresholds) zIN and zOUT are fixed such that 1 > zIN ≥
zOUT > 0.

Example 1. Let us assume that we have some neuro-
fuzzy classifier and its parameters are n = 4, N = 4,
m = 1. Moreover, we assume that for some sample
with all four input features known we obtain the following
membership degree of fuzzy sets used in the antecedent
parts of rules:

μA1
1
(v1) = 0.9,

μA1
2
(v2) = 0.9,

μA1
3
(v3) = 0.5,

μA1
4
(v1) = 0.9,

μA2
1
(v2) = 0.9,

μA2
2
(v2) = 0.1,

μA2
3
(v3) = 0.5,

μA2
4
(v4) = 0.9,

μA3
1
(v1) = 0.1,

μA3
2
(v2) = 0.9,

μA3
3
(v3) = 0.5,

μA3
4
(v4) = 0.1,

μA4
1
(v1) = 0.1,

μA4
2
(v2) = 0.1,

μA4
3
(v3) = 0.5,

μA4
4
(v4) = 0.1.

Then the activation levels of individual rules are
τ1 = 0.3645, τ2 = 0.0405, τ3 = 0.0045 and τ4 =
0.0005. When the centres of the fuzzy sets used in the con-
sequence parts of rules are z1 = 1, z2 = 0, z3 = 0, z4 =
1 and we use any S-implication, then we obtain the output
value z = 0.5571. When we use zIN = zOUT = 0.5, we
can interpret the output value as a conclusion x ∈ ω.

Now, let us assume that the value of the second fea-
ture is unknown. We cannot use values μA1

2
(v2), μA2

2
(v2),

μA3
2
(v2) and μA4

2
(v2). Instead, we can use the lower and

upper values of an appropriate membership function, i.e.,

μD̃A1
2
(v2) = 0.2,

μ
D̃A1

2
(v2) = 0.8,

μD̃A2
2
(v2) = 0.2,

μ
D̃A2

2
(v2) = 0.8,

μD̃A3
2
(v2) = 0.2,

μ
D̃A3

2
(v2) = 0.8,

μD̃A4
2
(v2) = 0.2,

μ
D̃A4

2
(v2) = 0.8.

Therefore, we obtain

τ1
L = μD̃A1(v) = 0.081,

τ1
U = μ

D̃A1
(v) = 0.324,

τ2
L = μ

D̃A2
(v) = 0.324,

τ2
U = μD̃A2(v) = 0.081,

τ3
L = μ

D̃A3
(v) = 0.004,

τ3
U = μD̃A3(v) = 0.001,

τ4
L = μD̃A4(v) = 0.001,

τ4
U = μ

D̃A4
(v) = 0.004.

Finally, we have a pair of output values, i.e., z =
0.4569 and z = 0.5431. We can interpret it as the conclu-
sion which says that it is undefined if the object belongs
to class ω or not.

When the values of feature v3 are unavailable then
we obtain other values of the output, e.g., z = 0.5111 and
z = 0.6275. We can interpret this as the conclusion which
says that the object belongs to class ω. �

Tables 1–4 show the results of rough neuro-fuzzy
classifier performance for a few samples and their inter-
pretation.

6. Experimental results

The three benchmarks from the UCI repository (Mertz and
Murphy, n.d.) were used to test the performance of the
proposed classifiers. They are

• Glass Identification (GI),

• Pima Indians Diabetes (PID),

• Breast Cancer Wisconsin (BCW).
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In the case of all three datasets, the same experimen-
tal procedure was performed. The first step is prepar-
ing the dataset for the 5-fold cross validation procedure.
The datasets were randomly divided into five subsets. In
individual cross validation stages, the four subsets will
be used as a training sequence and one—as a testing se-
quence. The training sequences were used to generate the
fuzzy sets and rules, i.e., to develop the classifier. The
LEM-2 algorithm is used (Grzymala-Busse, 1989; 1992).

Two types of classifiers were tested. The first one
is based on S-implications and D-implications, and de-

Table 1. Result of classification for selected samples of the PID
database (eight known features).

Known attributes
v1,v2,v3,v4,v5,v6,v7,v8

zcancer zcancer conclusion
0.28 0.28 x /∈ ωcancer

0.13 0.13 x /∈ ωcancer

0.29 0.29 x /∈ ωcancer

0.35 0.35 x /∈ ωcancer

Table 2. Result of classification for selected samples of the PID
database (six known features).

Known attributes
v1,v2,v3,v6,v7,v8

zcancer zcancer conclusion
0.17 0.65 undefined
0.02 0.59 undefined
0.23 0.73 undefined
0.26 0.66 undefined

Table 3. Result of classification for selected samples of the PID
database (four known features).

Known attributes
v2,v4,v5,v8

zcancer zcancer conclusion
0.01 0.73 undefined
0.00 0.49 x /∈ ωcancer

0.01 0.48 x /∈ ωcancer

0.00 0.49 x /∈ ωcancer

Table 4. Result of classification for selected samples of the PID
database (two known features).

Known attributes
v4,v8

zcancer zcancer conclusion
0.01 0.99 undefined
0.00 0.80 undefined
0.01 0.48 x /∈ ωcancer

0.00 0.88 undefined

fined by Eqns. (37) and (38). The second one is defined by
Eqns. (39) and (40) i.e., based on QL-implications. In the
presented experiment only one QL-implication was used,
based on the probabilistic t-conorm

S(a, b) = a + b − ab (49)

and any t-norm. In all tested classifiers we used the sim-
plest negation, i.e.,

N(a) = 1 − a. (50)

The final decisions were derived as defined in (48) for
zIN = zOUT = 0.5.

Both types of classifiers were tested using separate
training and testing sequences. Each test is repeated for
all possible sets of input features as known (the number
of known features). Let us suppose that in a database four
features are defined four. In such a case, 15, i.e., 24 − 1,
experiments are performed, as in Table 5.

In the glass classification problem (Mertz and Mur-
phy, n.d.) we have 214 samples described by nine features.
They are: v1—refractive index (RI) and the participation
of eight components (v2—Na2O, v3—MgO, v4—Al2O3,
v5—SiO2, v6—K2O, v7—CaO, v8—BaO, v9—Fe2O3).
The samples of glass belong to two classes: the window
glass (ω1) and other kind of glass (ω2). As we can read in
(Mertz and Murphy, n.d.), the study of the classification
of glass types was motivated by criminological investiga-
tions. At the scene of a crime, the glass left can be used as
an evidence if it is correctly classified. The average results
are presented in Tables 6–9.

In PID, each of the 768 records of the database de-
scribes a representative of the Pima Indians heritage who

Table 5. List of experiments using a hypothetical dataset with
four input attributes.

Experiment No. of known List of known
number features features

1 4 v1, v2, v3, v4

2

3

v1, v2, v3

3 v1, v2, v4

4 v1, v3, v4

5 v2, v3, v4

6

2

v1, v2

7 v1, v3

8 v1, v4

9 v2, v3

10 v2, v4

11 v3, v4

12

1

v1

13 v2

14 v3

15 v4
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is healthy or ill (two classes) and is characterized by eight
features (v1—number of times pregnant, v2—plasma glu-
cose concentration in an oral glucose tolerance test, v3—
diastolic blood pressure (mm Hg), v4—triceps skin fold
thickness (mm), v5—2-hour serum insulin (mu U/ml),
v6—body mass index (weight in kg/(height in m)2), v7—
diabetes pedigree function, v8—age in years) (Mertz and
Murphy, n.d.). The averaged results are presented in Ta-
bles 10–13.

Table 6. S-implication classifier performance for training the GI
sequence.

No. of known Classifications [%]
features correct miss incorrect

9 95.2 0.0 4.8
8 76.4 22.4 1.2
7 49.2 50.7 0.2
6 22.0 78.0 0.0
5 7.2 92.8 0.0
4 1.9 98.1 0.0
3 0.5 99.5 0.0
2 0.1 99.9 0.0

<2 0.0 100.0 0.0

Table 7. S-implication classifier performance for testing the GI
sequence.

No. of known Classifications [%]
features correct miss incorrect

9 88.4 0.0 11.6
8 72.8 22.7 4.6
7 47.5 51.0 1.5
6 21.4 78.2 0.3
5 7.0 92.9 0.1
4 1.8 98.2 0.0
3 0.4 99.6 0.0
2 0.1 99.9 0.0

<2 0.0 100.0 0.0

Table 8. QL-implication classifier performance for training the
GI sequence.

No. of known Classifications [%]
features correct miss incorrect

9 93.0 0.0 7.0
8 48.4 51.3 0.3
7 17.5 82.5 0.0
6 6.2 93.8 0.0
5 2.3 97.7 0.0
4 0.8 99.2 0.0
3 0.3 99.7 0.0
2 0.1 99.9 0.0

<2 0.0 100.0 0.0

In the BCW data set we have 683 fully described
records about patients. Each record is described by nine
attributes, i.e., clump thickness, uniformity of cell size,
uniformity of cell shape, marginal adhesion, single ep-
ithelial cell size, bare nuclei, bland chromatin, normal nu-
cleoli, mitoses. The average results are presented in Ta-
bles 14–17.

Table 9. QL-implication classifier performance for testing the
GI sequence.

No. of known Classifications [%]
features correct miss incorrect

9 87.0 0.0 13.0
8 47.6 50.0 2.4
7 17.4 82.3 0.3
6 6.0 93.9 0.0
5 2.1 97.8 0.0
4 0.7 99.3 0.0
3 0.2 99.8 0.0
2 0.1 99.9 0.0

<2 0.0 100.0 0.0

Table 10. S-implication classifier performance for training
the PID sequence.

No. of known Classifications [%]
features correct miss incorrect

8 87.0 0.0 13.0
7 37.2 61.5 1.1
6 6.4 93.6 0.0
5 0.2 99.8 0.0

<5 0.0 100.0 0.0

Table 11. S-implication classifier performance for testing
the PID sequence.

No. of known Classifications [%]
features correct miss incorrect

8 70.2 0.0 29.8
7 30.6 63.7 5.8
6 5.8 93.9 0.4
5 0.2 99.8 0.0

<5 0.0 100.0 0.0

Table 12. QL-implication classifier performance for training
the PID sequence.

No. of known Classifications [%]
features correct miss incorrect

8 86.0 0.0 14.0
7 7.1 92.9 0.0
6 0.5 99.5 0.0

<6 0.0 100.0 0.0
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As we have seen in all presented results, the proposed
classifier gives the answer only when it is sure enough.
When the input knowledge is limited, then the classifiers
refrains from giving any answer. It protects us from mak-
ing mistakes.

Table 13. QL-implication classifier performance for testing
the PID sequence.

No. of known Classifications [%]
features correct miss incorrect

8 66.8 0.0 33.2
7 5.5 93.7 0.9
6 0.4 99.6 0.0

<6 0.0 100.0 0.0

Table 14. S-implication classifier performance for training
the BCW sequence.

No. of known Classifications [%]
features correct miss incorrect

9 97.4 0.0 2.6
8 80.3 19.0 0.8
7 43.7 56.1 0.2
6 14.9 85.1 0.0
5 2.9 97.1 0.0
4 0.3 99.7 0.0

<4 0.0 100.0 0.0

Table 15. S-implication classifier performance for testing
the BCW sequence.

No. of known Classifications [%]
features correct miss incorrect

9 94.8 0.0 5.2
8 76.8 20.9 2.2
7 41.5 57.5 1.0
6 14.0 85.6 0.4
5 2.6 97.3 0.1
4 0.3 99.7 0.0

<4 0.0 100.0 0.0

Table 16. QL-implication classifier performance for training
the BCW sequence.

No. of known Classifications [%]
features correct miss incorrect

9 96.8 0.0 3.2
8 33.6 66.4 0.1
7 7.8 92.2 0.0
6 2.0 98.0 0.0
5 0.4 99.6 0.0

<5 0.0 100.0 0.0

To compare the proposed method with others, Tables
18–23 show the result of classification using the k-nn al-
gorithm. As we can see, when the input features are miss-
ing, then the number of mistakes grows.

7. Conclusions

In this paper the modification of a neuro-fuzzy classifier
has been proposed. Based on the rough fuzzy sets the
scope of employing the classifier has been extended to
the cases when some input information is missing. The

Table 17. QL-implication classifier performance for testing
the BCW sequence.

No. of known Classifications [%]
features correct miss incorrect

9 91.6 0.0 8.4
8 30.9 68.1 1.0
7 6.9 92.7 0.3
6 1.5 98.3 0.2
5 0.3 99.7 0.1
4 0.0 99.9 0.0

<4 0.0 100.0 0.0

Table 18. k-nn classifier performance for training the GI se-
quence.

No. of known Classifications [%]
features correct incorrect

9 90.8 9.2
8 91.2 8.8
7 91.4 8.6
6 91.5 8.5
5 91.3 8.7
4 90.8 9.2
3 89.8 10.2
2 87.9 12.1
1 76.0 24.0

Table 19. k-nn classifier performance for testing the GI se-
quence.

No. of known Classifications [%]
features correct incorrect

9 87.8 12.2
8 88.9 11.1
7 89.4 10.6
6 89.6 10.4
5 89.4 10.6
4 88.9 11.1
3 87.9 12.1
2 86.1 13.9
1 82.9 17.1
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new solution can select these input instances when, de-
spite the lack of data, classification is available. For other
instances, the classifier does not give a questionable an-
swer. Unfortunately, the experiments shown in Section 6
demonstrate that the number of unclassified instances in-
creases dramatically when the input information is incom-
plete. However, the number of mistakes does no grow.

Competitive solutions, e.g., based on the k-nn algo-
rithm, give usually much more correct classifications, but
the number of mistakes also increases. The main bene-
fit of the proposed modification is protection against mis-

Table 20. k-nn classifier performance for training the PID se-
quence.

No. of known Classifications [%]
features correct incorrect

8 79.0 21.0
7 77.7 22.3
6 76.9 23.1
5 76.1 23.9
4 75.1 24.9
3 74.0 26.0
2 72.2 27.8
1 68.4 31.7

Table 21. k-nn classifier performance for testing the PID se-
quence.

No. of known Classifications [%]
features correct incorrect

8 72.4 27.6
7 71.9 28.1
6 70.9 29.1
5 69.8 30.2
4 68.6 31.4
3 67.3 32.7
2 65.3 34.7
1 62.9 37.1

Table 22. k-nn classifier performance for training the BCW se-
quence.

No. of known Classifications [%]
features correct incorrect

9 97.2 2.8
8 97.0 3.0
7 96.8 3.2
6 96.6 3.4
5 96.3 3.7
4 96.0 4.0
3 95.3 4.7
2 93.7 6.3
1 88.3 11.7

takes in the case of missing input data. The complexity of
the proposed solution with S-implications, D-implications
and R-implications is similar to that of other fuzzy and
neuro-fuzzy systems, which has been broadly discussed,
e.g., (Marin et al., 2008; Jin, 2000). In the case of QL-
implications, the complexity is 2N times higher.

The paper concludes a trilogy by the author (Now-
icki, 2008; 2009). It presents rough-neuro-fuzzy classi-
fiers that work with missing features but having various
properties and structures due to various methods of rea-
soning and defuzzification used. Users can choose the so-
lution appropriate for his or her problem.
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Czogała, E. and Łęski, J. (2000). Fuzzy and Neuro-Fuzzy Intelli-
gent Systems, Physica-Verlag, Heidelberg/New York, NY.

Dixon, J. K. (1979). Pattern recognition with partly missing
data, IEEE Transactional on Systems, Man and Cybernet-
ics 9(10): 617–621.

Driankov, D., Hellendoorn, H. and Reinfrank, M. (1993).
An Introduction to Fuzzy Control, Springer-Verlag,
Berlin/Heidelberg.

Dubois, D. and Prade, H. (1990). Rough fuzzy sets and fuzzy
rough sets, International Journal of General Systems 17(2–
3): 191–209.

Dubois, D. and Prade, H. (1992). Putting rough sets and fuzzy
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