
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 1, 109–121
DOI: 10.2478/v10006-010-0008-4

TWO IMPLEMENTATIONS OF THE PRECONDITIONED CONJUGATE
GRADIENT METHOD ON HETEROGENEOUS COMPUTING GRIDS

TIJMEN P. COLLIGNON, MARTIN B. VAN GIJZEN

Delft Institute of Applied Mathematics
Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

e-mail: {t.p.collignon,m.b.vangijzen}@tudelft.nl

Efficient iterative solution of large linear systems on grid computers is a complex problem. The induced heterogeneity and
volatile nature of the aggregated computational resources present numerous algorithmic challenges. This paper describes
a case study regarding iterative solution of large sparse linear systems on grid computers within the software constraints
of the grid middleware GridSolve and within the algorithmic constraints of preconditioned Conjugate Gradient (CG) type
methods. We identify the various bottlenecks induced by the middleware and the iterative algorithm. We consider the
standard CG algorithm of Hestenes and Stiefel, and as an alternative the Chronopoulos/Gear variant, a formulation that
is potentially better suited for grid computing since it requires only one synchronisation point per iteration, instead of
two for standard CG. In addition, we improve the computation-to-communication ratio by maximising the work in the
preconditioner. In addition to these algorithmic improvements, we also try to minimise the communication overhead within
the communication model currently used by the GridSolve middleware. We present numerical experiments on 3D bubbly
flow problems using heterogeneous computing hardware that show lower computing times and better speed-up for the
Chronopoulos/Gear variant of conjugate gradients. Finally, we suggest extensions to both the iterative algorithm and the
middleware for improving granularity.

Keywords: grid computing, large sparse linear systems, iterative methods, conjugate gradient methods, Chronopoulos/Gear
CG, GridSolve middleware, bubbly flows.

1. Introduction

The solution of sparse linear systems is a computational
bottleneck for many large scale numerical simulations. In
order to solve these systems, which may consist of mil-
lions of equations, combined computing power of many
processors is needed. Dedicated parallel hardware, how-
ever, is expensive.

A natural idea to provide cheap parallel computing
power is to use readily available non-dedicated hardware,
and thus to make better use of existing resources. This
idea has given rise to the concepts of grid computing
and computational grids, see, e.g., (Foster and Kessel-
man, 2004). In grid computing, a pool of computational
tasks is dynamically distributed over a computational grid,
which can be a local cluster of computers, but it can also
be a group of computers at geographically different loca-
tions. This approach has proven to be successful for em-
barrassingly parallel applications where the tasks do not
require interprocessor communication, as exemplified by
the SETI@home project (Anderson et al., 2002).

For numerical solution of linear systems of equa-
tions, however, inter-task communication is unavoidable.
For this application, developing efficient parallel numer-
ical algorithms for dedicated homogeneous systems is
a difficult problem, but becomes even more challenging
when applied to heterogeneous systems. In particular, the
heterogeneity of the computational nodes and the variabil-
ity in network performance offer new algorithmic prob-
lems.

In this paper we study different implementations
of the Conjugate Gradient (CG) method (Hestenes and
Stiefel, 1952) on a heterogeneous computational grid. We
use the GridSolve library (Dongarra et al., 2007), which is
a mature grid middleware for accessing remote computa-
tional resources. Load balancing is achieved using a sim-
ple resource-aware data partitioning strategy. The number
of synchronisation points in the CG algorithm, which is
in its standard implementation equal to two, can be re-
duced to one by using the implementation proposed by
Chronopoulos and Gear (1989).

{t.p.collignon,m.b.vangijzen}@tudelft.nl

110 T.P. Collignon and M.B. van Gijzen

We apply our approach to the bubbly flow problem,
which is an important example of a moving boundary
problem. Our numerical experiments show that by min-
imising the number of synchronisation points and by de-
voting more work to the preconditioning phase, speed-
up can be achieved for the solution of systems of equa-
tions, despite the fact that for this application the tasks are
tightly coupled.

The remainder of the paper is organised as follows:
In the next section we describe in detail our architecture-
aware conjugate gradient algorithm. This includes a de-
scription of the test problem, a description of GridSolve
and its data management strategies, and several details
concerning our implementation of a sparse iterative solver
on grid computers. Section 3 contains experimental re-
sults and in Section 4 we give concluding remarks and
some suggestions for future work.

2. Heterogeneous sparse linear solvers in
GridSolve

2.1. Motivation. This work is part of a larger project
where we want to apply the immersed boundary method
(Peskin, 2002; Mittal and Iaccarino, 2005) to simulate
general moving boundary problems using grid computers.
Examples of such problems are the swimming of fish, air-
flow around wind turbine rotor blades, and bubbly flows.
These simulations involve numerical solution of the gov-
erning fluid equations on a structured grid, where the most
expensive part usually consists of solving a large sparse
linear system Ax = b at each time step. When using a
pressure-correction method (van Kan, 1986) to solve the
governing equations for bubbly flows on a highly refined
mesh, such a large sparse linear system arises from a finite
difference discretisation of the following Poisson equation
with discontinuous coefficients and Neumann boundary
conditions:

⎧
⎪⎨

⎪⎩

−∇ ·
(

1
ρ(x)

∇p(x)
)

= f(x), x ∈ Ω,

∂

∂x
p(x) = g(x), x ∈ ∂Ω,

(1)

for some functions f and g. Here, Ω and ∂Ω denote the
computational domain and boundary, respectively, while
p and ρ represent the pressure and density. In this paper
we will consider the 3D test problem taken from (van der
Pijl et al., 2005; Tang and Vuik, 2007a). It is a two-phase
bubbly flow problem where we have two separate fluids
Γ0 and Γ1, representing water (high-density phase) and
water vapour (low-density phase), respectively. The cor-
responding density function has a large jump, defined by

ρ(x) =

{
1, x ∈ Γ0,

τ, x ∈ Γ1,
(2)

where we typically have τ = 10−3. Such a discontinuity
in the coefficient results in a highly ill-conditioned system,
making it a difficult problem for iterative methods. In this
paper, we restrict ourselves to a cubical unit domain with a
single bubble with the radius 0.25 located in the centre of
the computational domain. For more details on applying
the pressure-correction method to bubbly flows, the reader
is referred to (van der Pijl et al., 2005).

Applying standard finite differences to (1) on a struc-
tured nx × ny × nz mesh results in the linear system

Ax = b, (3)

where A is an n × n block pentadiagonal Symmetric
Positive Semi-Definite (SPSD) sparse matrix and n =
nxnynz . This implies that the solution x is determined
up to a constant. However, it can be shown that for our
particular case this does not pose any problems for the it-
erative solver (Tang and Vuik, 2007b).

The reason why we chose to solve this system us-
ing a Preconditioned Conjugate Gradient (PCG) method
is twofold: (i) it is the obvious choice for large and sparse
SP(S)D systems, and (ii) the CG method consists of three
basic computational kernels (i.e., matrix-vector multipli-
cation, inner product, vector update), which are simple
to implement and relatively straightforward to parallelise
on (dedicated) parallel computers. Also, we combine CG
with a (block) Jacobi preconditioner due to its attractive
parallelisation properties.

2.2. Brief overview of GridSolve. GridSolve (GS) is
a distributed programming system which uses a client-
server model for solving complex problems remotely on
global networks (Dongarra et al., 2007; YarKhan et al.,
2006). It is an instantiation of the GridRPC model, an
emerging standard for a Remote Procedure Call (RPC)
mechanism on grid computers (Seymour et al., 2002). The
GridRPC Application Programming Interface (API) is de-
fined within the Global Grid Forum (Lee et al., 2007).
Other projects that use the GridRPC API are DIET (Caron
and Desprez, 2006), NetSolve (Seymour et al., 2005),
Ninf-G (Tanaka et al., 2003), and OmniRPC (Sato et al.,
2003).

Software environments such as GridSolve are of-
ten called Network Enabled Servers (NES). These sys-
tems typically consist of six components: clients, agents,
servers, databases, monitors, and schedulers. We will
elaborate on the specific details of these components in the
context of the version 0.17.0 of GS (see Fig. 1). The GS
servers (component 3) are software components that are
started on each computational node, which may consist of
a single CPU or a cluster. The server monitors the work-
load of the node and keeps an updated list of the services
(or tasks) that are installed on the server. For example, a
task can be a single dgemm or a parallel MPI job. Services
can be added or modified without restarting the server.

Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids 111

Fig. 1. Schematic overview of GridSolve. The dashed line represents a (geographical) distance between the client and servers.

A single GridSolve agent (Component 2) actively
monitors the server properties such as CPU speed, mem-
ory size, computational services, and availability. These
properties are stored in a database on the agent node and
are periodically updated. When a GridSolve client pro-
gram (Component 1) written in either C, Fortran, or Mat-
lab uses the GridRPC API to initiate a GS call to a remote
problem, the GS middleware first contacts the agent.

Based on the problem complexity, the size of the in-
put parameters, and the available computational resources,
the agent then returns a list of servers sorted by minimum
completion time. The client resorts to the list after per-
forming a quick network performance test. Input param-
eters are sent to the first server on the list and the task,
which can be either blocking or non-blocking, is executed
on the server. The result (if any) is then sent back to the
client. If a task should fail, it is transparently resubmitted
to the next server on the list.

To determine the completion time of a particular task
on server s, the total flop count of the problem is divided
by the effective speed of the server. The latter is calculated
using

sflops × sncpu
sworkload

100
+ 1.0

, (4)

where sflops is the speed of server s in flops determined by
the multiplication of two dense matrices of fixed size, sncpu

is the number of CPUs in the node, and sworkload ∈ [0, 100]
denotes the periodically updated workload. This means
that, if a server is fully occupied, it can be used effectively
half of the time, which is a realistic assumption.

The main advantages of GridSolve are that it is easy
to use, install, and maintain. It allows convenient access to
advanced remote computational resources. Furthermore,
fault tolerance is supported through a simple but effec-
tive mechanism. Nevertheless, the current implementa-
tion has several obvious limitations. For example, remote
servers cannot communicate directly, which imposes a se-
vere constraint on the type of applications that can be ef-
ficiently solved using the current implementation of Grid-
Solve. It is therefore naturally suited for coarse-grained
applications such as parametric studies and ‘embarrass-
ingly parallel’ problems. In contrast, traditional parallel
iterative solvers are inherently fine-grained, and much re-
search needs to be performed before iterative solvers can
be efficiently applied in grid computing.

In the current GridSolve model, separate tasks com-
municate data through the client, resulting in bridge com-
munication. As a result, input and output data associated
with a task are continuously being sent back and forth be-
tween the client and the server using a possibly slow net-
work connection. Also, any data that read or generated
locally during the execution of a task are lost after it fin-
ishes. Several strategies such as data persistence and data

112 T.P. Collignon and M.B. van Gijzen

redistribution have been proposed to tackle these deficien-
cies for different implementations of the GridRPC API
(Caron et al., 2005; Brady et al., 2006; 2008; Lastovet-
sky et al., 2006; Zuo and Lastovetsky, 2007; Desprez and
Jeannot, 2004).

In GridSolve there is a partial solution to the first
problem called the Distributed Storage Infrastructure
(DSI). At the Logistical Computing and Internetworking
(LoCI) Laboratory of the University of Tennessee, the IBP
(Internet Backplane Protocol) middleware has been devel-
oped based on this approach (Beck et al., 2002). To avoid
multiple transmissions of the same data between the client
and the server, the client can upload data to an IBP data
depot which is in close proximity to the computational
servers. Subsequently, a data handle is sent to the server
and the task can fetch and update the data on the IBP depot
(component (4) in Fig. 1). Using the DSI can be consid-
ered programming for a shared memory model.

An approach similar to that of (Brady et al., 2006) in
which the RPC model of NetSolve is extended to include
communication between remote servers has been devel-
oped for GridSolve (Brady et al., 2008). In the future, we
hope to use this extension and apply it to our problem.

2.3. Resource-aware load balancing. We are inter-
ested in solving large sparse linear systems Ax = b using
GridSolve with architecture-aware dynamic load balanc-
ing. For this purpose, it is insufficient to let the agent re-
turn a sorted list based on problem complexity and avail-
able resources, as is normally done in GridSolve. Instead,
we need to use a slightly different approach. Suppose that
the client wishes to use s servers to solve a linear system.
The scheduler in the GridSolve agent has been enhanced
so that it creates simple (non-homogeneous) partitioning
of the computational work over s servers using informa-
tion about currently available resources. It then returns the
partitioning and a list of the said servers to the client, after
which the client initiates a series of non-blocking calls ex-
plicitly specifying the size and location of each task. Thus
we ensure that the computational task is being performed
on the intended server, in accordance with our partition-
ing. Unfortunately, the fault-tolerance mechanism within
the original GridSolve is now being circumvented, be-
cause the tasks cannot be resubmitted to another server
should a task fail.

Algorithm 1 shows the general resource-aware CG
algorithm. Note that the tasks use DSI file handles to ma-
nipulate the vectors on the IBP depot. The specific struc-
ture of the CG tasks will be discussed in the next section.
After each iteration step, the client may decide to repar-
tition the work and assign the work to different computa-
tional servers in the network accordingly.

2.4. Partitioning algorithm and CG schemes. The
matrix originating from 2D discretisation of a Poisson

Fig. 2. Heterogeneous block-row partitioning for s = 4 and
k = 8 for a 2D Poisson problem.

problem on a structured grid is a block tridiagonal matrix.
This matrix has a structure similar to 3D discretisation of
our test problem. In both cases, the block-rows roughly
contain the same number of non-zeros, so we chose simple
non-homogeneous block-row partitioning. For illustration
purposes, Fig. 2 shows heterogeneous partitioning using
four servers on a 8 × 8 grid for a 2D Poisson problem.
The partitioning of the block pentadiagonal matrix from
the corresponding 3D problem is performed similarly.

The input and output vectors, shown at the top and
left side, respectively, are distributed in the same manner.
More specifically, the effective speed of s servers is cal-
culated using (4), together with the total flop count of a
single CG iteration step. The size of each task is then de-
termined accordingly.

The standard preconditioned conjugate gradient
method was implemented first and is shown in Algo-
rithm 2. There are two natural synchronisation barriers,
namely, the two inner products for computing α and ρ.
Note that synchronisation consists of three separate steps.
First, at the end of a subtask the relevant data are updated
on the depot (e.g., line 5). The subtask then returns the
partial inner product to the client (line 6). Finally, at the
start of the next subtask, it reads the relevant data from the
depot (line 7). As a result, the depot contains a full copy
of the vectors x, r, z,p, and q at all times. This ensures
that, in the case of a server failure during an iteration step,
all essential data are preserved on the IBP depot and the
iteration process may continue (possibly at a later time)
without any problem.

The scheme as it is depicted in Algorithm 2 suggests

Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids 113

Algorithm 1 Resource-aware Preconditioned Conjugate Gradient Algorithm; s servers

1: Agent partitions work based on available computational resources;
2: Client sets initial values and uploads initial vectors such as r0 to IBP data depot; Set k = 0;
3: while CG not converged and k < kmax do
4: Client assigns CG tasks to s servers and waits until tasks have completed;
5: Client repartitions work if significant change in workload and/or computational resources has occurred;
6: Set k = k + 1;
7: end while
8: Client reads final answer from IBP depot;

Algorithm 2 Preconditioned CG; Task i with three sub-
tasks.

Require: File handles to vectors x, r, z,p,q on IBP data
depot and parameter k.

Ensure: Preconditioner K .
1: // Each server i performs the following:
2: Read ri from depot
3: Solve zi from Kzi = ri

4: Compute ρi = (ri, zi)
5: Update zi on depot
6: –SYNCHRONIZE– (Client sums ρi)
7: Read zi and pi from the depot
8: if k = 1 then
9: Set pi = zi

10: else
11: Set βi = ρ/ρold

12: Set pi = zi + βipi

13: end if
14: Compute qi = Api

15: Compute αi = ρ/(pi,qi)
16: Update pi and qi on depot
17: –SYNCHRONIZE– (Client sums αi)
18: Read xi, ri,pi, and qi from depot
19: Set xi = xi + αpi

20: Set ri = ri − αqi

21: Update xi and ri on depot
22: Check convergence; continue if necessary
23: Clients sets ρold = ρ

that there is an additional synchronisation point at line 21.
By simply rearranging terms, this can be avoided. Note
that, in the context of grid computing and iterative meth-
ods, the number of synchronisation points should be kept
to an absolute minimum. In our case, synchronisation
does not only involve returning the partial inner products
to the client, but also the (expensive) transfer of large vec-
tors to and from the depot. Therefore, this rearrangement
of terms is neither trivial nor futile.

To increase granularity, we have also imple-
mented the Chronopoulos/Gear variant of preconditioned
CG (Chronopoulos and Gear, 1989; Dongarra et al.,
1998), which has a single synchronisation point, see Al-

Algorithm 3 Preconditioned CG; Chronopoulos/Gear
variant; Task i.

Require: Handles to x, r,w,p,q, and s on IBP data de-
pot and parameters α and β.

Ensure: Preconditioner K and initial values: Solve w
from Kw = r; s := Av; ρ := (r,w); μ := (s,w);
α := ρ/μ.

1: // Each server i performs the following:
2: Read xi and pi from depot
3: Depending on bandwidth of matrix read appropriate

portions of vectors q, r,w, and s.
4: Set pi = wi + βpi

5: Set qi = si + βqi

6: Set xi = xi + αpi

7: Set ri = ri − αqi

8: Check convergence; continue if necessary
9: Solve wi from Kwi = ri

10: Compute si = Awi

11: Compute ρi = (ri,wi)
12: Compute μi = (si,wi)
13: Update xi, ri,wi,pi,qi, and si on depot
14: Return ρi and μi to client
15: –SYNCHRONIZE–
16: Client sums ρi and μi for all i
17: Client sets β = ρ/ρold

18: Client computes α = ρ/(μ − ρβ/α)
19: Client sets ρold = ρ

gorithm 3. This scheme introduces additional 2n flops
in each iteration step compared with the original scheme.
Generating the matrix resulting from discretising the Pois-
son equation with varying density requires a significant
amount of computation, increasing granularity even fur-
ther.

Preconditioning. The efficiency of iterative methods
highly depends on the quality of the preconditioner, es-
pecially for very large systems. In parallel computing,
efficient parallelisation of a sophisticated preconditioner
is a difficult problem, but becomes even more so in the
context of grid computing. We therefore choose two tra-

114 T.P. Collignon and M.B. van Gijzen

ditional preconditioners that do not require any communi-
cation in the parallel context, which are Jacobi (diagonal
scaling) and block Jacobi. For the latter, the subdomains
are solved accurately using standard CG with incomplete
Cholesky preconditioning.
2.5. Implementation details. In this section we will
discuss some specific issues concerning the various im-
plementations. In the normal operation of GridSolve in
combination with DSI, if an input parameter of a task is
a DSI file handle, the middleware automatically retrieves
the relevant data from the IBP depot before the task is
started on the server. For our purposes, a task needs full
control over a DSI file, so instead we pass the DSI file
handle explicitly.

Also, in the current implementation of IBP, reading
and writing from and to the IBP depot are blocking oper-
ations (Zheng et al., 2004). Although read operations by
different tasks can be performed on the same DSI file con-
currently, write operations cannot, even when the write re-
gions do not overlap. In the Chronopoulos/Gear scheme,
a task has to perform six write operations sequentially.
Hence, if a single DSI file is used to store data, large com-
munication imbalance may occur in this case. We try to
overcome this imbalance by using separate DSI files for
each vector and letting each task update the vectors in
random order. By using the DSI functionality, it is also
theoretically possible to interrupt the CG iteration process
and restart at a later date, using possibly different compu-
tational resources.

At the end of each iteration step of the Chronopou-
los/Gear variant, it may happen that DSI data are inad-
vertently overwritten. Specifically, we cannot guarantee
that every task had finished reading the data from the pre-
vious iteration before other tasks updated the new data.
We therefore use two different DSI files representing the
previous and current data, and let the client swap the cor-
responding file handles at the end of each iteration step.

Furthermore, each server node in our experimental
setup has ATLAS (Whaley and Petitet, 2005) as a BLAS
implementation used for the variousaxpy and inner prod-
uct operations. Each task recomputes its portion of the
sparse coefficient matrix every iteration step and stores it
using the Incremental Compressed Row Storage (ICRS)
format. The implementation of this format in C is some-
what faster than that of CRS (Bisseling, 2004).

To avoid the additional overhead of communicating
matrix elements, we used a matrix-free approach. This is
naturally suited for linear systems with specific classes of
coefficient matrices, such as Poisson and Toeplitz matri-
ces.

3. Numerical experiments

3.1. Introduction. In the previous sections we dis-
cussed several implementations and various suggestions

for increasing granularity. In this section we will per-
form numerical experiments and investigate the effect of
these suggestions on the performance. The experiments
are divided into three parts. In the first part we investi-
gate the difference between the standard CG method and
the Chronopoulos/Gear variant and experiment with some
features of the DSI mechanism. The implementation with
the best results is then used for the remainder of the exper-
iments. The second part describes experiments in a het-
erogeneous computing environment, and in the last part
we conduct overall performance experiments using two
types of preconditioning.

The residual at iteration step k is defined as rk =
b − Axk. As the starting vector we take x0 = 0, and we
use the termination criteria ||rk||2/||b||2 < 10−6.

In parallel and distributed computing, speed-up is in-
vestigated by solving a problem of fixed size using an in-
creasing number of nodes. In the context of grid comput-
ing, it is more natural to fix the problem size per server
and investigate the scalability of the algorithm by adding
more servers in order to solve bigger problems. We will
analyse the algorithm using both approaches.

3.2. Target hardware. In order to properly investigate
the effectiveness of the proposed algorithm on grid hard-
ware, two different grid testbeds are used: a local non-
dedicated cluster with varying workloads and a dedicated
multi-cluster of geographically separated clusters.

The first testbed is a local cluster of computers,
which is a multi-user system consisting of nodes with dif-
ferent processors and dynamic workloads. The servers in
the network are ten single core (AMD Athlon 64 Proces-
sor 3700 at 2.4GHz) and two dual core CPU nodes (Intel
Core 2 CPU 6700 at 2.66GHz) with 3 GB and 8 GB of
memory, respectively, and running Linux 2.6. In some
cases we aim to perform controlled and repeatable experi-
ments so we use idle processors and, as a result, the parti-
tioning is fixed and homogeneous throughout these exper-
iments. In most of the experiments we measure the wall
clock times of five CG steps for different values of n.

The second testbed is the Distributed ASCI Super-
computer 3 (DAS-3), which is a cluster of five geograph-
ically separated clusters spread over four academic insti-
tutions in the Netherlands (Seinstra and Verstoep, 2007).
The five sites are connected through SURFnet, which is
a Dutch academic and research network. Four of the five
local clusters are equipped with both Gigabit Ethernet in-
terconnection and high speed Myri-10G interconnection.
The TUD site only employs Gigabit Ethernet interconnec-
tion. Although each separate cluster is relatively homoge-
neous, the system as a whole can be considered heteroge-
neous.

More specific details on the five sites are given in Ta-
ble 1, while Table 2 lists average roundtrip measurements
between several DAS-3 sites on a lightly loaded network.

Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids 115

Table 1. Specific details on the five DAS-3 sites.
Site Nodes Speed Network

VU 85 2.4 GHz Myri–10G/GbE
LU 32 2.6 GHz Myri–10G/GbE
UvA 41 2.2 GHz Myri–10G/GbE
TUD 68 2.4 GHz GbE
UvA–MN 46 2.4 GHz Myri–10G/GbE

Table 2. Average roundtrip measurements (in ms) between sev-
eral DAS-3 sites, with the exception of the TUD site.

VU LU UvA UvA–MN

VU — 1.919 0.708 —
LU 1.920 — 1.246 —
UvA 0.707 1.242 — 0.039
UvA–MN — — 0.029 —

These facts show that a large amount of heterogeneity ex-
ists between the sites with respect to the computational
resources and network capabilities, making DAS-3 a per-
fect testbed for grid computing.

On both testbeds, the client, the IBP server, and the
agent are running on the same node while the servers are
started on the remaining nodes. In a typical grid environ-
ment the client program would be located on the users’
desktop machine. On the local cluster, the depot is started
on a randomly chosen node, while on DAS-3, the depot is
located on the head node of the VU site. As a result, we
expect a significant communication overhead.

3.3. Preliminary testing. In the set of experiments on
the local cluster we differentiate between the following
three implementations:

(i) standard preconditioned CG using a single DSI file,

(ii) Chronopoulos/Gear scheme using a single DSI file,
and

(iii) Chronopoulos/Gear CG using six separate DSI files
for each vector which are manipulated in random or-
der.

Jacobi preconditioning is used in every experiment and
we fix the number of CG iterations to five. Figure 3(a)
shows the total wall clock time of the second implemen-
tation for different values of n using up to eight servers. It
also demonstrates that communication overhead is an is-
sue particularly for small n, which is hardly surprising. In
this case, using more servers does not result in improved
execution times and even results in larger wall clock times
due to the communication overhead. For large n, this im-
plementation performs slightly better. The other imple-
mentations give similar results for small n, and we will
therefore concentrate on results for large systems.

In Fig. 3(b) results are given of the three different
implementations for n = 4 · 106. Here we clearly see the
improved performance of the Chronopoulos/Gear variants
for a large number of servers. In other words, our attempts
to improve granularity resulted in speed-up, albeit modest.
Nevertheless, in the context of grid computing these are
encouraging results.

Although we observe that using separate DSI files for
the vectors only improved the overall running time of the
Chronopoulos/Gear scheme for some number of servers,
we noted that in this case the tasks finish at roughly the
same time, in contrast to the case of using a single DSI
file. This is illustrated in Fig. 4, where the wall clock times
of the separate tasks for seven servers are shown after five
CG steps of Chronopoulos/Gear, broken down in compu-
tation and communication. Note that Fig. 4(b) shows that
by using separate DSI files the communication becomes
more balanced, which is an encouraging result.

When using a single DSI file, we arrive at unbalanced
wall clock times for each task, as shown in Fig. 4(a) which
can be explained as follows. Although the client initiates
a sequence of non-blocking calls, at the end of (in par-
ticular) the first task the updates to the DSI file appear
to block subsequent updates by other tasks. These figures
also clearly reveal the amount of the communication over-
head.

For the remainder of the experiments we will use the
third implementation, which uses separate DSI files for
each vector.

3.4. Heterogeneous environment. In this section we
perform heterogeneous experiments on the two testbeds.
On the local cluster we artificially simulate workload,
which affects the partitioning of the computational work.
On DAS-3 no workload is simulated, but the differences in
processor speed have a similar effect on the partitioning.

It is not trivial to perform repeatable experiments in
a heterogeneous computing environment. Instead, we will
give a brief qualitative analysis of the processes involved
and present a typical execution of the resource-aware par-
titioning scheme and its effect on the CG iteration process.

On the local cluster, we artificially simulate varying
workload by running a special process on each server.
This process alternates between repeatedly performing a
large matrix-vector multiplication and idling for a random
number of seconds.

Note that the current resource-aware partitioning
scheme is incompatible with block Jacobi precondition-
ing, because in this case the work done by each server is
disproportional to the number of rows. As a result, Jacobi
preconditioning is used for these experiments.

We fix the number of servers to four with approxi-
mately one million equations per server. In Fig. 5(a) the
workload of each server is shown at the beginning of each

116 T.P. Collignon and M.B. van Gijzen

1 2 3 4 5 6 7 8
20

40

60

80

100

120

140

160

180

200

number of servers

tim
e

(in
 s

ec
on

ds
)

n=250.000
n=500.000
n=1.000.000
n=2.000.000
n=4.000.000

(a)

1 2 3 4 5 6 7 8
140

160

180

200

220

240

260

number of servers

tim
e

(in
 s

ec
on

ds
)

first implementation
second implementation
third implementation

(b)

Fig. 3. Wall clock times of CG implementations in GridSolve on the local cluster: different problem sizes, implementation (ii), up to
eight servers (a), n = 4 · 106, all three implementations, up to eight servers (b).

1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

task number

tim
e

(in
 s

)

(a)

1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

task number

tim
e

(in
 s

)

(b)

Fig. 4. Breakdown of wall clock time of tasks in communication (bottom part) and computation, for n = 4 · 106 and using seven
servers: utilising a single DSI file (a), utilising multiple DSI files (b).

iteration step as observed by the GridSolve agent. Fig-
ure 5(b) shows the corresponding distribution of the ma-
trix and vector row blocks, where the tasks are numbered
from top to bottom.

The graphs clearly show the effect of the varying
workloads on the distribution. For example, at the sixth
iteration step, Server 4 is only slightly occupied and, as a
result, Task 4 has the largest size.

To investigate the effect of the partitioning strategy
on the execution time of the algorithm in an artificial
heterogeneous computing environment, we measured the

wall clock times of five iteration steps using either homo-
geneous or heterogenous partitioning.

However, extensive experiments showed that the lat-
ter strategy only had a moderate effect on the total exe-
cution time. Due to the low computation to communica-
tion ratio, the current partitioning algorithm mostly affects
the amount of communication of each task with the depot.
As processor workload has barely any influence on these
kinds of operations, the total execution time does not de-
crease significantly when using heterogeneous partition-
ing on heterogeneous computational resources.

Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids 117

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

iteration step

w
or

kl
oa

d

#1
#2
#3
#4

(a)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

iteration step

di
st

rib
ut

io
n

of
 b

lo
ck

s
(b)

Fig. 5. Heterogeneous experiments with the 3D bubbly flow problem (local cluster): workload (a), distribution (b).

There are two possible solutions within the current
context. Either incorporate network bandwidth informa-
tion in the partitioning algorithm, or try to increase the
computation to communication ratio in combination with
an appropriate computational resource-aware partitioning
strategy.

Since DAS-3 is a dedicated machine, the nodes have
zero workload. Therefore, the partitioning on DAS-3 is
based solely on the heterogeneity in the processor speeds
and is fixed throughout the whole iteration process. Not
surprisingly, the effect on the wall clock times of five iter-
ation steps is similar to that of the local cluster results.

3.5. Parallel performance. In the previous sections,
we investigated various aspects of the algorithm sepa-
rately. In this section, we present overall parallel per-
formance results using two preconditioning techniques on
both the local cluster and DAS-3, without any workload.
First, we fix the problem size to n = 1203 and investi-
gate speed-up using up to six servers on the local cluster.
Figure 6(a) shows the total wall clock time until conver-
gence is obtained. In Fig. 7(a) speed-up results are given
on DAS-3 for n = 253. A server is started on a randomly
chosen node on each cluster of DAS-3. The client is lo-
cated on the head node of the VU site.

Using a more sophisticated preconditioning tech-
nique like block Jacobi improves the computation to com-
munication ratio and reduces the total number of CG iter-
ations. However, it also negatively influences the manner
in which the total number of CG iterations depends on the
number of subdomains. This is in contrast to using diago-
nal scaling as a preconditioner, where the total number of
iterations is independent of the number of subdomains.

We investigate the scalability of the algorithm by set-
ting the problem size per server to 1,000,000 equations
and performing five CG steps using both Jacobi and block
Jacobi as a preconditioner. This experiment gives an indi-
cation on how fast the communication overhead grows.
The results for the local cluster are given in Fig. 6(b),
while Fig. 7(b) shows results for DAS-3.

Using Jacobi preconditioning results in a highly un-
favourable computation to communication ratio, and the
results show that the (communication) overhead grows
quite fast, which is not a surprising result. On the other
hand, block Jacobi preconditioning has a more favourable
ratio, which is indicated by the reduced increase in execu-
tion time.

4. Concluding remarks and future work

4.1. Conclusions. The efficient iterative solution of
large sparse linear systems on aggregated computational
resources is a difficult problem. While parallel implemen-
tation of iterative methods in the context of dedicated par-
allel computing is relatively well understood, the design
of efficient iterative algorithms for the solution of large
linear systems on non-dedicated and heterogeneous net-
works of computers is still in its infancy and much re-
search is needed.

The key algorithmic constraint of CG methods in grid
computing is the inner product. To be more specific, the
computation of an inner product in parallel iterative al-
gorithms induces a global synchronisation point. While
such an operation can be highly complex even on dedi-
cated and homogeneous parallel computers connected by
a high-speed network, it may become the critical bottle-
neck in a non-dedicated and heterogeneous computing en-

118 T.P. Collignon and M.B. van Gijzen

2 2.5 3 3.5 4 4.5 5 5.5 6
4000

4500

5000

5500

number of servers

to
ta

l t
im

e
(in

 s
ec

on
ds

)

Jacobi preconditioning
block Jacobi preconditioning

(a)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
100

150

200

250

300

350

400

number of servers

tim
e

fo
r

5
ite

ra
tio

ns
 (

in
 s

ec
on

ds
)

Jacobi preconditioning
block Jacobi preconditioning

(b)

Fig. 6. Comparison of two preconditioning techniques (local cluster): speed-up experiments (a), scaled experiments (b).

2 2.5 3 3.5 4 4.5 5
100

150

200

250

300

350

number of servers

to
ta

l t
im

e
(in

 s
ec

on
ds

)

Jacobi preconditioning
block Jacobi preconditioning

(a)

2 2.5 3 3.5 4 4.5 5
50

100

150

200

250

300

350

number of servers

tim
e

fo
r

5
ite

ra
tio

ns
 (

in
 s

ec
on

ds
)

Jacobi preconditioning
block Jacobi preconditioning

(b)

Fig. 7. Comparison of two preconditioning techniques (DAS-3): speed-up experiments (a), scaled experiments (b).

vironment. For example, within the context of GridSolve,
the non-persistent data model forces us to transfer at each
synchronisation point large amounts of data over a possi-
bly unreliable and slow network connection.

In this work we described two implementations of
the preconditioned conjugate gradient method using the
mature grid middleware GridSolve. We evaluated the im-
plementations on heterogeneous computing hardware, ap-
plied to a realistic test problem. Using the middleware we
also implemented a simple architecture-aware partitioning
algorithm to divide the computational work. Furthermore,
by using multiple DSI files we have attempted to decrease
the communication overhead within the bridge communi-

cation model currently used by GridSolve. And finally, we
increased granularity by (i) using the Chronopoulos/Gear
variant of CG which only has a single synchronisation
point per iteration step and (ii) by devoting more work
to the preconditioning phase.

We explored the current state-of-the-art in grid com-
puting and iterative methods within the software con-
straints of the grid middleware GridSolve. The main
bottlenecks—in both middleware and iterative methods—
were identified, and algorithmic and software modifica-
tions for improving granularity were proposed and imple-
mented, resulting in moderately improved performance
and speed-up. Although the experimental results were

Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids 119

suboptimal, they can be considered encouraging in the
context of iterative solvers and grid computing.

4.2. Future work. Clearly, there is much room for im-
provement and we will give some suggestions for future
work.

The current implementation of GridSolve forces us
to use bridge communication. SmartGridSolve (Brady
et al., 2008) is an extension of GridSolve, which performs
similarly to SmartNetSolve (Brady et al., 2006), allowing
for communication between the computational servers as
well as data persistence. By combining this with sophis-
ticated (possibly weighted) hypergraph partitioning tech-
niques such as those used in Mondriaan (Vastenhouw and
Bisseling, 2005), we hope to greatly improve our load bal-
ancing algorithm. Another possible improvement is incor-
porating information about network throughput into the
partitioning algorithm.

Furthermore, possible hardware and software solu-
tions to reduce the communication overhead include fast
network connections to the IBP depot and using dis-
tributed IBP data depots (Beck et al., 2002).

The local subdomains in the block Jacobi precon-
ditioner are solved accurately using another iterative
method. In (Brakkee et al., 1997), interesting results were
obtained with inaccurate subdomain solutions. Applying
the same strategy to our application would require used a
method that can handle a variable preconditioner, such as
the flexible CG method (Axelsson, 1994). Efficient paral-
lelisation of such a method on grid computers introduces
additional difficulties. This is also subject of future work.

4.3. Related work. In metacomputing, using the ap-
propriate middleware is of critical importance. Many dif-
ferent types of grid middleware exist and choosing the
correct one depends on the application, target hardware,
and (numerical) algorithm. The main reason for choos-
ing GridSolve to solve the current application is two-fold:
(i) the GridSolve middleware is specifically dedicated to
numerical computations, and (ii) it allows easy access to
remote computational resources.

Naturally, other choices exists for running parallel
applications in heterogeneous computing environments.
For example, MPICH-G2 is a reference MPI implementa-
tion that is designed for running MPI applications in grid
environments (Karonis et al., 2003). It is a Globus-based
library that extends MPICH. Another MPICH-based im-
plementation that is tailored to heterogeneous networks of
clusters is MPICH-Madeleine (Mercier, 2006). For real-
world applications on grid hardware that use MPICH–
G2, see (Wyrzykowski et al., 2005; 2006; Boghosian
et al., 2006; Dong et al., 2005; Mirghani et al., 2005).

Grid middleware such as MPICH-G2 provides a con-
venient method of cross-site MPI-based communication,

while the GridSolve middleware is based on the RPC
model. Another key difference is that GridSolve utilises
the DSI for (bridge) communication, whereas MPICH-G2
allows direct communication between the nodes.

In this paper we tried to realise the full potential
of a completely synchronous parallel subspace method
for solving large sparse linear systems on grid comput-
ers. Synchronous parallel iterative algorithms are methods
where at each iteration step information is needed from
the previous iteration step. As has been shown previously
and exemplified by the experimental results, the fine-grain
nature and potentially large number of synchronisations
of the said methods raise many efficiency issues on grid
computers and limit the applicability of this approach to
large-scale problems.

An efficient and effective preconditioner is crucial
for fast convergence of iterative methods. Such a precon-
ditioner is, generally speaking, the most difficult part to
parallelise, especially in heterogeneous environments as
found in grid computing. Within the fully synchronous
context of this paper, we maximised the amount of work
that can be devoted to the employed preconditioning,
without introducing additional synchronisation points.

Parallel asynchronous iterative algorithms exhibit
features that are extremely well-suited for grid comput-
ing, such as a lack of synchronisation points and coarse-
graininess. Unfortunately, they also suffer from slow
(block Jacobi method-like) convergence rates. We pro-
pose using the said asynchronous methods as a coarse-
grain preconditioner in a flexible subspace method, where
the preconditioner is allowed to change in each iteration
step. By combining a slowly converging asynchronous
inner method and a fast converging synchronous outer
method, we aim to reap the benefits and awards of both
techniques.

Desynchronising the preconditioning phase in this
manner has the advantage that: (i) the preconditioner can
be easily and efficiently parallelised on grid computers,
(ii) no additional synchronisation points are introduced,
and (iii) by devoting the bulk of the computational ef-
fort to the preconditioner the computation to communi-
cation ratio can be improved significantly, while consider-
ably reducing the number of expensive (outer) synchroni-
sations. The resulting partially asynchronous inner-outer
method is analysed in depth in (Collignon and van Gi-
jzen, 2008; 2009), with promising experimental results.

Acknowledgment

The authors would like to thank the GridSolve team for
their prompt response pertaining to our questions. They
also thank Rob Bisseling for careful proof-reading of
the manuscript and his valuable comments. The anony-
mous referees are gratefully acknowledged for their criti-
cal review of the manuscript and their suggestions, which

120 T.P. Collignon and M.B. van Gijzen

greatly enhanced the presentation. The work of the first
author was supported by the Delft Centre for Computa-
tional Science and Engineering (DCSE) within the frame-
work of the project entitled on Development of an Im-
mersed Boundary Method, Implemented on Cluster and
Grid Computers, Application to the Swimming of Fish,
conducted jointly with Barry Koren and Yunus Hassen
from CWI.

An earlier version of this paper was presented at
the Workshop on Computer Aspects of Numerical Algo-
rithms, held in Wisła, Poland, on October 15–17, 2007
(Collignon and van Gijzen, 2007).

References

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M. and
Werthimer, D. (2002). SETI@home: An experiment in
public-resource computing, Communications of the ACM
45(11): 56–61.

Axelsson, O. (1994). Iterative Solution Methods, Cambridge
University Press, New York, NY.

Beck, M., Arnold, D., Bassi, A., Berman, F., Casanova, H.,
Dongarra, J., Moore, T., Obertelli, G., Plank, J., Swany,
M., Vadhiyar, S. and Wolski, R. (2002). Middleware for
the use of storage in communication, Parallel Computing
28(12): 1773–1787.

Bisseling, R. H. (2004). Parallel Scientific Computation:
A Structured Approach Using BSP and MPI, Oxford Uni-
versity Press, New York, NY.

Boghosian, B., Coveney, P., Dong, S., Finn, L., Jha, S., Karni-
adakis, G. and Karonis, N. (2006). Nektar, SPICE and Vor-
tonics: Using federated grids for large scale scientific ap-
plications, Workshop on Challenges of Large Applications
in Distributed Environments (CLADE)/15th International
Symposium on High Performance Distributed Computing
(HPDC-15), Paris, France, pp. 34–42.

Brady, T., Guidolin, M. and Lastovetsky, A. (2008). Experiments
with SmartGridSolve: Achieving higher performance by
improving the GridRPC model, 9th IEEE/ACM Interna-
tional Conference on Grid Computing, Tsukuba, Japan,
pp. 49–56.

Brady, T., Konstantinov, E. and Lastovetsky, A. (2006). Smart-
NetSolve: High level programming system for high per-
formance Grid computing, Proceedings of the 20th Inter-
national Parallel and Distributed Processing Symposium
(IPDPS 2006), Rhodes Island, Greece, (on CD-ROM).

Brakkee, E., Vuik, C. and Wesseling, P. (1997). Domain decom-
position for the incompressible Navier–Stokes equations:
Solving subdomain problems accurately and inaccurately,
in R. Glowinski, J. Périaux and Z-C. Shi and O. Widlund
(Eds), Domain Decomposition Methods in Sciences and
Engineering, John Wiley & Sons, Chichester, pp. 443–451.

Caron, E., Del-Fabbro, B., Desprez, F., Jeannot, E. and Nicod,
J.-M. (2005). Managing data persistence in network en-
abled servers, Scientific Programming 13(4): 333–354.

Caron, E. and Desprez, F. (2006). DIET: A scalable tool-
box to build network enabled servers on the grid, Inter-
national Journal of High Performance Computing Appli-
cations 20(3): 335–352.

Chronopoulos, A. T. and Gear, C. W. (1989). S–step iterative
methods for symmetric linear systems, Journal of Compu-
tational and Applied Mathematics 25(2): 153–168.

Collignon, T. P. and van Gijzen, M. B. (2007). Implementing the
conjugate gradient method on a grid computer, Proceed-
ings of the International Multiconference on Computer Sci-
ence and Information Technology, Wisła, Poland, Vol. 2,
pp. 527–540.

Collignon, T. P. and van Gijzen, M. B. (2008). Solving large
sparse linear systems efficiently on Grid computers us-
ing an asynchronous iterative method as a preconditioner,
Technical report DUT 08–08, Delft University of Technol-
ogy, Delft.

Collignon, T. P. and van Gijzen, M. B. (2010). Parallel scien-
tific computing on loosely coupled networks of computers,
in B. Koren and C. Vuik (Eds), Advanced Computational
Methods in Science and Engineering, Lecture Notes in
Computational Science and Engineering, Vol. 71, Springer,
Berlin, pp.79–106.

Desprez, F. and Jeannot, E. (2004). Improving the GridRPC
model with data persistence and redistribution, ISPDC ’04:
Proceedings of the 3rd International Symposium on Paral-
lel and Distributed Computing/3rd International Workshop
on Algorithms, Models and Tools for Parallel Computing
on Heterogeneous Networks (ISPDC/HeteroPar’04), Cork,
Ireland, pp. 193–200.

Dong, S., Karniadakis, G. E. and Karonis, N. T. (2005). Cross-
site computations on the TeraGrid, Computing in Science
and Engineering 7(5): 14–23.

Dongarra, J. J., Duff, I. S., Sorensen, D. C. and van der Vorst,
H. A. (1998). Numerical Linear Algebra for High Per-
formance Computers, Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Dongarra, J., Li, Y., Shi, Z., Fike, D., Seymour, K. and
YarKhan, A. (2007). Homepage of NetSolve/GridSolve,
http://icl.cs.utk.edu/netsolve/.

Foster, I. and Kesselman, C. (2004). The Grid: Blueprint for
a New Computing Infrastructure, 2nd Edn., Morgan Kauf-
man Publishers, San Fransisco, CA.

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate
gradients for solving linear systems, Journal of Research
of National Bureau Standards 49(6): 409–436.

Karonis, N. T., Toonen, B. and Foster, I. (2003). MPICH-
G2: A grid-enabled implementation of the message pass-
ing interface, Journal of Parallel and Distributed Comput-
ing 63(5): 551–563.

Lastovetsky, A., Zuo, X. and Zhao, P. (2005). A non-intrusive
and incremental approach to enabling direct communica-
tions in RPC-based grid programming systems, Technical
report, UCD School of Computer Science and Informatics,
Dublin, http://www.csi.ucd.ie/content/non
-intrusive-and-incremental-approach

http://icl.cs.utk.edu/netsolve/
http://www.csi.ucd.ie/content/non
-intrusive-and-incremental-approach

Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids 121

-enabling-direct-communications-rpc
-based-grid-program.

Lee, C., Nakada, H. and Tanimura, Y. (2007). GridRPC
Working Group, http://forge.ogf.org/sf/
projects/gridrpc-wg/.

Mercier, G. (2006). MPICH-Madeleine. An MPI im-
plementation for heterogeneous clusters of clusters,
http://runtime.futurs.inria.fr/mpi/.

Mirghani, B., Tryby, M., Baessler, D., Karonis, N., Ranhthan, R.
and Mahinthakumar, K. (2005). Development and perfor-
mance analysis of a simulation-optimization framework on
TeraGrid Linux clusters, 6th LCI International Conference
on Linux Clusters: The HPC Revolution 2005, Chapel Hill,
NC, USA.

Mittal, R. and Iaccarino, G. (2005). Immersed boundary meth-
ods, Annual Review of Fluid Mechanics 37: 239–261.

Peskin, C. (2002). The immersed boundary method, Acta Nu-
merica 11: 479–517.

Sato, M., Boku, T. and Takahashi, D. (2003). OmniRPC: A Grid
RPC system for parallel programming in cluster and Grid
environment, CCGRID ’03: Proceedings of the 3rd Inter-
national Symposium on Cluster Computing and the Grid,
Tokyo, Japan, pp. 206–213.

Seinstra, F. J. and Verstoep, K. (2007). DAS–3: The distributed
ASCI supercomputer 3, http://www.cs.vu.nl/
das3/.

Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee, C.
and Casanova, H. (2002). Overview of GridRPC: A re-
mote procedure call API for grid computing, GRID ’02:
Proceedings of the 3rd International Workshop on Grid
Computing, Baltimore, MD, USA, pp. 274–278.

Seymour, K., YarKhan, A., Agrawal, S. and Dongarra, J. (2005).
NetSolve: Grid enabling scientific computing environ-
ments, in L. Grandinetti (Ed.), Grid Computing and New
Frontiers of High Performance Processing, Elsevier, New
York, NY.

Tanaka, Y., Nakada, H., Sekiguchi, S., Suzumura, T. and Mat-
suoka, S. (2003). Ninf-G: A reference implementation of
RPC-based programming middleware for Grid computing,
Journal of Grid Computing 1(1): 41–51.

Tang, J. M. and Vuik, C. (2007a). On deflation and singular sym-
metric positive semi-definite matrices, Journal of Compu-
tational and Applied Mathematics 206(2): 603–614.

Tang, J. and Vuik, C. (2007b). Efficient deflation methods ap-
plied to 3-D bubbly flow problems, Electronic Transac-
tions on Numerical Analysis 26: 330–349.

van der Pijl, S., Segal, A., Vuik, C. and Wesseling, P. (2005).
A mass-conserving level-set method for modelling of
multi-phase flows, International Journal for Numerical
Methods in Fluids 47: 339–361.

van Kan, J. (1986). A second-order accurate pressure correction
scheme for viscous incompressible flow, SIAM Journal on
Scientific and Statistical Computing 7(3): 870–891.

Vastenhouw, B. and Bisseling, R. H. (2005). A two-dimensional
data distribution method for parallel sparse matrix-vector
multiplication, SIAM Review 47(1): 67–95.

Whaley, R. C. and Petitet, A. (2005). Minimizing de-
velopment and maintenance costs in supporting persis-
tently optimized BLAS, Software: Practice and Experi-
ence 35(2): 101–121.

Wyrzykowski, R., Meyer, N., Olas, T., Kuczynski, L., Lud-
wiczak, B., Czaplewski, C. and Oldziej, S. (2009). Meta–
computations on the CLUSTERIX grid, in B. Kågström,
E. Elmroth, J. Dongarra and J. Wasniewski (Eds), Applied
Parallel Computing: State of the Art in Scientific Com-
puting. 8th International Workshop, PARA 2006, Umeå,
Sweden, June 18-21, 2006, Revised Selected Papers, Lec-
ture Notes in Computer Science, Vol. 4699, Springer,
Berlin/Heidelberg, pp. 489–500.

Wyrzykowski, R., Meyer, N. and Stroinski, M. (2005). Con-
cept and implementation of CLUSTERIX: National clus-
ter of linux systems, 6th LCI International Conference on
Linux Clusters: The HPC Revolution 2005, Chapel Hill,
NC, USA.

YarKhan, A., Seymour, K., Sagi, K., Shi, Z. and Dongarra,
J. (2006). Recent developments in GridSolve, Interna-
tional Journal of High Performance Computing Applica-
tions (IJHPCA) 20(1): 131–141.

Zheng, Y., Bassi, A., Beck, M., Plank, J. S. and Wolski, R.
(2004). Internet Backplane Protocol: C API 1.4, Techni-
cal report, Department of Computer Science, University
of Tennessee, Knoxville, TN.

Zuo, X. and Lastovetsky, A. (2007). Experiments with a soft-
ware component enabling NetSolve with direct communi-
cations in a non-intrusive and incremental way, Proceed-
ings of the 21st International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2007), Long Beach, CA, USA.

Tijmen P. Collignon obtained his M.Sc. de-
gree in scientific computing at Utrecht Univer-
sity in 2006. Currently he is a Ph.D. student
in the numerical analysis research group of the
Delft Institute of Applied Mathematics at the
Delft University of Technology in the Nether-
lands. His main research areas are numerical
linear algebra and grid computing.

Martin B. van Gijzen received his M.Sc. de-
gree in applied mathematics in 1989, and his
Ph.D. in 1994, both from the Delft Univer-
sity of Technology in the Netherlands. From
1994 until 1996 he was a research associate at
Utrecht University, and from 1997 until 2001
he was a project leader of several European re-
search projects on underwater communication
at the TNO Physics and Electronics Laboratory.
In 2001 he moved to France to become a se-

nior scientist in the parallel computing group at CERFACS in Toulouse.
In 2004 he returned to the Delft University of Technology, where he is
an associate professor. His research areas are numerical linear algebra
and high performance computing.

Received: 19 February 2009
Revised: 26 August 2009

-enabling-direct-communications-rpc
-based-grid-program.
http://forge.ogf.org/sf/
projects/gridrpc-wg/
http://runtime.futurs.inria.fr/mpi/
http://www.cs.vu.nl/
das3/

	Introduction
	Heterogeneous sparse linear solvers in GridSolve
	Motivation
	Brief overview of GridSolve
	Resource-aware load balancing
	Partitioning algorithm and CG schemes
	Implementation details

	Numerical experiments
	Introduction
	Target hardware
	Preliminary testing
	Heterogeneous environment
	Parallel performance

	Concluding remarks and future work
	Conclusions
	Future work
	Related work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

