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1. Introduction

This paper is focused on analyzing stability properties for
switched systems composed of a family of linear descrip-
tor subsystems. As for descriptor systems, they are also
known as singular systems or implicit systems and have
good abilities concerning representing dynamical systems
(Cobb, 1983; Lewis, 1986). Since they can preserve phys-
ical parameters in the coefficient matrices and describe the
dynamic, static, and even improper part of the system in
the same form, descriptor systems are much superior to
those represented by state space models.

There have been many works on descriptor systems,
which studied feedback stabilization (Cobb, 1983; Lewis,
1986), Lyapunov stability theory (Lewis, 1986; Takaba
et al., 1995; Ishida and Terra, 2001), the matrix inequal-
ity approach (Boyd et al., 1994) for stabilization, H2

and/or H∞ control (Masubuchi et al., 1997; Uezato and
Ikeda, 1999; Ikeda et al., 2000), the infinite eigenvalue as-
signment by a feedback (Kaczorek, 2002),(2004).

On the other hand, there has been increasing inter-
est recently in stability analysis and design for switched
systems; see the survey papers (Liberzon and Morse,
1999; DeCarlo et al., 2000; Sun and Ge, 2005a), the re-

cent books (Liberzon, 2003; Sun and Ge, 2005b) and
the references cited therein. One motivation for studying
switched systems is that many practical systems are inher-
ently multi-modal in the sense that several dynamical sub-
systems are required to describe their behavior which may
depend on various environmental factors. Another impor-
tant motivation is that switching among a set of controllers
for a specified system can be regarded as a switched sys-
tem, and that switching has been used in adaptive control
to assure stability in situations where it cannot be proved
otherwise, or to improve the transient response of adaptive
control systems. Also, the methods of intelligent control
design are based on the idea of switching among different
controllers (Hespanha and Morse, 2002; Hu et al., 2002).

We observe from the above that switched descriptor
systems belong to an important class of systems that are
interesting in both theoretic and practical sense. However,
to the authors’ best knowledge, there has not been many
works dealing with such systems. The difficulty falls into
two aspects. First, descriptor systems are not easy to
tackle and there are not rich results available. Secondly,
switching between several descriptor systems makes the
problem more complicated and even not easy to make the
motivation clear in some cases.
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Next, let us review the classification of problems in
switched systems. It is commonly recognized (Liberzon,
2003) that there are three basic problems in stability anal-
ysis and design of switched systems:

(i) find conditions for stability under arbitrary switch-
ing;

(ii) identify the limited but useful class of stabilizing
switching laws;

(iii) construct a stabilizing switching law.

Specifically, Problem (i) deals with the case that all
subsystems are stable. This problem seems trivial, but it is
important since we can find many examples where all sub-
systems are stable but improper switchings can make the
whole system unstable (Branicky, 1998). Furthermore, if
we know that a switched system is stable under arbitrary
switching, then we can consider higher control specifica-
tions for the system.

There have been several works for Problem (i) with
state space systems. For example, Narendra and Balakr-
ishnan (1994) showed that when all subsystems are stable
and commutative pairwise, the switched linear system is
stable under arbitrary switching. Liberzon et al. (1999)
extended this result from the commutation condition to a
Lie-algebraic condition. Zhai et al. (2001; 2002; 2006)
extended the consideration to the case of L2 gain analy-
sis and the case where both continuous-time and discrete-
time subsystems exist, respectively. In our previous pa-
pers (Zhai et al., 2009a; 2009b), we extended the existing
result of Narendra and Balakrishnan (1994) to switched
linear descriptor systems. In that context, we showed that
in the case where all descriptor subsystems are stable, if
the descriptor matrix and all subsystem matrices are com-
mutative pairwise, then the switched system is stable un-
der arbitrary switching. However, since the commutation
condition is quite restrictive in real systems, alternative
conditions are desired for the stability of switched descrip-
tor systems under arbitrary switching.

In this paper, we propose a unified approach to the
stability analysis of switched linear descriptor systems un-
der arbitrary switching. The motivation is the same as
in the case of switched state space systems. More pre-
cisely, even if all linear descriptor subsystems are stable,
the switched system can be unstable when the switching
is not done appropriately. A motivation example will be
given later to illustrate this point. Since the existing results
for the stability of switched state space systems suggest
that the common Lyapunov functions condition should
be less conservative than the commutation condition, we
establish our approach based on common quadratic Lya-
punov functions incorporated with linear matrix inequali-
ties (LMIs). We show that if there is a common quadratic
Lyapunov function for the stability of all descriptor sub-
systems, then the switched system is stable under arbitrary
switching.

Since the results are consistent with those for
switched state space systems when the descriptor matrix
shrinks to an identity matrix, the results are natural but
important extensions of the existing results. In addition,
they establish reasonable extension of the results in (Zhai
et al., 2009a; 2009b), in the sense that if all descriptor
subsystems are stable, and furthermore the descriptor ma-
trix and all subsystem matrices are commutative pairwise,
then there exists a common quadratic Lyapunov function
for all subsystems, and thus the switched system is sta-
ble under arbitrary switching. We note that the approach
is unified also in the sense that both continuous-time and
discrete-time systems can be dealt with, except that the
linear matrix inequalities are in different forms.

The rest of this paper is organized as follows. In Sec-
tion 2, we formulate the problem under consideration and
give some preliminaries. Section 3 states and proves the
stability condition for switched linear continuous-time de-
scriptor systems under arbitrary switching. The condition
requires in fact a common quadratic Lyapunov function
for the stability of all the subsystems, and includes the ex-
isting commutation conditions (Zhai et al., 2009a; 2009b)
as a special case. Section 4 establishes a parallel result
in the discrete-time case. Finally, Section 5 concludes the
paper.

2. Preliminaries and problem formulation

Let us first give some definitions on linear descriptor sys-
tems. Consider the linear continuous-time descriptor sys-
tem

Eẋ(t) = Ax(t) (1)

and the linear discrete-time descriptor system

Ex(k + 1) = Ax(k) , (2)

where t ∈ R denotes the continuous time, the nonnegative
integer k denotes the discrete time, x(t)(x(k)) ∈ R

n is the
descriptor variable, E, A ∈ R

n×n are constant matrices.
The matrix E may be singular and we denote its rank by
r = rank E ≤ n.

If |sE − A| �≡ 0 (|zE − A| �≡ 0), the linear de-
scriptor system (1) ((2)) has a unique solution for any
initial condition and is called regular. The finite eigen-
values of the matrix pair (E, A), that is, the solutions of
|sE − A| = 0 (|zE − A| = 0), and the correspond-
ing (generalized) eigenvectors define exponential modes
of the system. If the finite eigenvalues lie in the open
left half-plane of s (the open unit disc of z), the solution
decays exponentially. The infinite eigenvalues of (E, A)
with the eigenvectors satisfying the relations Ex1 = 0 de-
termines static modes. The infinite eigenvalues of (E, A)
with generalized eigenvectors xk satisfying the relations
Ex1 = 0 and Exk = xk−1 (k ≥ 2) create impulsive
modes. The system has no impulsive mode if and only if
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rank E = deg |sE−A| (deg |zE−A|). The system is said
to be stable if it is regular and has only decaying exponen-
tial modes and static modes (without impulsive ones).

Lemma 1. (Weiertrass Form, (Cobb, 1983; Lewis, 1986))
If the descriptor system (1) ((2)) is regular, then there exist
two nonsingular matrices M and N such that

MEN =

[
Id 0
0 J

]
, MAN =

[
Λ 0
0 In−d

]
, (3)

where d = deg |sE − A| (deg |zE − A|), J is composed
of Jordan blocks for the finite eigenvalues. If the system
(1) ((2)) is regular and there is no impulsive mode, then
(3) holds with d = r and J = 0. If the system (1) ((2)) is
stable, then (3) holds with d = r, J = 0 and furthermore
Λ is Hurwitz (Schur) stable.

Let the singular value decomposition (SVD) of E be

E = U

[
E11 0
0 0

]
V T , E11 = diag{σ1, . . . , σr},

(4)
where σi’s are the singular values, U and V are orthonor-
mal matrices (UT U = V T V = I). With the definitions

x̄ = V T x
�
=

[
x̄1

x̄2

]
, UT AV =

[
A11 A12

A21 A22

]
, (5)

the differential (difference) equation in (1) ((2)) takes the
form of

E11 ˙̄x1(t) = A11x̄1(t) + A12x̄2(t),

0 = A21x̄1(t) + A22x̄2(t)
(6)

or

E11x̄1(k + 1) = A11x̄1(k) + A12x̄2(k),

0 = A21x̄1(k) + A22x̄2(k).
(7)

From the above it is easy to obtain that the descrip-
tor system is regular and has no impulsive modes if and
only if A22 is nonsingular. Moreover, the system is sta-
ble if and only if A22 is nonsingular and furthermore
E−1

11

(
A11 − A12A

−1
22 A21

)
is Hurwitz (or Schur) stable.

This discussion will be used again in the next section.
Next, we move to the problem formulation. In this

paper, we consider a switched system composed of N lin-
ear continuous-time descriptor subsystems:

Eẋ(t) = Aix(t) (8)

or N linear discrete-time descriptor subsystems:

Ex(k + 1) = Aix(k) , (9)

where the vector x ∈ R
n and the descriptor matrix E

are the same as in (1) and (2), the index i denotes the

i-th subsystem and takes the value in the discrete set
I = {1, 2, . . . ,N}, and thus the matrix Ai, together with
E, represents the dynamics of the i-th subsystem.

Now we give the definition for the switched system.
Given a switching sequence, the switched system (8) ((9))
is said to be stable if, starting from any initial value, the
system’s trajectories converge to the origin.

At the end of this section, we formulate the analysis
problem, which will be dealt with in the next two sections.

Stability Analysis Problem: Assume that all the descriptor
subsystems in (8) or (9) are stable. Establish the condition
under which the switched system is stable under arbitrary
switching.

Remark 1. There is a tacit assumption in the switched
system described by (8) or (9) that the descriptor matrix
E is the same in all the subsystems. Theoretically, this
assumption is restrictive at present. However, as also dis-
cussed in (Zhai et al., 2009a; 2009b)), the above problem
settings and the results can later be applied to switching
control problems for single linear descriptor systems. This
is the main reason why we presently consider the same de-
scriptor matrix E in the switched system. For example, if
for a single descriptor system

Eẋ(t) = Ax(t) + Bu(t)

(Ex(k + 1) = Ax(k) + Bu(k)), where u(t) (u(k)) is the
control input, we have designed two stabilizing descriptor
variable feedbacks u = K1x, u = K2x and furthermore
the switched system composed of the descriptor subsys-
tems characterized by (E, A + BK1) and (E, A + BK2)
are stable under arbitrary switching, then we can switch
arbitrarily between the two controllers and thus consider
higher control specifications. This kind of requirement is
very important when we want more flexibility for multiple
control specifications in real applications.

As mentioned in the introduction, the above-declared
stability analysis problem is well posed (or practical) since
a switched linear descriptor system can be unstable even if
all the descriptor subsystems are stable. For better under-
standing, we give the following motivation example which
is based on an example in (Branicky, 1998).

Example 1. Consider a switched system composed of
two linear descriptor subsystems whose matrices are

E =

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ ,

A1 =

⎡
⎣ −1 10 0

−100 −1 0
0 0 1

⎤
⎦ ,

A2 =

⎡
⎣ −1 100 0

−10 −1 0
0 0 1

⎤
⎦ .

(10)
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Obviously, x3 in both systems is always zero due to
the algebraic equation constraint, and the pair (x1, x2) is
actually dominated by switching among the differential
equations [

ẋ1

ẋ2

]
=

[ −1 10
−100 −1

] [
x1

x2

]
,[

ẋ1

ẋ2

]
=

[ −1 100
−10 −1

] [
x1

x2

]
.

(11)

As also pointed out in (Branicky, 1998), the elements x1

and x2 diverge very quickly when the descriptor subsys-
tem (E, A1) is activated in the second and fourth quad-
rants while the descriptor subsystem (E, A2) is activated
in the first and third quadrants. �

3. Stability analysis in the continuous-time
domain

In this section, we first state and prove the stability condi-
tion, which is described by several LMIs. Then, we estab-
lish that the result is a nontrivial extension of the existing
pairwise commutation stability condition.

3.1. LMI-based stability condition.

Theorem 1. The switched system (8) is stable under arbi-
trary switching if there are matrices Pi ∈ R

n×n satisfying

ET Pi = PT
i E ≥ 0, (12)

AT
i Pi + PT

i Ai < 0, (13)

∀i ∈ I, and furthermore

ET Pi = ET Pj , ∀i, j ∈ I , i �= j . (14)

Proof. The conditions (12) and (13) guarantee that each
descriptor system is stable (Masubuchi et al., 1997). Thus,
it is not difficult to see that the condition (14) deals with
switching from the i-th subsystem to the j-th subsystem.
This observation will be commented on more clearly later.

Since the rank of E is r, we can find nonsingular
matrices M and N such that

MEN =

[
Ir 0
0 0

]
. (15)

Then, we obtain from (12) that

NT ET MT (M−1)T PiN = NT PT
i M−1MEN ≥ 0 ,

(16)
and define

(M−1)T PiN =

[
P i

11 P i
12

P i
21 P i

22

]

to reach[
Ir 0
0 0

][
P i

11 P i
12

P i
21 P i

22

]

=

[
(P i

11)
T (P i

21)
T

(P i
12)T (P i

22)T

][
Ir 0
0 0

]
≥ 0 . (17)

This results in (P i
11)

T = P i
11 ≥ 0, P i

12 = 0, and thus

(M−1)T PiN =

[
P i

11 0
P i

21 P i
22

]
. (18)

Furthermore, from (13) we see that Pi must be non-
singular. This can be proved by contradiction: if Pi is
singular, then there exists x �= 0 such that Pix = 0, which
leads to xT (AT

i Pi + PT
i Ai)x = 0. However, this is im-

possible due to (13). Since M and N are nonsingular, so is
(M−1)T PiN , which implies that P i

11 is positive definite
and P i

22 is nonsingular.
Similarly, from (14) we obtain that

NT ET MT (M−1)T PiN = NT ET MT (M−1)T PjN ,
(19)

which is equivalent to[
Ir 0
0 0

] [
P i

11 0
P i

21 P i
22

]

=

[
Ir 0
0 0

] [
P j

11 0

P j
21 P j

22

]
. (20)

Thus P i
11 = P j

11, ∀i �= j ∈ I, and we modify (18) as

(M−1)T PiN =

[
P11 0
P i

21 P i
22

]
, (21)

where P11 is positive definite and P i
22 is nonsingular.

Next, let

MAiN =

[
Āi

11 Āi
12

Āi
21 Āi

22

]
(22)

and substitute it into the equivalent inequality of (13) as

NT AT
i MT (M−1)T PiN + NT PT

i M−1MAiN < 0
(23)

to reach [
Υ11 Υ12

ΥT
12 Υ22

]
< 0 , (24)

where

Υ11 = (Āi
11)T P11 + P11Ā

i
11

+(Āi
21)

T P i
21 + (P i

21)
T Āi

21,

Υ12 = (Āi
21)

T P i
22 + P11Ā

i
12 + (P i

21)
T Āi

22,

Υ22 = (Āi
22)

T P i
22 + (P i

22)
T Āi

22 .

(25)
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We declare that Āi
22 is nonsingular from Υ22 < 0.

Otherwise, there is a nonzero vector v such that Āi
22v = 0.

Then, vT Υ22v < 0 since Υ22 < 0. However, by simple
calculation,

vT Υ22v = (Āi
22v)T P i

22v + vT (P i
22)

T (Āi
22v) = 0, (26)

which results in a contradiction.
Premultiplying (24) by the nonsingular matrix[

Ir −(Āi
21)T

(
(Āi

22)−1
)T

0 In−r

]

and postmultiplying the result by its transpose, we obtain[
(Ãi

11)
T P11 + P11Ã

i
11 ∗

ΥT
12 − Υ22(Āi

22)
−1Āi

21 Υ22

]
< 0, (27)

where Ãi
11 = Āi

11 − Āi
12(Ā

i
22)

−1Āi
21.

Since the matrices E and Ai are transformed into
(15) and (22), respectively, we use the well-known
technique in stability analysis with the Weiertrass form
(Lemma 1) to define the nonsingular transformation x̄ =
N−1x = [x̄T

1 x̄T
2 ]T , x̄1 ∈ R

r. Then, all the descriptor
subsystems in (8) take the form of

˙̄x1 = Āi
11x̄1 + Āi

12x̄2,

0 = Āi
21x̄1 + Āi

22x̄2 ,
(28)

which is equivalent to

˙̄x1 =
[
Āi

11 − Āi
12(Ā

i
22)

−1Āi
21

]
x̄1 = Ãi

11x̄1 (29)

with
x̄2 = −(Āi

22)
−1Āi

21x̄1.

From (27) it is seen that

(Ãi
11)

T P11 + P11Ã
i
11 < 0 , (30)

which means that all Ãi
11’s are Hurwitz stable, and a com-

mon positive definite matrix P11 exists for the stability
of all the subsystems in (29). Therefore, x̄1 converges to
zero exponentially under arbitrary switching. The x̄2 part
is dominated by x̄1 and thus also converges to zero expo-
nentially. This completes the whole proof. �

Remark 2. When E = I and all the subsystems
are Hurwitz stable, the conditions (12)–(14) imply that
there is a common positive definite matrix P satisfying
AT

i P+PAi < 0, ∀i ∈ I, which is exactly the existing sta-
bility condition for switched linear systems composed of
ẋ(t) = Aix(t) under arbitrary switching (Narendra and
Balakrishnan, 1994). Thus, Theorem 1 is an extension of
the existing result for switched linear state space systems
in the continuous-time domain.

Remark 3. From the proof of Theorem 1 it can be
seen that x̄T

1 P11x̄1 is a common quadratic Lyapunov func-
tion for all the subsystems (29). Since the exponential
convergence of x̄1 results in that of x̄2, we have enough
reasons to regard x̄T

1 P11x̄1 as a common quadratic Lya-
punov function for the whole switched system. In fact,
this is rationalized by the following equation:

xT ET Pix

= (N−1x)T (MEN)T ((M−1)T PiN)(N−1x)

=

[
x̄1

x̄2

]T [
Ir 0
0 0

][
P11 0
P i

21 P i
22

][
x̄1

x̄2

]

= x̄T
1 P11x̄1. (31)

Therefore, although ET Pi is not positive definite
and neither is Vi(x) = xT ET Pix, we can regard this
Vi(x) as a common quadratic Lyapunov function for all
the descriptor subsystems in the continuous-time domain.
Moreover, if we consider

V = Vσ(t)(x)
�
= xT ET Pσ(t)x, (32)

where σ(t) is the index of the activated subsystem at t, as
a piecewise Lyapunov function candidate for the switched
system, the condition (14) implies that there is no value
jump when switchings occur. This is consistent with the
existing results (Branicky, 1998) for general hybrid and
switched systems.

Remark 4. The LMI conditions (12)–(14) include a non-
strict matrix inequality, which may not be easy to solve
using the existing LMI Control Toolbox in Matlab. As a
matter of fact, the proof of Theorem 1 suggested an al-
ternative method for solving it in the framework of strict
LMIs:

(i) decompose E as in (15) using nonsingular matrices
M and N ;

(ii) compute MAiN for each i ∈ I as in (22);

(iii) solve the strict LMIs (24) for all i ∈ I simultane-
ously with respect to P11 > 0, P i

21 and P i
22;

(iv) compute the original Pi with

Pi = MT

[
P11 0
P i

21 P i
22

]
N−1

(motivated by (21)).

Remark 5. Note that the condition (14) should not
be replaced with Pi = Pj , ∀i �= j, as one might ex-
pect from the existing result for switched state space sys-
tems. The reason is that such setting leads to the obvious
conservativeness of the result. For example, consider the
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switched system composed of two descriptor subsystems
whose matrices are

E =

[
Ir 0
0 0

]
,

A1 =

[
−Ir 0
0 In−r

]
, A2 =

[
−Ir 0
0 −In−r

]
.

(33)
It is easy to confirm that the switched system is stable

under arbitrary switching, but we cannot find any common
matrix P satisfying (13) for both A1 and A2. In fact, let

P =

[
P11 P12

P21 P22

]
.

Then, the condition (13) requires that[
−P11 − PT

11 ∗
−PT

12 + P21 P22 + PT
22

]
< 0 (34)

and [
−P11 − PT

11 ∗
−PT

12 − P21 −P22 − PT
22

]
< 0 . (35)

Focusing on the (2, 2)-th block of the matrix on the left-
hand side, one can easily see that the above two inequali-
ties cannot hold simultaneously.

Although in the problem formulation we assumed
that the descriptor matrix is the same for all the subsys-
tems (as mentioned in Remark 1), from the proof of The-
orem 1 it can be seen that what we really need is Eqn. (15).
Therefore, Theorem 1 can be extended to the case where
the subsystem descriptor matrices are different as in the
following corollary.

Corollary 1. Consider the switched system composed of
N linear descriptor subsystems described by

Eiẋ(t) = Aix(t) , (36)

where Ei is the descriptor matrix of the i-th subsystem
and all the notation is the same as before. Assume that
all the descriptor matrices have the same rank r and there
are common nonsingular matrices M and N such that

MEiN =

[
Ir 0
0 0

]
, ∀i ∈ I . (37)

Then, the switched system (36) is stable under arbitrary
switching if there are matrices Pi ∈ R

n×n (i = 1, . . . ,N )
satisfying for every i ∈ I

ET
i Pi = PT

i Ei ≥ 0 , AT
i Pi + PT

i Ai < 0 (38)

and, furthermore,

ET
i Pi = ET

j Pj , ∀i, j ∈ I , i �= j . (39)

3.2. Comparison with the pairwise commutation con-
dition. In this subsection, we consider the relation of
Theorem 1 with the result from (Zhai et al., 2009a).

Lemma 2. (Zhai et al., 2009a) If all the descrip-
tor subsystems are stable, and furthermore the matrices
E, A1, . . . , AN are commutative pairwise, i.e.,

EAi = AiE , AiAj = AjAi , ∀i, j ∈ I , (40)

then the switched system is stable under arbitrary switch-
ing.

The above lemma establishes another sufficient con-
dition for the stability of switched linear descriptor sys-
tems in the context of pairwise commutation. It is well
known (Narendra and Balakrishnan, 1994) that in the case
of switched linear systems composed of the state space
subsystems

ẋ(t) = Aix(t) , i ∈ I , (41)

where all subsystems are Hurwitz stable and the subsys-
tem matrices commute pairwise (AiAj = AjAi, ∀i, j ∈
I), there exists a common positive definite matrix P sat-
isfying

AT
i P + PAi < 0 . (42)

One then tends to expect that if the commutation condition
of Lemma 2 holds, then a common quadratic Lyapunov
function V (x) = xT ET Pix should exist satisfying the
condition of Theorem 1. This is exactly established in the
following theorem.

Theorem 2. If all the descriptor subsystems in (8) are
stable, and furthermore the matrices E, A1, . . . , AN are
commutative pairwise, then there are matrices Pi (i =
1, . . . ,N ) satisfying (12)–(14), and thus the switched sys-
tem is stable under arbitrary switching.

Proof. For notational simplicity, we only prove the case
of N = 2. Since (E, A1) is stable, according to Lemma 1,
there exist two nonsingular matrices M, N such that

MEN =

[
Ir 0
0 0

]
,

MA1N =

[
Λ1 0
0 In−r

]
,

(43)

where Λ1 is a Hurwitz stable matrix. Here, without caus-
ing confusion, we use the same notations M, N as before.

Defining

N−1M−1 =

[
W1 W2

W3 W4

]
(44)

and substituting it into the commutation condition EA1 =
A1E with

(MEN)(N−1M−1)(MA1N)
= (MA1N)(N−1M−1)(MEN) , (45)
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we obtain[
W1Λ1 W2

0 0

]
=

[
Λ1W1 0
W3 0

]
. (46)

Thus, W1Λ1 = Λ1W1, W2 = 0, W3 = 0.
Now, we use the same nonsingular matrices M, N

for the transformation of A2 and write

MA2N =

[
Λ2 X1

X2 X

]
. (47)

According to another commutation condition EA2 =
A2E, [

W1Λ2 W1X1

0 0

]
=

[
Λ2W1 0
X2W1 0

]
(48)

holds, and thus W1Λ2 = Λ2W1, W1X1 = 0, X2W1 = 0.
Since NM is nonsingular and W2 = 0, W3 = 0, W1

has to be nonsingular. We then obtain X1 = 0, X2 = 0.
Furthermore, since (E, A2) is stable, Λ2 is Hurwitz stable
and X has to be nonsingular.

The third commutation condition A1A2 = A2A1 re-
sults in[

Λ1W1Λ2 0
0 W4X

]
=

[
Λ2W1Λ1 0

0 XW4

]
. (49)

We have Λ1W1Λ2 = Λ2W1Λ1. Combining this observa-
tion with W1Λ1 = Λ1W1, W1Λ2 = Λ2W1, we obtain

W1Λ1Λ2 = Λ1W1Λ2 = Λ2W1Λ1 = W1Λ2Λ1, (50)

which implies that Λ1 and Λ2 are commutative (Λ1Λ2 =
Λ2Λ1).

To summarize the above, we proceed to

MA2N =

[
Λ2 0
0 X

]
, (51)

where Λ2 is Hurwitz stable, X is nonsingular, and
Λ1Λ2 = Λ2Λ1. According to the result from (Narendra
and Balakrishnan, 1994), there is a common positive defi-
nite matrix P11 satisfying ΛT

i P11 + P11Λi < 0, i = 1, 2.
Then, with the definition

P1 = MT

[
P11 0
0 −In−r

]
N−1,

P2 = MT

[
P11 0
0 −X

]
N−1 ,

(52)

it is easy to confirm that

(MEN)T ((M−1)T P1N) =

[
P11 0
0 0

]
≥ 0 (53)

and

(MA1N)T ((M−1)T P1N)

+ ((M−1)T P1N)T (MA1N)

=

[
ΛT

1 P11 + P11Λ1 0
0 −In−r

]
< 0 ,

(MA2N)T ((M−1)T P2N)

+ ((M−1)T P2N)T (MA2N)

=

[
ΛT

2 P11 + P11Λ2 0
0 −XT X

]
< 0 .

(54)

Since P11 is common for i = 1, 2 and N is nonsingular,
(53) and (54) imply that the matrices in (52) satisfy the
conditions (12)–(14). �

3.3. Numerical example. In this subsection, we pro-
vide a simple example illustrating the main result.

Example 2. Consider a switched system composed of
two linear descriptor subsystems whose coefficient matri-
ces are

E =

⎡
⎢⎣

−2 −5 3
1 1 0
0 1 −1

⎤
⎥⎦ ,

A1 =

⎡
⎢⎣

−7 4 −12
0 −1 1
2 −1 3

⎤
⎥⎦ ,

A2 =

⎡
⎢⎣

1 7 −7
−1 −1 0

0 −2 2

⎤
⎥⎦ .

(55)

Note that these matrices do not satisfy the pairwise com-
mutation condition required in Lemma 2, and thus the sta-
bility under arbitrary switching cannot be guaranteed by
the result in (Zhai et al., 2009a) or other references.

To solve the nonstrict LMIs (12) and (13), we use the
procedure described in Remark 4. With the nonsingular
matrices

M =

⎡
⎢⎣

0 1 0
0 0 1

−1 −2 −3

⎤
⎥⎦ ,

N =

⎡
⎢⎣

2 −1 −1
−1 1 1
−1 0 1

⎤
⎥⎦ ,

(56)

the descriptor matrix E is decomposed satisfying (15).
Then, solving the strict LMI (24) for i = 1, 2 with re-
spect to P11 > 0, P i

21, P i
22 and computing the original Pi
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Fig. 1. Trajectories of x1, x2, x3 and norm convergence.

with

Pi = MT

[
P11 0
P i

21 P i
22

]
N−1,

we obtain

P1 =

⎡
⎢⎣

0.4344 0.1251 1.4708
1.9914 1.1964 3.1180
1.1268 0.5877 4.0235

⎤
⎥⎦ ,

P2 =

⎡
⎢⎣

1.7292 1.3588 2.6677
4.5810 3.6638 5.5118
5.0111 4.2888 7.6142

⎤
⎥⎦ .

(57)

It is easy to confirm that these matrices satisfy the condi-
tions (12) and (13). Therefore, according to Theorem 1,
the switched system is stable under arbitrary switching.

In fact, activating the two systems alternately with a
randomly generated time period series

1.0 , 0.8 , 0.5 , 0.2 , 0.6 , 0.3 , 1.4 , 0.9 , . . . (58)

(activating (E, A1) with the time period 1.0 and then
(E, A2) with the time period 0.8 and so on), the trajec-
tories of the system states (with the initial state x0 =
[3 − 2 − 1]T ) and the norm convergence are shown in
Fig. 1. Obviously, the switched system is stable. �

4. Stability analysis in the discrete-time
domain

Theorem 3. The switched system (9) is stable under ar-
bitrary switching if there are nonsingular symmetric ma-

trices Pi ∈ R
n×n satisfying for every i ∈ I

ET PiE ≥ 0, (59)

AT
i PiAi − ET PiE < 0, (60)

and, furthermore,

ET PiE = ET PjE , ∀i, j ∈ I, i �= j. (61)

Proof. Similarly as in the proof of Theorem 1, the condi-
tions (59) and (60) guarantee that each descriptor system
is stable (Xu and Yang, 1999), while the condition (61)
deals with switching from the i-th to the j-th subsystem.

Again, since the rank of E is r, we first find nonsin-
gular matrices M and N such that (15) holds. Then, from
(59) we obtain that

NT ET MT (M−1)T PiM
−1MEN

=

[
P i

11 0
0 0

]
≥ 0 , (62)

where

(M−1)T PiM
−1 �

=

[
P i

11 P i
12

(P i
12)

T P i
22

]
. (63)

Since Pi (and thus (M−1)T PiM
−1) is symmetric and

nonsingular, we obtain P i
11 > 0.

Again, from (61) we get

NT ET MT (M−1)T PiM
−1MEN

= NT ET MT (M−1)T PjM
−1MEN , (64)

and thus P i
11 = P j

11, ∀i, j ∈ I. From now on, we let
P i

11 = P11 for notational simplicity.
Define MAiN as in (22) and substitute it into the

equivalent inequality of (60) as

NT AT
i MT (M−1)T PiM

−1MAiN

−NT ET MT (M−1)T PiM
−1MEN < 0 (65)

to reach [
Λ11 Λ12

ΛT
12 Λ22

]
< 0 , (66)

where

Λ11 = (Āi
11)

T P11Ā
i
11 − P11 + (Āi

21)
T (P i

12)
T Āi

11

+(Āi
11)

T P i
12Ā

i
21 + (Āi

21)
T P i

22Ā
i
21,

Λ12 = (Āi
11)

T P11Ā
i
12 + (Āi

11)
T P i

12Ā
i
22

+(Āi
21)

T (P i
12)

T Āi
12 + (Āi

21)
T P i

22Ā
i
22,

Λ22 = (Āi
12)

T P11Ā
i
12 + (Āi

22)
T (P i

12)
T Āi

12

+(Āi
12)

T P i
12Ā

i
22 + (Āi

22)
T P i

22Ā
i
22 .

(67)
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At this point, we declare that Āi
22 is nonsingular from

Λ22 < 0. Otherwise, there is a nonzero vector v such
that Āi

22v = 0. Then, vT Λ22v < 0. However, by simple
calculation,

vT Λ22v = vT (Āi
12)

T P11Ā
i
12v ≥ 0 (68)

since P11 is positive definite. This results in a contradic-
tion.

Similarly as in the proof of Theorem 1, premultiply
(66) by [

Ir −(Āi
21)

T
(
(Āi

22)
−1

)T

0 In−r

]

and postmultiply the result by its transpose, and obtain[
(Ãi

11)
T P11Ã

i
11 − P11 ∗

ΛT
12 − Λ22(Āi

22)
−1Āi

21 Λ22

]
< 0 , (69)

where Ãi
11 is the same as in the proof of Theorem 1.

The remaining proof is almost the same as be-
fore. With the same nonsingular transformation x̄(k) =
N−1x(k) = [x̄T

1 (k) x̄T
2 (k)]T , x̄1(k) ∈ R

r, all the de-
scriptor subsystems in (9) take the form of

x̄1(k + 1) = Āi
11x̄1(k) + Āi

12x̄2(k),

0 = Āi
21x̄1(k) + Āi

22x̄2(k) ,
(70)

which is equivalent to

x̄1(k + 1) = Ãi
11x̄1(k) (71)

with x̄2(k) = −(Āi
22)

−1Āi
21x̄1(k).

Also, from (69) it is seen that

(Ãi
11)

T P11Ã
i
11 − P11 < 0 , (72)

which means that all Ãi
11’s are Schur stable, and a com-

mon positive definite matrix P11 exists for the stability of
all the subsystems in (71). Therefore, x̄1(k) converges
to zero exponentially under arbitrary switching. The part
x̄2(k) is dominated by x̄1(k) and thus also converges to
zero exponentially. This completes the proof. �

Remark 6. When E = I and all the subsystems
are Schur stable, the condition of Theorem 3 actually
requires a common positive definite matrix P satisfying
AT

i PAi − P < 0, ∀i ∈ I, which is exactly the existing
stability condition for switched linear systems composed
of x(k+1) = Aix(k) under arbitrary switching (Narendra
and Balakrishnan, 1994). Thus, Theorem 3 is an extension
of the existing result for switched linear state space sub-
systems in the discrete-time domain.

Remark 7. From the proof of Theorem 2 it can be seen
that x̄T

1 P11x̄1 is a common quadratic Lyapunov function

for all the subsystems (71). As in Remark 3, since the ex-
ponential convergence of x̄1 results in that of x̄2, we can
regard x̄T

1 P11x̄1 as a common quadratic Lyapunov func-
tion for the whole switched system. In fact, this is ratio-
nalized by the following equation:

xT ET PiEx

= (N−1x)T (MEN)T ((M−1)T PiM
−1)

×(MEN)(N−1x)

=

[
x̄1

x̄2

]T [
Ir 0
0 0

] [
P11 P i

12

(P i
12)T P i

22

]

×
[

Ir 0
0 0

][
x̄1

x̄2

]

= x̄T
1 P11x̄1. (73)

Therefore, although ET PiE is not positive definite and
neither is Vi(x) = xT ET PiEx, we can regard this Vi(x)
as a common quadratic Lyapunov function for all the de-
scriptor subsystems in the discrete-time domain. Simi-
larly as in Remark 3, if we consider (32) as a piecewise
Lyapunov function candidate for the switched system, the
condition (61) implies that there is no value jump when
switchings occur.

We also state results parallel with Corollary 1 and
Theorem 2, and omit the proofs since they can be proved
similarly as in the continuous-time case.

Corollary 2. Consider a switched system composed of
N linear descriptor subsystems:

Eix(k + 1) = Aix(k) , (74)

where Ei is the descriptor matrix of the i-th subsystem
and the notation is the same as before. Assume that all the
descriptor matrices have the same rank r and there are
common nonsingular matrices M and N such that (37)
holds. Then the switched system (74) is stable under arbi-
trary switching if there are symmetric nonsingular matri-
ces Pi ∈ R

n×n (i = 1, . . . ,N ) satisfying for each i ∈ I

ET
i PiEi ≥ 0 , AT

i PiAi − ET
i PiEi < 0 (75)

and furthermore

ET
i PiEi = ET

j PjEj , ∀i, j ∈ I , i �= j . (76)

Theorem 4. If all the descriptor subsystems in (9) are
stable, and furthermore the matrices E, A1, . . . , AN are
commutative pairwise, then there are nonsingular sym-
metric matrices Pi (i = 1, . . . ,N ) satisfying (59)–(61),
and thus the switched system is stable under arbitrary
switching.
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5. Concluding remarks

We have established a unified approach to stability analy-
sis for switched linear descriptor systems under arbitrary
switching in both continuous-time and discrete-time do-
mains. More precisely, we have shown that if there is
a common quadratic Lyapunov function for the stability
of all subsystems, then the switched system is stable un-
der arbitrary switching. As has been mentioned in the
remarks, the common quadratic Lyapunov functions pro-
posed are not positive definite with respect to all states,
but they actually play the role of Lyapunov functions as
in the classical Lyapunov stability theory. The approach
in this paper is unified in the sense that it is valid for both
continuous-time and discrete-time systems, and it is a nat-
ural extension of the existing approach for switched lin-
ear state space systems. We also note that the approach
is unified since it can be extended to L2 gain analysis of
switched linear descriptor systems by modifying the ma-
trix inequalities correspondingly (Zhai and Xu, 2009).
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