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This paper presents an approximate method of solving the fractional (in the time variable) equation which describes the
processes lying between heat and wave behavior. The approximation consists in the application of a finite subspace of an
infinite basis in the time variable (Galerkin method) and discretization in space variables. In the final step, a large-scale
system of linear equations with a non-symmetric matrix is solved with the use of the iterative GMRES method.
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1. Introduction

Several physical phenomena show anomalous transport
properties. Generally, diffusive properties are classified as
normal if their variance grows linearly in time and as ano-
malous if the variance growth is different from the line-
ar one. In recent years, there has been an increasing in-
terest in dynamical processes occuring in systems exhi-
biting anomalous diffusive behavior. Such systems ran-
ge from physics and chemistry to biology and medici-
ne (Meltzer and Klafter, 2000). Dispersion in complex
plasmas (Ratynskaia et al., 2006), self-diffusion of sur-
factant molecules (Gambin et al., 2005), light in a cold
atomic cloud (Labeyrie et al., 2003) and donor-acceptor
electron pairs within a protein (Kou and Sunney Xie,
2004) are examples of the more recent experimental evi-
dences. Several papers (Goychuk et al., 2006; Heinsalu
et al., 2006; Heinsalu et al., 2009) consider the fractional
Fokker-Planck equation both in an analytical and a nume-
rical approach. The fractional time approach is conside-
red also in control theory, see, e.g., (Kaczorek, 2008; Gu-
ermah et al., 2008). An interesting numerical approach
to solving partial differential equations of fractional or-
ders in space was presented in (Ciesielski and Leszczyń-
ski, 2006).

In most of applications related to fractional differen-
tial or fractional integro-differential equations, the nume-
rical methods are limited to 1+1 (time+space) dimensions.
Our paper presents a different method for solving a frac-
tional integro-differential equation which can handle more
dimensional cases within a good approximation. The me-
thod is limited to cases when the initial condition u(x, 0)
is smooth enough with respect to space variables x. In
such cases it works also for (1+2) and (1+3) dimensions.

We consider the following Volterra equation:

u(x, t) = u(x, 0) +

t∫

0

a(t − s)Δu(x, s) ds, (1)

where x ∈ R
d, t > 0, a(t) = tα−1/Γ(α), Γ is the gamma

function, α ∈ [1, 2] and Δ is the Laplace operator.
Because of the form of the kernel function a, the inte-

gral in Eqn. (1) is a Riemann-Liouville fractional integral
operator (Bazhlekova, 2001),

Jα
t f(t) :=

t∫

0

1
Γ(α)

(t − s)α−1f(s) ds.
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Applying the Caputo fractional derivative operator to (1),
one obtains a fractional differential equation,

∂α

∂tα
u(x, t) = Δu(x, t), (2)

where α ∈ [1, 2], x ∈ R
d, t > 0 and Δ is the Laplace

operator.
For particular cases when α = 1 and α = 2, taking

appropriate initial conditions, (2) is the heat and the wave
equation, respectively. For α ∈ (1, 2), (2) interpolates the
heat and the wave equations.

Equation (1) was discussed by Fujita (1990) and
Schneider and Wyss (1989). Fujita found the analytical
solution u(x, t) to (1) in terms of fundamental solutions
using Mittag-Leffler functions. Schneider and Wyss ap-
plied the Green function method and obtained the ana-
lytical form of the solution in terms of Wright functions
(which are related to Mittag-Leffler functions). Both ap-
proaches are limited to a (1 + 1)-dimensional case and
practically non-computable.

2. Construction of the numerical solution

The numerical approach described below follows in gene-
ral that described in (Rozmej and Karczewska, 2005).

Let there be given a set of real orthonormal functions
{φj : j = 1, 2, . . . ,∞} on the interval [0, t], spanning a
Hilbert space H with an inner product

〈f, g〉 :=

t∫

0

f(τ)g(τ)W (τ) dτ,

where W is a weight function.
An approximate solution to (1) is considered an ele-

ment of the subspace Hn spanned by the first n basis func-
tions {φk : k = 1, 2, . . . , n},

un(x, t) =
n∑

k=1

ck(x)φk(t). (3)

Inserting (3) into (1), one obtains

un(x, t)

= u(x, 0)+

t∫

0

a(t−s)Δun(x, s) ds+εn(x, t), (4)

where εn denotes the approximation error. From (3) and
(4), we get the following form of the error function:

εn(x, t) =
n∑

k=1

ck(x)φk(t) − u(x, 0)

−
t∫

0

a(t − s)
n∑

k=1

d2

dx2
ck(x)φk(s) ds.

(5)

Definition 1. The Galerkin approximation of the solution
to Eqn. (1) is a function un ∈ Hn such that εn ⊥ Hn, i.e.,

〈εn(x, t), φk(t)〉 = 0, k = 1, 2, . . . , n.

From Definition 1 and (5), we obtain

0 =

t∫

0

[
n∑

k=1

ck(x)φk(τ)

]
φj(τ)W (τ) dτ

−
t∫

0

u(x, 0)φj(τ)W (τ) dτ

−
t∫

0

⎡
⎣

τ∫

0

a(τ−s)
n∑

k=1

d2

dx2
ck(x)φk(s) ds

⎤
⎦

× φj(τ)W (τ) dτ.

for j = 1, 2, . . . , n, which means that

t∫

0

u(x, 0)φj(τ)W (τ) dτ

=

t∫

0

[
n∑

k=1

ck(x)φk(τ)

]
φj(τ)W (τ) dτ

−
t∫

0

⎡
⎣

τ∫

0

a(τ−s)
n∑

k=1

d2

dx2
ck(x)φk(s) ds

⎤
⎦

×φj(τ)W (τ)dτ.

The above equations may be written in a shortened form,

gj(x) = cj(x) −
n∑

k=1

ajk
d2

dx2
ck(x), (6)

where

ajk =

t∫

0

⎡
⎣

τ∫

0

a(τ − s)φk(s) ds

⎤
⎦ φj(τ)W (τ) dτ

and

gj(x) = u(x, 0)

t∫

0

φj(τ)W (τ) dτ,

j = 1, 2, . . . , n. In general, ajk �= akj .
Equations (6) describe a set of coupled differen-

tial equations for the coefficient functions ck(x), k =
1, 2, . . . , n determining the approximate solution (3).

To solve the set (6), we use standard, centered three-
point finite difference approximation to the second deriva-
tive (Laplacian).
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In one spatial dimension one obtains (6) as

gj(xi) = cj(xi) +
1
h2

n∑
k=1

ajk

×
[
− ck(xi−1) + 2ck(xi) − ck(xi+1)

]
,

(7)

where there holds xi − xi−1 = h, j = 1, 2, . . . , n, and
i = 1, 2, . . . , m.

For two spatial dimensions and a homogenous grid,
(6) can be written as

gj(xi, yl)=cj(xi, yl) +
1
h2

n∑
k=1

ajk

×
[
− ck(xi−1, yl) − ck(xi, yl−1)

+ 4ck(xi, yl) − ck(xi+1, yl)

− ck(xi, yl+1)
]
,

(8)

where xi − xi−1 = yl − yl−1 = h and j = 1, 2, . . . , n,
i = 1, 2, . . . , m, l = 1, 2, . . . , m.

The sets (7) and (8) can be presented in the matrix
form

g = Ac, (9)

where the vectors g, c and the matrix A have a block struc-
ture,

g =

⎛
⎜⎜⎜⎝

G1

G2

...
Gn

⎞
⎟⎟⎟⎠ , c =

⎛
⎜⎜⎜⎝

C1

C2

...
Cn

⎞
⎟⎟⎟⎠ ,

A =

⎛
⎜⎜⎜⎝

[A11] · · · [A1n]
[A21] · · · [A2n]

...
. . .

...
[An1] · · · [Ann]

⎞
⎟⎟⎟⎠ . (10)

In the one-dimensional case (7), for (10) we have

GT
j = (gj(x1), gj(x2), . . . , gj(xm))

and
CT

j = (cj(x1), cj(x2), . . . , cj(xm)) ,

where GT
j and CT

j stand for the transposes of vectors
Gj and Cj , respectively. Blocks [Ajk] have the following
structure:

[Ajk] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μjk ηjk 0 · · · 0 θjk

ηjk μjk ηjk · · · 0 0
0 ηjk μjk · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · μjk ηjk

θjk 0 0 · · · ηjk μjk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

m×m

,

where

μjk = δjk +
2
h2

ajk,

ηjk = − 1
h2

ajk,

and

θjk =
{ − 1

h2 ajk for periodic boundary conditions,
0 for closed boundary conditions.

The vectors g and c are nm-dimensional, and the ma-
trix A is nm × nm-dimensional. Moreover, the matrix A
is sparse with at most n2(3m − 2) (closed boundary con-
ditions) or 3n2m (periodic boundary conditions) non-zero
elements. In the two-dimensional case (8), we have

GT
j =

(
gj(x1, y1), gj(x1, y2), . . . , gj(x1, ym),

gj(x2, y1), gj(x2, y2), . . . , gj(xm, ym)
)

and

CT
j =

(
cj(x1, y1), cj(x1, y2), . . . , cj(x1, ym),

cj(x2, y1), cj(x2, y2), . . . , cj(xm, ym)
)
.

Each of blocks [Ajk] is a matrix in the form of

[Ajk]=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(αjk)(βjk) (0) · · · (0) (0) (γjk)
(βjk)(αjk)(βjk)· · · (0) (0) (0)
(0) (βjk)(αjk)· · · (0) (0) (0)

...
...

...
. . .

...
...

...
(0) (0) (0) · · ·(αjk)(βjk) (0)
(0) (0) (0) · · ·(βjk)(αjk) (βjk)

(γjk) (0) (0) · · · (0) (βjk) (αjk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×m

,

which consists of smaller blocks, where

(γjk) =
{

(βjk) for periodic boundary conditions,
(0) for closed boundary conditions.

Block (0) is an m × m-dimensional zero matrix,
block (αjk) is in the form of

(αjk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μjk ηjk 0 · · · 0 θjk

ηjk μjk ηjk · · · 0 0
0 ηjk μjk · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · μjk ηjk

θjk 0 0 · · · ηjk μjk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

m×m

,

where

μjk = δjk +
4
h2

ajk,

ηjk = − 1
h2

ajk,
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θjk =
{ − 1

h2 ajk for periodic boundary conditions,
0 for closed boundary conditions,

Block (βjk) is in the diagonal form,

(βjk)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
h2 ajk 0 0 · · · 0 0 0

0 −1
h2 ajk 0 · · · 0 0 0

0 0 −1
h2 ajk· · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · ·−1

h2 ajk 0 0
0 0 0 · · · 0 −1

h2 ajk 0
0 0 0 · · · 0 0 −1

h2 ajk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×m.

The vectors g and c are nm2-dimensional, and the ma-
trix A is nm2 × nm2-dimensional. As in the previous ca-
se, the matrix A is sparse. It has at most n2(5m − 4)m
(closed boundary conditions) or 5n2m2 (periodic boun-
dary conditions) non-zero elements. As basis functions
{φj : j = 1, 2, . . . ,∞} one can choose any polynomials
orthogonal with respect to some weight function W .

In our numerical scheme, we use Legendre polyno-
mials, which are orthogonal on the interval [−1, 1] with
respect to the weight function W ≡ 1. We obtain ortho-
normality on the interval [0, t] by scaling the argument of
the function and using a normalisation factor, i.e.,

φj(x) =

√
2k − 1

t
Pk−1

(
2x

t
− 1

)
, (11)

where {Pk : k = 0, 1, 2, . . . ,∞} are Legendre polyno-
mials.

The matrix A of the linear system (9) is sparse,
which, taken in conjunction with the large matrix size,
suggests the use of iterative methods for solving linear
systems. Morover, the matrix A is non-symmetric. Our
numerical results were obtained with two different iterati-
ve methods. The first one, GMRES (Generalized Minimal
Resiudal method) (Saad and Schultz, 1986), approxima-
tes the solution by the vector with a minimal residual in
a Krylov subspace found with the use of the Arnoldi ite-
ration. The second one, Bi-CGSTAB (BiConjugate Gra-
dient Stabilized method) (Van der Vorst, 1992), was deve-
loped to solve non-symmetric linear systems. It avoids ir-
regular convergence patterns of CGS (Conjugate Gradient
Squared method) (Barrett et al., 1994). In both methods
a suitable preconditioning is necessary. For our purposes,
GMRES appeared more efficient. It was converging faster
and usually required fewer iterations than the Bi-CGSTAB
method.

For three spatial dimensions, vectors g and c in (9)
become nm3-dimensional. The matrix A preserves its
block nested structure (10) but with one more level of ne-
sting. The number of the non-zero elements of the matrix
A reaches the order of 7n2m3. Therefore, the numerical
solution for the d = 3 case requires much more computer
power than for one and two-dimensional cases.
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Fig. 1. Numerical solutions to the Volterra equation (1) in one
spatial dimension: α = 1.5, t ∈ [0, 6], closed boundary
conditions.
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Fig. 2. Numerical solutions to the Volterra equation (1) in one
spatial dimension: α = 1.85, t ∈ [0, 6], closed boundary
conditions.

3. Examples of numerical results

Analytical solutions to fractional equations are of great
importance but they are hardly computable. In most ca-
ses, to obtain a solution to a particular problem one has
to apply suitable numerical methods. In (Rozmej and Kar-
czewska, 2005) we showed that for the cases when ana-
lytical solutions are known in terms of elementary func-
tions (1+1-dimensional cases with α = 1 and α = 2), our
approximate numerical solution reproduces the analytical
ones with high accuracy.

We present numerical results to the Volterra equation
(1) in three cases: in one spatial dimension with closed
boundary conditions (Figs. 1 and 2) and in two spatial di-
mensions with both closed (Figs. 3 and 4) and periodic
boundary conditions (Figs. 5 and 6).

For the presentation of the results, we choose as ini-
tial conditions the Fermi distribution:

u(�r, 0) =
1

1 + exp
(r − r0

a

) , (12)
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where r = (
∑d

i=1 x2
i )

1/2 and d is the space dimension.
The constants in (12) are taken as r0 = 3, a = 0.3.

In Table 1, parameters m (the number of grid points
in space variables) and n (the number of basis functions)
used to obtain numerical results are presented. In princi-
ple, when the basis of orthonormal functions is richer, the
numerical results are more precise. A similar argument ap-
plies to the number of grid points taken in the problem di-
scretization. However, the growing size of matrices (as the
result of the increase in the number of grid points and ba-
sis functions) results in an incrementation in the number of
computer operations and in the accumulation of round-off
errors. Comparing Figs. 3 and 4 or Figs. 5 and 6, one can
notice that for the 1+2-dimensional case the increase in α
changes the time evolution from diffussion-like behavior
to wave-like one. The comparison of the results obtained
with the same α (for instance, Figs. 3 and 5 or Figs. 4 and
6) shows the influence of ‘waves’ incoming to the given
space cell from the neighbours.

The method used in the paper has some limitations.
Numerical approximation of the second derivatives (La-
placian) can be good enough when the initial condition
u(x, 0) is a relatively smooth function, i.e., it varies unra-
pidly with respect to space variables within a range of grid
points.

Figures 1 and 2 show the time evolution for the frac-
tional time derivative of the order α = 1.5 and α = 1.85,
respectively. One can clearly see that the system evolves in
a way which exhibits wave motion with a diffusive charac-
ter. When α varies towards 1, one obtains more diffusion-
like evolution, whereas for α closer to 2, wave-like evo-
lution becomes dominant. The closed (or free) bounda-
ry conditions mean that the initial system can in princi-
ple evolve to infinity in the space variable, where initially
u(x, 0) = 0. In the presented figures, however, the solu-
tion is cut off to the range of the space variable where the
solutions differs from zero substantially.

4. Approximation errors

As mentioned earlier, the analytic form of the solution
u(x, t) is known only for one space dimension (Fujita,
1990; Schneider and Wyss, 1989). However, the analyti-
cal solutions for cases different from α = 1 and α = 2,
given in terms of Mittag-Leffler functions, are practically
non-computable. To estimate the quality of the numerical
solutions, several tests were performed. For d = 1 and

Table 1. Parameters.

Case Grid size Basis functions

d = 1 121 21
d = 2, closed b. c. 101 × 101 21

d = 2, periodic b. c. 71 × 71 21
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Fig. 3. Numerical solutions to the Volterra equation (1) in two
spatial dimensions at chosen time steps: α = 1.5, closed
boundary conditions.

α = 1 and α = 1, we can compare the analytical solu-
tion with the numerical one obtained from (3) and (9). As
an error estimate, we define the maximum absolute value
of the difference between the exact analytical solution and
the approximate numerical one,

Δun,m(t) = max
∣∣uanal

n,m(xi, t) − unum
n,m (xi, t)

∣∣m
i=1

,

where the maximum is taken over all grid points xi. For
d = 1 and α = 1 and 2, n > 20, m > 100, t ≤ 6, the error
estimate Δun,m(t) was always less than 10−5 − 10−6.

For cases when we have to rely only on the appro-
ximate numerical solutions (1 < α < 2), we procede in
a different way. One can expect that when the number of
basis functions (n in (3)) or the size of grid (m) increases,
better approximation of the solution is obtained. In order
to show that trend, we define the absolute value of the dif-
ference between the two approximate solutions taken for
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Fig. 4. Numerical solutions to the Volterra equation (1) in two
spatial dimensions at chosen time steps: α = 1.85, clo-
sed boundary conditions.

different basis subspaces and the same grid size,

Δun,M (t)

= max
∣∣unum

n,M (xi, t)−unum
n−2,M(xi, t)

∣∣M
i=1

, (13)

where M = md. In Fig. 7, the error estimate Δun,M (t) is
presented for the one-dimensional case (d = 1), α = 1.5,
grid size m = 121 and t = 1.8 in a semilogarithmic plot.
The two-dimensional case (d = 2), m = 101 and the
same values of α and t is displayed in Fig. 8. In Figs. 7
and 8, the error estimates exhibit almost an exponential
decrease with the growth of the basis subspace dimension
n in (3).

Comparing the approximate solutions for different
grid sizes is a little more difficult because their values are
given at different points. Therefore, in order to compare
them, we define the error estimate in the following way:

Δun,m(t)

= max
∣∣unum

n,m (xi, t)−ũnum
n,m′(xi, t)

∣∣M
i=1

. (14)
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Fig. 5. Numerical solutions to the Volterra equation (1) in two
spatial dimensions at chosen time steps: α = 1.5, perio-
dic boundary conditions.

In (14), ũnum
n,m′(xi, t) stands for the value at the point of

the bigger grid m obtained from the solution on the smal-
ler grid m′ by cubic spline interpolation. Figure 9 shows
an example of the decrease in the error estimate Δun,m(t)
for the dimension d = 2. For the one-dimensional calcula-
tions (not shown here), the results exhibit the same beha-
viour. We see that for the fixed basis subspace the increase
in the grid size leads to a substantial decrease in the error
estimate. That decrease is, for larger values of m, close to
an exponential decrease.

That almost exponential decrease in the error esti-
mate as the function of the number of the basis functions
(with a fixed grid) or as the the function of the grid size
(with a fixed basis) suggests that in principle one can ob-
tain the numerical solution with arbitrary precision cho-
osing the appropriate basis and grid sizes. However, the
bigger the basis and the grid size, the larger the number
of the computer operations necessary to obtain the solu-
tion. To avoid the accumulation of round-off errors with
an increase in computer operations, one needs to apply hi-
gher and higher precision (longer computer word), which
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Fig. 6. Numerical solutions to the Volterra equation (1) in two
spatial dimensions at chosen time steps: α = 1.85, pe-
riodic boundary conditions.
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Fig. 7. Error estimate (13), Δun,M (t): the maximum difference
between approximate solutions for which the number of
basis functions differs by 2 as a function of n for one
spatial dimension d = 1. The case m = 121, α = 1.5
and t = 1.8 is displayed.
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Fig. 8. Same as in Fig. 7 but for two spatial dimensions d = 2

and grid size m = 101.
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Fig. 9. Error estimate (14), Δun,m(t): the maximum differen-
ce between consecutive results obtained for grid sizes m
and m′ = m − 10 in two spatial dimensions. The case
n = 21 basis functions, α = 1.5 and t = 1.8 is presen-
ted.

results in much longer execution time and demands much
more computer power. In practice, a reasonable compro-
mise between the precision and computational effort is
chosen for a given problem.

The results for the 3-dimensional case show similar
qualitative behaviour. We do not present those here becau-
se the computing time grows substantialy. The case d = 3
and m = 21 requires the same order of computer opera-
tions as the case d = 2, m = 101 with the same n. The
test computations made for grid sizes up to m = 21 and
the number of basis functions up to n = 20 gave trends
which qualitatively agree with those for d = 2.

5. Conclusions

We presented a succesful numerical method of solving a
class of Volterra equations (1) which are equivalent to dif-
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ferential equations with fractional time (2). From our re-
sults, the following conclusions can be drawn:

• For initial conditions spatially smooth enough and a
reasonable choice of the (n, m) parameters, the er-
rors of the approximate numerical solution may be
kept on a desired level.

• Our method works well for d = 1 and d = 2 spatial
dimensions. However, the larger d, the more compu-
ter power is necessary. Test calculations indicate that
the metod should work for d = 3, too.

References
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Don-

garra, J., Eijkhout, V., Pozo, R., Romine, C. and der Vorst,
H.V. (1994). Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition, SIAM,
Philadelphia, PA.

Bazhlekova, E. (2001). Fractional Evolution Equations in Ba-
nach Space, Ph.D. dissertation, Eindhoven University of
Technology, Eindhoven.
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