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In this work, we introduce and examine the notion of domination for a class of linear distributed systems. This consists in
studying the possibility to make a comparison between input or output operators. We give the main algebraic properties of
such relations, as well as characterizations of exact and weak domination. We also study the case of actuators, and various
situations are examined. Applications and illustrative examples are also given. By duality, we extend this study to observed
systems. We obtain similar results and properties, and the case of sensors is equally examined.
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1. Introduction

Controllability and observability are two dual notions
which are very important in systems theory and where the
choice of input and output operators plays a major role.
In this area, the literature is very rich. Characterization
results on the notions of weak and exact controllability
and observability, as well as strategic actuators and sen-
sors, are established (Afifi and El Jai, 1994; 1995; Afifi
et al., 2002a; 2002b; 2008a; Berrahmoune, 1984; Curta-
in and Pritchard, 1978; Curtain and Zwart, 1995; El Jai
and Pritchard, 1987; Jacob and Zwart, 2001; Lions, 1968;
1988; Qarai et al., 2008; Uciński and Korbicz, 1990; Zer-
rik, 1993; Zerrik et al., 2007). But in almost all these
works, the problems considered are focused on the possi-
bility to reach a desired state or reconstruct the state of
the examined system, i.e., on studying if a system is (or
not) controllable or observable, but without comparison
between the input or output parameters themselves.

This work concerns control and observation operator
domination for a class of distributed systems. It can be
considered as a natural extension of previous works on
the notions of controllability and observability.

We consider, without loss of generality, a linear di-
stributed system described by the following state equ-
ation:

(S)
{

ż(t) = Az(t) + Bu(t),
z(0) = z0,

(1)

where A generates a strongly continuous semi-group
(s.c.s.g.) (S(t))t≥0, B ∈ L(U, Z), U and Z are respec-
tively the control and state (Hilbert) spaces.

The system (1) is augmented by the following output
equation:

y(t) = Cz(t), (2)

where C ∈ L(Z, Y ), Y is the observation space (a Hilbert
space). The state z(t) of the system at time t is given by

z(t) = S(t)z0 + Ht(B)u, (3)

where

Ht(B)u =
∫ t

0

S(t − s)Bu(s) ds

and the observation by

y(t) = CS(t)z0 + CHt(B)u. (4)

For the controlled system (1), we study the behavior
of the reached space Im(HT (B)) with respect to the ope-
rator B and the possibility of comparing input operators
or actuators.

Concerning observed systems, similar relations are
introduced for the output operators or sensors.
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This work is organized as follows: In Section 2, we
introduce and characterize the exact and weak domina-
tions. Specific properties of these notions are presented.
The case of systems excited by actuators and various si-
tuations are also examined. Then, in Section 3, we give
an application to a diffusion system and illustrative exam-
ples. In the last section, we introduce similar notions for
observed systems. By a duality result, we deduce, from
the previous sections, analogous results and properties.

Let us note that, with a convenient choice of control
and observation spaces, the obtained results can be exten-
ded to the case where the operators B and C are unboun-
ded.

2. Case of controlled systems

2.1. Problem statement and definitions. We consider
the following linear distributed systems:

(S1)
{

ż1(t) = Az1(t) + B1u1(t), 0 < t < T,
z1(0) = z1,0 ∈ Z,

(5)

(S2)
{

ż2(t) = Az2(t) + B2u2(t), 0 < t < T,
z2(0) = z2,0 ∈ Z,

(6)

where A is a linear operator generating a strongly conti-
nuous semi-group (S(t))t≥0 on the state space Z , B1 ∈
L(U1, Z), B2 ∈ L(U2, Z), u1 ∈ L2(0, T ; U1) and u2 ∈
L2(0, T ; U2); U1 and U2 are two control spaces (Hilbert
spaces).

Without loss of generality, one can assume that
z1,0 = z2,0 = z0. In this case, the states of the systems
(S1) and (S2) at the final time T are respectively given by

z1(T ) = S(T )z0 + H1u1, (7)

z2(T ) = S(T )z0 + H2u2, (8)

where H1 and H2 are the operators defined by

H1 :

⎧⎪⎪⎨
⎪⎪⎩

L2(0, T ; U1) −→ Z,

u1 −→
∫ T

0

S(T − s)B1u1(s) ds,

(9)
and

H2 :

⎧⎪⎪⎨
⎪⎪⎩

L2(0, T ; U2) −→ Z,

u2 −→
∫ T

0

S(T − s)B2u2(s) ds.

(10)

Definition 1.
1. We say that the system (S1) dominates (S2) (or that B1

dominates B2) exactly on [0, T ], if Im(H2) ⊂ Im(H1).
2. We say that the system (S1) dominates (S2) (or that B1

dominates B2) weakly on [0, T ], if ImH2 ⊂ ImH1.

In these situations, we write, respectively, (S2) ≤
(S1) (or B2 ≤ B1) and (S2) � (S1) (or B2 � B1).

Remark 1.
1. Let us note that the relation of exact or weak domina-
tion for systems having the same dynamics A is transiti-
ve, reflexive but not symmetric, nor antisymmetric. Hen-
ce, for example, for any operator B �= 0, we have ImB =
Im(2B), even if B �= 2B.

However, in exact as well as weak cases, one can de-
fine equivalence relations (and hence equivalence classes)
respectively as follows:

B1Rex B2 ⇐⇒ Im(H1) = Im(H2)

and

B1Rwe B2 ⇐⇒ Im(H1) = Im(H2).

2. Exact domination implies weak one. The converse is
not true (this will be shown later).
3. In the case where (S1) is exactly (respectively, weakly)
controllable on [0, T ], i.e., ImH1 = Z (resp. ImH1 = Z),
then for any operator B2, the system (S2) is dominated
exactly (resp. weakly) by (S1).
4. In fact, one can also consider a single system (S) with
two inputs as follows:

(S)
{

ż(t) = Az(t) + B1u1(t) + B2u2(t), 0 < t < T,
z(0) = z0.

(11)
In this case, domination concerns only the control opera-
tors B1 and B2. The definitions and all the results remain
practically the same.
5. In this work, we consider systems with the same dy-
namics A, but the obtained results can be extended easi-
ly to the case where the systems (S1) and (S2) have re-
spectively dynamics A1 and A2, generating, on the state
space Z , strongly continuous semi-groups (S1(t))t≥0 and
(S2(t))t≥0.

2.2. Characterizations. We have the following cha-
racterization result concerning the exact domination.

Proposition 1. The following properties are equivalent:
(a) The system (S1) dominates (S2) exactly on [0, T ].
(b) For any u2 ∈ L2(0, T ; U2), there exists a control u1 ∈
L2(0, T ; U1) such that

H1u1 + H2u2 = 0.

(c) There exists γ > 0 such that, for any θ ∈ Z , we have

‖B∗
2S∗(T − ·)θ‖L2(0,T ;U2)

≤ γ ‖B∗
1S∗(T − ·)θ‖L2(0,T ;U1). (12)
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Proof. It follows from the definition and from the fact that,
if X , Y and Z are reflexive Banach spaces, P ∈ L(X, Z)
and Q ∈ L(Y, Z), then (Curtain and Pritchard, 1978)

Im(P ) ⊂ Im(Q)

if and only if there exists γ > 0 such that, for any z∗ ∈ Z ′,
we have

‖P ∗z∗‖X′ ≤ γ ‖Q∗z∗‖Y ′ .

�
We give hereafter a characterization of weak (or ap-

proximate) domination.

Proposition 2. (S1) dominates (S2) weakly, if and only if

ker(B∗
1S∗(·)) ⊂ ker(B∗

2S∗(·))
Proof. It results from the definition and the fact that
ImH2 ⊂ ImH1 if and only if ker(H1)∗ ⊂ ker(H2)∗.

�

2.3. Case of actuators. In what follows, we assume
that Z = L2(Ω) and that A is self-adjoint and has a com-
plete orthonormal system of eigenfunctions {ϕnj , j =
1, . . . , rn; n ∈ N

∗} associated with the real eigenvalues
(λn)n≥1 such that λ1 > λ2 > λ3 > . . . , where rn is the
multiplicity of λn. In this case,

Az =
+∞∑
n=1

λn

rn∑
j=1

〈z, ϕnj〉ϕnj (13)

and the s.c.s.g. (S(t))t≥0 generated by A is given by

S(t)z =
+∞∑
n=1

eλnt
rn∑

j=1

〈z, ϕnj〉ϕnj . (14)

In the case where (S1) is excited by p zone actu-
ators (Ωi, gi)1≤i≤p , we have U1 = R

p and (Berrahmo-
une, 1984; El Jai and Pritchard, 1987)

B1 :

⎧⎪⎨
⎪⎩

R
p −→ L2(Ω),

α −→ Bα =
p∑

i=1

αigi,
(15)

where α = (α1, . . . , αp)tr ∈ R
p and gi ∈ L2(Ω) ; Ωi =

supp(gi) ⊂ Ω. We have

B∗
1z = (〈g1, z〉, . . . , 〈gp, z〉)tr.

Analogously, if (S2) is excited by q zone actuators
(Di, hi)1≤i≤q , we have U1 = R

q and

B2 :

⎧⎪⎨
⎪⎩

R
q −→ L2(Ω),

β −→ B2β =
q∑

i=1

βigi,
(16)

with β = (β1, . . . , βq)tr ∈ R
q , hi ∈ L2(Ω), Di =

supp(hi) ⊂ Ω and

B∗
2z = (〈h1, z〉, . . . , 〈hq, z〉)tr.

We have the following characterization of the exact
domination, resulting from Proposition 1.

Proposition 3. The system (S1) dominates (S2) exactly if
and only if there exists γ > 0 such that, for any z ∈ Z =
L2(Ω), we have

‖ (
+∞∑
n=1

eλnt
rn∑

j=1

〈z, ϕnj〉〈hi, ϕnj〉)1≤i≤q‖L2(0,T ;Rq)

≤ γ ‖(
+∞∑
n=1

eλnt
rn∑

j=1

〈z, ϕnj〉〈gi, ϕnj〉)1≤i≤p‖L2(0,T ;Rp).

(17)
We give hereafter a necessary condition concerning

exact domination.

Proposition 4. If the system (S1) dominates (S2) exactly,
then there exists a real γ > 0 such that, for any n ∈ N

∗

and j ∈ {1, . . . , rn}, we have

‖ (〈hi, ϕnj〉)1≤i≤q‖Rq ≤ γ ‖(〈gi, ϕnj〉)1≤i≤p‖Rp .
(18)

Proof. Using the previous proposition, if (S1) dominates
(S2) exactly, then there exists γ > 0 satisfying the inequ-
ality (17) for any z ∈ Z . For z = ϕnj in this inequality,
we obtain

‖ eλnt(〈hi, ϕnj〉)1≤i≤q‖L2(0,T ;Rq)

≤ γ ‖(eλnt〈gi, ϕnj〉)1≤i≤p‖L2(0,T ;Rp)

or, equivalently,

‖ eλnt‖L2(0,T ;R) ‖ (〈hi, ϕnj〉)1≤i≤q‖Rq

≤ γ ‖eλnt‖L2(0,T ;R)‖(〈gi, ϕnj〉)1≤i≤p‖Rp .

Since ‖ eλnt‖L2(0,T ;R) > 0, we have

‖(〈hi, ϕnj〉)1≤i≤q‖Rq ≤ γ ‖(〈gi, ϕnj〉)1≤i≤p‖Rp .

�
An immediate consequence of Proposition 4 is that if

〈gi, ϕn0j〉 = 0, 1 ≤ i ≤ p

for some n0 ∈ N
∗ and j ∈ {1, . . . , rn0}, then

〈hi, ϕn0j〉 = 0, 1 ≤ i ≤ q.

In some situations, this can be used to show that (or
to reconstruct) a system (which) is not dominated exactly
by another one. Concerning weak domination, we give the
following definition.



422 L. Afifi et al.

Definition 2. If B2 � B1, we say that (Di, gi)1≤i≤p are
more strategic than (Ωj , hj)1≤j≤q .

Now, let us show the following result, which leads to
matrix characterization of weak domination.

Lemma 1. We have

kerB∗
1S∗(·)

= {z ∈ Z | (〈z, ϕnj〉)j=1,rn ∈ kerMn, ∀n ≥ 1},

where Mn is the controllability matrix defined by

Mn = (〈gi, ϕnj〉)1≤i≤p;1≤j≤rn . (19)

Proof. We have

B∗
1S∗(t)z = (

+∞∑
n=1

eλnt
rn∑

j=1

〈z, ϕnj〉〈gi, ϕnj〉)1≤i≤p.

(20)
Then z ∈ kerB∗

1S∗(·) if and only if

+∞∑
n=1

eλnt
rn∑

j=1

〈z, ϕnj〉〈gi, ϕnj〉 = 0, ∀i ∈ {1, . . . , n}.

(21)
Using the analyticity property, this is equivalent to

rn∑
j=1

〈z, ϕnj〉〈gi, ϕnj〉 = 0,

∀n ≥ 1, ∀i ∈ {1, . . . , p},

i.e.,

∀n ∈ N
∗, (〈z, ϕnj〉)1≤j≤rn ∈ kerMn.

�
It is well known that the actuators (Di, gi)1≤i≤p are

strategic (i.e., the corresponding system (S1) is weakly
controllable) if and only if

rank(Mn) = rn, ∀n ≥ 1.

We have the same results concerning (S2) by repla-
cing Mn with the matrix Gn defined by

Gn = (〈hi, ϕnj〉)1≤i≤q;1≤j≤rn . (22)

The following proposition gives a necessary and suf-
ficient condition for weak domination.

Proposition 5. The system (S1) dominates (S2) weakly if
and only if

kerMn ⊂ kerGn, ∀n ∈ N
∗.

Proof. Assume that kerMn ⊂ kerGn, for any n ∈ N
∗.

Using Lemma 1, we have
z ∈ kerB∗

1S∗(·)
⇔ ∀n ∈ N

∗, (〈z, ϕnj〉)j=1,rn ∈ kerMn

⇒ ∀n ∈ N
∗, (〈z, ϕnj〉)j=1,rn ∈ kerGn

⇒ z ∈ ker(B∗
2S∗(·)).

Conversely, if

∃m ∈ N
∗ such that kerMm ⊂/ kerGm,

then there exist (αmj)1≤j≤rm ∈ R
rm which satisfy

(αmj)1≤j≤rm ∈ kerMm\ kerGm. For

z =
rn∑

j=1

αmjϕmj , (23)

we have

B∗
1S∗(t)z = (eλmt

rm∑
j=1

αnj〈gi, ϕmj〉)1≤i≤p = 0Rp

and

B∗
2S∗(t)z = (eλmt

rm∑
j=1

αnj〈hi, ϕmj〉)1≤i≤q �= 0Rq .

Consequently,

ker(B∗
1S∗(·)) ⊂/ ker(B∗

2S∗(·)).

�
The above result is a practical tool to study weak do-

mination and then to make a comparison between actu-
ators using Definition 2. Now, we give hereafter other spe-
cific properties and characteristics concerning the notions
of weak and exact domination.

Proposition 6.

(P1) There exist operators B1 and B2 such that any one
of them do not dominate the other.

(P2) An actuator (D, h) may be dominated weakly by a
non strategic actuator (D, g).

(P3) An actuator (D, g) may dominate another actuator
(D, h) weakly, but not exactly.

(P4) A system excited by p actuators (with p > 1) may be
dominated exactly or weakly by another system excited by
one actuator (and hence by q actuators with q < p).

These properties and situations are illustrated in the
following section.
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3. Application to a diffusion system and
illustrative examples

We consider, without loss of generality, the one-
dimensional case where Ω =]0, a[ and where the systems
(S1) and (S2) are respectively described by the following
equations:

(S1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂z1

∂t
(x, t) =

∂2z1

∂x2
(x, t)

+g(x)u(t), Ω×]0, T [,

z1(0, t) = z1(a, t) = 0, ]0, T [,

z1(x, 0) = 0, ]0, a[,

(24)

and

(S2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂z2

∂t
(x, t) =

∂2z2

∂x2
(x, t)

+h(x)v(t), Ω×]0, T [,

z2(0, t) = z2(a, t) = 0, ]0, T [,

z2(x, 0) = 0, ]0, a[.

(25)

In this case, we have Z = L2(Ω) and Az = Δz
for z ∈ D(A) = H2(Ω) ∩ H1

0 (Ω). A yields a comple-
te system of eigenfunctions (ϕn)n∈N∗ associated with the
eigenvalues

λn = −n2π2

a2

with

ϕn(x) =

√
2
a

sin
nπx

a
.

First, let us recall that an actuator (Ω, g) is strategic
if and only if, for any n ≥ 1, we have

〈g, ϕn〉 �= 0.

Obviously, a strategic actuator dominates weakly any
finite number of other actuators. We also note that (Ω, g)
dominate (Ω, h) weakly if, and only if, for any n ∈ N

∗,
we have

〈g, ϕn〉 = 0 =⇒ 〈h, ϕn〉 = 0.

Property (P1) is illustrated by the following exam-
ples.

Example 1. Let m, n ∈ N
∗ such that m �= n. We suppose

that (S1) is excited by an actuator (Ω, g) with a spatial
distribution g = ϕn and that (S2) is excited by an actuator
(Ω, h) with a spatial distribution h = ϕm. For p = m+n,
we have

〈ϕm, ϕp〉 = 〈ϕn, ϕp〉 = 0.

Then these actuators are not strategic. Moreover,

〈g, ϕn〉 = 1, 〈g, ϕm〉 = 0

and
〈h, ϕn〉 = 0, 〈h, ϕm〉 = 1.

Then any one of these actuators does not dominate
the other weakly. �

Example 2. For g(x) = x(a − x), we have

〈g, ϕn〉 =
∫ a

0

√
2
a
(a − x)x sin

(πxn

a

)
dx

With t = πx/a, we have

〈g, ϕn〉 =

√
2
a

( a

π

)3
∫ π

0

(π − t)t sin(nt) dt.

Using integration by parts, we obtain
∫ π

0

P (t) sin(nt) dt

=
[
−P (t)

cosnt

n
+ P ′(t)

sin nt

n2
P ′′(t)

cosnt

n3

]π

0

−
∫ π

0

P (3)(t)
cos nt

n3
dt.

Then

〈g, ϕn〉 =

√
2
a

( a

πn

)3

2(1 − (−1)n).

For h = 2x − a , we have

〈h, ϕn〉 =
∫ a

0

√
2
a
(2x − a) sin

(πxn

a

)
dx.

We obtain, by the same token,

〈h, ϕn〉 = −
√

2
a

a2(1 + (−1)n)
πn

.

Then

∀n ∈ N
∗,

{ 〈g, ϕn〉 = 0 ⇐⇒ n = 2p (p ≥ 1),

〈g, ϕn〉 = 0 ⇐⇒ n = 2p + 1 (p ≥ 0).

Consequently, (Ω, g) and (Ω, h) are not strategic and any
one of them does not dominate the other weakly. �

Now, in order to illustrate Property (P2), we consider
the following situation.

Example 3. For D = D = Ω; g = ϕ1 + ϕ2 and h = ϕ1,
we have

∀n ∈ N
∗, 〈g, ϕn〉 = 0 =⇒ n ≥ 3 =⇒ 〈h, ϕn〉 = 0.

Then (Ω, g) is not strategic and (Ω, g) dominate (Ω, h)
weakly. Moreover, one can also verify that (Ω, g) domi-
nate (Ω, h) exactly. �
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Concerning (P3), we consider the following example.

Example 4. For D = D = Ω; g = x(x2 − a2) and
h = 2x − a, we have

〈g, ϕn〉 =
∫ a

0

√
2
a
x(x2 − a2) sin

(nπx

a

)
dx.

For t = πx/a, we have

〈g, ϕn〉 =

√
2
a

(a

π

)4
∫ π

0

t(t2 − π2) sin(nt) dt

Using integration by parts, we obtain

〈g, ϕn〉 = 6
√

2a(−1)n
( a

nπ

)3

.

Then (Ω, g) is strategic. To avoid such a case, we consider

g(x) = x(x2 − a2) + 6
√

2a
( a

π

)3

ϕ1(x).

We have
〈g, ϕ1〉 = 0

and

〈g, ϕn〉 = 6
√

2a(−1)n
( a

πn

)3

, ∀n ≥ 2.

On the other hand,

〈h, ϕn〉 = −
√

2
a

a2(1 + (−1)n)
πn

.

Since, for every n ∈ N
∗, we have that

〈g, ϕn〉 = 0 =⇒ 〈h, ϕn〉 = 0,

(Ω, g) dominate weakly (Ω, h). Let us show that (Ω, g)
do not dominate (Ω, h) exactly.

If (Ω, g) dominate (Ω, h) exactly, then, using Propo-
sition 4,

∃γ > 0 such that |〈h, ϕn〉| ≤ γ|〈g, ϕn〉|, ∀n ∈ N
∗.

For n = 2p, we obtain
√

2
a

a2

πp
≤ γ 6

√
2a

(
a

2πp

)3

, ∀p ∈ N
∗.

which is not possible. Consequently, (Ω, g) do not domi-
nate (Ω, h) exactly.

�
The last property is illustrated hereafter.

Example 5. It is sufficient to consider the case where
B1 is associated with the actuator ([0, a], x(x2 − a2)) and
B2 is associated with the two actuators (([0, a/2], ϕ2) and
([a/2, a], ϕ4)). �

4. Case of observed systems

In this part, we extend the notion of domination establi-
shed for input operators and controlled systems, to the ca-
se of output operators and observed systems. We introduce
the same notion of domination for observed systems and
sensors. The characterizations and results are similar to
those obtained in the previous section and can be deduced
by duality.

Let Z be a separable Hilbert space. We consider the
system

(S′)
{

ż(t) = Az(t), 0 < t < T,
z(0) = z0,

(26)

where A is a linear operator generating a strongly conti-
nuous semi-group (S(t))t≥0.

The system (26) is augmented with the output equ-
ations

y1(t) = C1z(t), 0 < t < T, (27)

y2(t) = C2z(t), 0 < t < T, (28)

where Ci ∈ L(Z, Yi), i = 1, 2. Here Y1 and Y2 are Hilbert
spaces (observation spaces).

The first observation is given by

y1(t) = C1S(t)z0, 0 < t < T,

and the second one by

y2(t) = C2S(t)z0, 0 < t < T.

For i = 1, 2 , we have

yi(·) = Ki(·)z0

with
Ki = CiS(·)

and

K∗
i y =

∫ T

0

S∗(t)C∗
i y(t) dt.

We introduce the following similar definitions.

Definition 3.

(i) We say that C1 dominates exactly C2 on [0, T ], with
respect to the system (S), if

ImK2 ⊂ ImK1.

(ii) We say that C1 dominates weakly C2 on [0, T ], with
respect to the system (S), if

ImK2 ⊂ ImK1.

In these cases, we note respectively C2 ≤ C1 and
C2 � C1.
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Let Ci = B∗
i ; for i = 1, 2. We consider the dual

systems

(S∗
i )

{
ż(t) = A∗z(t) + Biui(t), 0 < t < T,
z(0) = z0,

(29)

and

(S̃i)
{

ż(t) = A∗z(t), 0 < t < T,
yi(t) = Ciz(t). (30)

For i = 1, 2, it is well known that the system (29)
is controllable if and only if (30) is observable. From this
duality between the notions of controllability and obse-
rvability, one can deduce the following characterization
result.

Proposition 7. The observed system (S̃1) dominates
exactly (respectively weakly) (S̃2), if and only if, the con-
trolled system (S∗

1 ) dominates exactly (respectively we-
akly) (S∗

2 ).

Using this duality, a general result concerning exact
and weak domination for controlled and observed sys-
tems, we obtain similar results and properties by replacing
Bi with C∗

i and Hi with K∗
i , and hence by replacing ac-

tuator(s) with sensor(s).
Finally, let us note that in this work we consider a

class of linear systems, but the results and the approach
considered can be extended to other systems and situ-
ations (non-linear systems, delayed systems, unbounded
operators, regional case, etc.) .
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