
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 3, 571–580
DOI: 10.2478/v10006-010-0042-2

PARALLEL IMPLEMENTATION OF LOCAL THRESHOLDING IN MITRION–C

TOMASZ KRYJAK, MAREK GORGOŃ

Laboratory of Biocybernetics, Department of Automatics
AGH University of Science and Technology, Al. Mickiewicza 30, 30–059 Cracow, Poland

e-mail: {kryjak,mago}@agh.edu.pl

Mitrion-C based implementations of three image processing algorithms: a look-up table operation, simple local threshol-
ding and Sauvola’s local thresholding are described. Implementation results, performance of the design and FPGA logic
utilization are discussed.

Keywords: image processing, FPGA, Mitrion-C, local thresholding, reconfigurable systems.

1. Introduction

Image processing algorithms are often implemented in
reconfigurable devices (FPGA) (Wiatr, 2003; Lai et al.,
2007), which facilitate higher implementation performan-
ce and enable real-time data processing. Currently, se-
veral main development directions of image processing,
analysis and recognition systems based on reconfigu-
rable hardware can be indicated. Some designs focus
on implementing image processing operations which ha-
ve not been accomplished on the FPGA platform yet
(Kokufuta and Maruyama, 2009). New design methodolo-
gies of image processing algorithms are proposed (Plavec
et al., 2009), while existing algorithms are accelerated by
implementing computing intensive routines in FPGA re-
sources (Sotiropoulos and Papaefstathiou, 2009). Com-
parison of speed-up factor for various implementation
platforms, i.e., GPU, CPU (GPP) and the FPGA, is also
considered (Asano et al., 2009; Claus et al., 2009). Ste-
reovision (Ibarra-Manzano et al., 2009), self-organizing
(Wildermann et al., 2009) and other complex algorithms
are also implemented on the FPGA. Furthermore, power
reduction and power saving techniques in image proces-
sing systems are discussed (Kalaycioglu et al., 2009). An
interesting image processing and analysis system which
takes advantage of partial run-time reconfiguration is pre-
sented by Canto et al. (2009).

Most of the algorithms are designed in hardwa-
re description languages: the VHDL and Verilog (Cho
et al., 2007). However, in recent years several tools ha-
ve been developed which enable creation of higher abs-
traction level designs and their subsequent transforma-

tion into hardware circuitry descriptions. Examples inclu-
de Handle-C (Vitabile et al., 2004), Impulse-C (ImpulseC,
2009) and graphical tools like System Generator (Murthy
et al., 2008), PICO Extreme (Denolf et al., 2009) and
PixelStreams (Jabłoński et al., 2006). A broad overview
of high-level tools for circuit design can be found in the
works of Araby et al. (2007) and Edwards (2006).

This work’s primarily focus is to verify the useful-
ness of the Mitrion-C language in image processing ope-
rations. The only former example of implementing image
processing algorithms in Mitrion-C is the Sobel edge de-
tection, as presented in MitrionUserGuide (2008). Origi-
nally, only simple video channel and LUT (look-up table)
operations were implemented (Sections 3 and 4), follo-
wed by implementation of two variants of the local thre-
sholding algorithm—simple and Sauvola’s (Section 5),
the latter requiring real number computations. Fixed-point
and floating-point implementations were compared (Sec-
tion 5.4). Additionally, a modification to Sauvola’s algori-
thm was proposed, enabling a reduction of FPGA resource
usage.

2. Mitrion-C

Mitrion-C is a high-level language used to develop recon-
figurable computing applications. Its syntax is similar to
that of ANSI C. Mitrion-C describes data flow and da-
ta dependencies, rather than instruction execution order.
The code is compiled into a configuration of the so-called
Mitrion Virtual Processor (MVP) (Mitrion-C, 2009). The
processor’s architecture provides for instruction level pa-
rallelism (all instructions can be executed concurrently),

{kryjak,mago}@agh.edu.pl

572 T. Kryjak and M. Gorgoń

loop-level parallelism (many loop iterations can be execu-
ted concurrently) and loop-level pipelining (for loops with
data dependency). The MVP lacks an instruction stream.
Instead, data flow is used through fine-grain processing
elements, ordered according to the user-designed confi-
guration of the FPGA. MVP design is transformed in-
to Processor Circuit Design (IP Core, VHDL), which is
then synthesized, placed, routed and used to configure the
FPGA device. The Mitrion-C programming flow is shown
in Fig. 3.

Mitrion-C was designed to support high-performance
reconfigurable computing platforms, such as SGI RASC
RC 100, Cray XD1, Nallatech BenDATA, Scan Engine-
ering Telecom SAMC-707 and XtremeData XD2000F (i).
SGI RC 100 was chosen as a target platform of imple-
mentation, due to its availability at the Academic Com-
puter Centre Cyfronet AGH. The RC 100 board contains
two Virtex 4 LX 200 devices and cooperates with the SGI
Altix 4700 supercomputer. The abstraction layer provided
with Mitrion SDK allows single instruction access to me-
mory resources.

VIDEO CAMERA
(FRAME GRABBER)

IMAGE PROCESSING
OPERATION (S)

OUTPUT DEVICE
(eg. LCD)

RAM BANK 0
(read)

IMAGE PROCESSING
OPERATION (S)

RAM BANK 1
(write)

(a) (b)

Fig. 1. Video channel.

3. Video channel and LUT implementations

The video channel is a basic image processing application
(Fig. 1). It consists of a video source (i.e., a camera and
frame grabber) and an output device (e.g., an LCD scre-
en). When used in real time, the video channel typically
consists of a camera, an image processing module and an
output device (Fig. 1(a)). Alternatively, it may consist of
input and output memory banks that accumulate video fra-
mes before and after processing, respectively (Fig. 1(b)).
Pixels are read from the first RAM bank, processed con-
secutively and stored in the second RAM bank. Since SGI
RC 100 does not support video input and output devices,
the other video channel scheme can only be implemented.

The processed image consists of 256×256 pixels.
The image could be transmitted in 4096 cycles (a single
128-bit wide data word is transmitted in one clock cycle),
due to a 128-bit wide data bus of RC 100’s RAM. Howe-

ver, simulation results prove that 4127 cycles are required
to move the image from input to output memory. The dif-
ference results from the latency of SRAM access opera-
tion. Implantation results of the video channel (Table 1)
serve as a reference for other image processing applica-
tions.

A look-up table (LUT) was implemented as the
first image processing operation. It is widely used in
IP applications (thresholding, gamma-correction, affine-
operations, etc.). In the Mitrion-C language the operation
is described as reading values from a one-dimensional ar-
ray of constants. The results (Table 1) indicate that the
compiler of Mitrion-C assigns BlockRAM FPGA resour-
ces to perform the LUT operation. The implementation
flow of this algorithm is presented in Fig. 2. It is worth
noticing that the LUT operation only slightly increases
FPGA resource usage (Table 1, LUT-VC column).

RAMBANK 0
(read)

LUT
o=const array[i];

RAMBANK 1
(write)

Fig. 2. Implementation flow of the LUT.

4. Local thresholding

The most straightforward strategy for image analysis uses
the brightness of regions in the image as a means of iden-
tification. It is assumed that the same type of feature will
have the same brightness throughout the whole image.
Uniform illumination, which allows easier and more relia-
ble image segmentation, can be achieved mainly indoors
by using artificial light sources and isolating the subject
from sunlight, light reflexes, etc. However, real-life and
real-time image processing tasks are performed in non-
uniform lightning conditions.

The non-uniformity of light can be minimized or
even eliminated by using image processing algorithms. In
some cases it is possible to separate a “background” image
and use it to “level” subsequent images. This approach is
often called background generation (subtraction). Fitting
a background function is another possibility. A function
B(x, y), which approximates the background, is created
using brightness values of selected points in the image
and least-squares fitting (Russ, 2002). Furthermore, local
segmentation algorithms (i.e., local thersholding), which
operate on parts of the original image (ROI—Region of

Parallel implementation of local thresholding in Mitrion-C 573

Mitrion-C

Source Code

Mitrion Processor

Machine Code
Results

Processor

Architecture

Board Adapt.

Layer

VHDL Bitstream Results

Compile FPGA Independent

Simulator

Source Code Modifications

Processor

Configuration

Synthesis

Place & Route

Run/

Debug

Source Code Modifications

SOFTWARE

HARDWARE

Fig. 3. Mitrion-C design flow.

Global
Thresholding

Fig. 4. Global thresholding (Otsu’s method) for a picture with non-uniform illumination.

Interest), can be used (Gocławski et al., 2009). An inte-
resting approach to local image processing has also been
presented by (Rafajłowicz et al., 2008).

The paper introduces a local thresholding algorithm
implementation on an FPGA device. Thresholding is one
of the basic image processing operations. It is the simplest
method of segmentation, allowing extraction of meaning-
ful objects from the background. A standard thresholding
procedure uses a single parameter—a threshold value. In
order to determine the threshold, the image’s histogram is
usually analyzed (either manually or automatically). Seve-

ral automatic thresholding methods have been described
(Sezgin and Sankur, 2004). Among the most commonly
used ones is Otsu’s method (Otsu, 1979), which computes
the threshold based on statistical parameters of the ima-
ge’s histogram. Global thresholding (establishing a single
threshold for the whole image) proves to be very good for
simple images with relatively uniform illumination. Ima-
ges with non-uniform illumination can be problematic, as
indicated in Fig. 4.

In order to achieve reliable thresholding results,
a more complex method is required, e.g., either local or

574 T. Kryjak and M. Gorgoń

mean Sauvolas

Fig. 5. Results comparison of simple and Sauvola’s local thresholding methods.

adaptive thresholding (Shafait et al., 2008). The paper di-
scusses two variants of local thresholding (LT): simple
(based on the mean) and Sauvola’s (Sauvola and Pietika-
inen, 2000) (based on the mean and standard deviation).
The input image is divided into square windows (16×16
pixels). For each window a threshold is then determined
and thresholding is performed. As opposed to regular thre-
sholding, local thresholding is an example of a contextual
operation (using a relatively large window). In the case of
the simplest of LT methods, the threshold is calculated as
the mean of pixel values in a single window:

t(a, b) = m(a, b) =
∑

L(x, y)
W 2

, (1)

where t(a, b) stands for the threshold for a given window,
m(a, b) stands for the mean, L(x, y) are input image pi-
xels in a given window and W stands for the size of a
window (here it is set as 16).

The method does not perform well in windows where
there are no foreground elements (a single window, witho-
ut rice grains, is marked out in Fig. 5). In order to achie-
ve better thresholding results, Sauvola proposed a method
that calculates the threshold based on the mean and stan-
dard deviation (Sauvola and Pietikainen, 2000):

t(a, b) = m(a, b) ·
[

1 ± k ·
(s(a, b)

R
− 1

)
]

, (2)

where t(a, b) stands for the threshold for a given window,
m(a, b) stands for the mean, s(a, b) stands for standard
deviation, k stands for a parameter (0.15), and R stands
for a parameter (128). The ‘+’ sign in (2) is used when
objects are darker than background and the ‘−’ sign when
objects are brighter than background. The standard devia-
tion is defined as

s(a, b) =
√

v(a, b), (3)

where v(a, b) stands for the variance for a given window
defined as

v(a, b) =
∑

(L(x, y) − m(a, b))2

W 2
. (4)

Both methods were implemented in the Matlab
environment as a reference and then in the Mitrion-C
language.

5. Implementing local thresholding
in Mitrion-C

Local thresholding, as implemented on a sequential com-
puter (e.g., in Matlab, C), is divided into two parts. The
thresholds in each window are calculated first, and then
the actual thresholding is applied. Such a procedure re-
quires that each pixel in the RAM bank be read twice.
Optimization of the method, using integral images, is de-
scribed by Shafait et al. (2008). LT on a parallel computer
(Mitrion Virtual Processor) should run in a pipeline man-
ner and take advantage of FPGA parallelism.

There are two known FPGA implementations of lo-
cal thresholding algorithms: by Jin et al. (2009) and Gor-
gon and Tadeusiewicz (2000). In the first one a simplified
version of the LT algorithm, which is a part of an passi-
ve auto-focusing system, was implemented in the FPGA.
The second article describes an LT system with a relati-
vely small window size (8×8 pixels). The results of local
thresholding with this window were quite similar to tho-
se of edge detection. Today, due the increase in logical
resources available in FPGA devices, in particular lager
on-chip memories, analysis of larger windows is possible.
The presented LT implementation uses a 16×16 window
and such advancement allows seeing local thresholding as
an effective means of improving image quality, by elimi-
nating non-uniform illumination in particular.

5.1. First LT implementation (LT1). In the first expe-
riment the LT algorithm was directly ported from Matlab
to Mitrion-C. Only the necessary modifications that re-
sulted from the Mitrion-C syntax and the programming
model were made. As has been mentioned, the RAM da-
ta word of the target platform (SGI RC 100) is 128-bit,
which means that 16 pixel values are available at each
clock cycle. These pixels were summed up (using the

Parallel implementation of local thresholding in Mitrion-C 575

Mitrion-Cfor loop), data were divided into blocks (using
Mitrion-C reshape and reformat functions) and ano-
ther summation was made. Finally, the result was divided
by 256 (using a bit shift) to calculate the mean value in
each window. Mean values were then used in the threshol-
ding and the resulting image was written into the RAM
bank. The implementation flow diagram is presented in
Fig. 6.

RAM Read

Threshold calculation
(in 256 x 256 block) Buffer 256 x 256

Thresholding

RAM Write

Fig. 6. First local thresholding implementation flow diagram.

A major disadvantage of such implementation is that
the whole image (256×256) needs to be buffered. The
thresholding operation can only start when all thresholds
are available. This leads to high resource usage and more
than 8000 algorithm steps needed to complete the opera-
tion (Table 1).

5.2. Modified LT implementation (LT2). The first LT
implementation does not take advantage of the pipelining
potential. To calculate the threshold in the first window,
only 16 lines are needed (precisely, 15 lines and one 16 pi-
xel block from line 16). The result can then be transferred
to the thresholding module, where the actual thresholding
takes place. Meanwhile, the threshold calculation modu-
le processes the next window, and so on. Such a scheme
allows reducing the buffer size from 256×256 to 256×16.

In order to implement pipelining in Mitrion-C, a mi-
nor modification is needed. One instruction converts the
input data from a 4096×16 pixel data block into a
16×256×16 pixel data block, enabling the Mitrion-C
compiler to create the above mentioned pipeline. The im-
plementation flow diagram is presented in Fig. 7.

Such a modification of the data flow allows reducing
the amount of logical resources (Flip-Flops) used in the
design by 42% (81% with VC excluded) and to decre-
ase the number of algorithm steps needed to complete the
operation by 47% (93% with VC excluded). It is worth
noticing that, although the modification is rather simple,
knowing how to divide the input data requires experience
in designing pipelined and parallel algorithms.

RAM Read

Threshold calculation
(in 256 x 16 block) Buffer 256 x 16

Thresholding
(in 256 x 16 block)

RAM Write

Fig. 7. Flow diagram of modified local thresholding implemen-
tation.

5.3. Sauvola’s LT implementation. The simple local
thresholding method can be implemented using only unsi-
gned integer numbers. Sauvola’s method incorporates ari-
thmetic operations, which require real numbers: the squ-
are root (used to calculate the standard deviation (3)), di-
vision by the constant R (128) and multiplication by the
constant k (0.15). Therefore Sauvola’s algorithm can be
implemented by

• using floating-point operations (float),

• using fixed-point operations,

• substituting the standard deviation (3) and (4) with
absolute deviation:

ad(a, b) =
∑

|L(x, y) − m(a, b)|. (5)

Implementing Sauvola’s LT algorithm requires two
additional modules: variance and threshold calculation.
All computations in the variance calculation module are
made using 24-bit unsigned integers. The result (the va-
riance for a given window) is transferred to the threshold
calculation module, where it is divided by W 2 (a bit shift
by 8) and computed based on the formulas (3) and (2).
The implementation flow diagram is presented in Fig. 8.

The Mitrion-C language supports floating-point cal-
culations with a definable number of bits for both the
mantissa and the exponent. From the designer’s point of
view, using Mitrion-C’s native square root function (sqrt)
and basic arithmetic operators is the simplest way to exe-
cute the operations described by Eqns. (3) and (2). The
algorithm was implemented using different computatio-
nal precisions:float 6.6, float 7.6, float 8.6
and float 9.6 (as in float m.e, where m stands for
a number of mantissa bits and e stands for the number of
exponent bits).

In order to validate the Mitrion-C results of Sauvola’s
LT module, they were compared with a Matlab implemen-
tation of the algorithm. All the calculations in the Matlab

576 T. Kryjak and M. Gorgoń

Table 1. Summary and comparison of implementations results: VC, LUT and Simple LT (Mitrion-C simulator).
Video Look - Up Simple Local Thresholding

Channel Table (LUT) LT1 (sequential) LT2 (modified)
VC LUT LUT-VC* LT1 LT1-VC* LT2 LT2-VC*

No. of algorithm steps 4127 4129 2 8236 4109 4392 265
Flip-Flops used 18966 19512 546 39237 20271 22816 3850
Block RAM used 11 27 16 59 48 59 48
18x18 Multipliers used 0 0 0 0 0 0 0

*denotes difference between two methods

Table 2. Summary and comparison of implementations results: Sauvola’s LT—floating-point (Mitrion-C simulator).
Sauvola’s Local Thresholding

F6.6 F6.6-VC* F7.6 F7.6-VC* F8.6 F8.6-VC* F9.6 F9.6-VC*
No. of algorithm steps 4751 624 4756 629 4763 636 4768 641
Flip-Flops used 63760 44794 65936 46970 67065 48099 70769 51803
Block RAM used 108 97 108 97 108 97 108 97
18x18 multipliers used 16 16 48 48 48 48 48 48

*denotes difference between two methods

Table 3. Summary and comparison of implementations results: Sauvola’s LT—fixed-point (Mitrion-C simulator).
Sauvola’s local thresholding

Fixed Fixed - VC* Fixed&Float Fixed&Float - VC* AD AD-VC*
No. of algorithm steps 4740 613 4720 593 4678 551
Flip-Flops used 54174 35208 53603 34637 34679 15713
Block RAM used 108 97 108 97 108 97
18x18 Multipliers used 48 48 48 48 32 32

*denotes difference between two methods

Table 4. Comparison of Matlab and Mitrion-C results.
Sauvola’s local thresholding

F 6.6 F7.6 F8.6 F9.6 F10.6 Fixed Fixed&Float AD
DP 98 46 23 24 30 54 53 113
% of all 0.15% 0.07% 0.04% 0.04% 0.05% 0.08% 0.08% 0.17%
MDT 4 2 1 1 1 2 2 3
NoDT 177 120 72 71 82 148 145 234
% of all 69.14% 46.88% 28.13% 27.73% 32.03% 57.81% 56.64% 91.41%

environment were made using double precision (64-bit)
floating-point arithmetic. The Matlab local thresholding
results served as a reference to the Mitrion-C implemen-
tation results. The outcome of this comparison is presen-
ted in Table 4. Three quality indicators were considered:
the number of pixels by which the reference image differs
from the image obtained by executing the Mitrion-C co-
de on a Mitrion virtual processor simulator (DP—different
pixels), the maximal difference of threshold values (MDT)
and a number of different thresholds (NoDT). All tests we-
re done for both “rice” and “catalog” images, although the
results presented in Table 4 relate to “rice” only . In each
experiment, the results for the “catalog” image were ana-
logous.

Analysis of data presented in Table 4 indicates that
float 8.6 precision is sufficient for the examined al-
gorithm. The MDT value is 1 and results from a rounding

error in the mean calculation module (integer division by
256). The number of different pixels (DP) is less than
0.1% of all pixels in the image and has no influence on
the quality of thresholding. Table 2 presents FPGA resour-
ces usage. Higher computational precision leads to higher
usage of logical resources (especially flip-flops) and a sli-
ght increase in the amount of algorithm execution steps.

5.4. Sauvola’s fixed-point LT implementation.
Floating-point operations implemented in the FPGA
consume a lot of logical resources. The next stage of the
research concentrated on using fixed-point calculations
in Sauvola’s algorithm. The first problem that had to be
solved was a fixed-point implementation of the square
root operation. The sqrt function available in Mitrion-C
is designed for floating-point calculations only, and
therefore a fixed-point square root module had to be

Parallel implementation of local thresholding in Mitrion-C 577

Buffer 256 x 16

Thresholding
(in 256 x 16 block)

RAM Read

RAM Write

v(a,b) calculation
(in 256 x 16 block)

Threshold calculation
(in 256 x 16 block) Buffer 256 x 16

m(a,b) calculation
(in 256 x 16 block)

Buffer 256 x 16

Fig. 8. Flow diagram of Sauvola’s LT implementation.

implemented. The non-restoring square root algorithm
described by Piromsopa et al. (2001) was used. It was
decided to round the result of square root calculation to an
integer value. Subsequently, a fixed-point calculation of
the threshold was implemented (2). Based on preliminary
research, it was decided to use eight bits to store the
fractional part of a number. Table 4 presents a comparison
with the reference image and Table 3 presents FPGA
resource usage. The method proves very effective (MDT
value is 2, less than 0.1% of pixels differ), providing
substantial FPGA resource savings (12891 FF less than
float 8.6). It also needs fewer algorithm steps to
complete the calculations.

In the course of additional experiments it was esta-
blished that the fixed-point implementation of the squ-
are root, using the non-restoring method, requires more
FPGA resources than the Mitrion-C native floating-point
sqrt function. This is likely to result from the highly ef-
fective native implementation of the square root modu-
le. Based on this observation, a new implementation of
Sauvola’s algorithm was created, in which the square root
calculation was made using floating point arithmetic and
subsequent calculations were made using fixed-point one.
The results (Table 4) are very close to those of the previo-
usly mentioned fixed-point method. Resource usage (as
per Table 3, Fixed&Float column) is slightly lower, while
the number of algorithm steps is the same.

The last stage of the research concentrated on try-
ing to replace standard deviation with absolute deviation.
A preliminary research done in the Matlab environment
showed that such an approach does not lead to signifi-
cant deterioration of the thresholded image. Using abso-
lute deviation eliminates the need for square root calcu-

lation. Therefore, all operations can be easily performed
using fixed-point arithmetic. The results, presented in Ta-
ble 4, indicate a slight deterioration of thresholded image
quality. The MDT factor is 3 and less than 0.2% of all pi-
xels differ. It is worth pointing out that in the case of thre-
sholding a difference of this order does not influence the
subsequent image analysis—the reference image and the
Mitrion-C image are almost indistinguishable, especially
for a human. Eliminating the square root resulted in a con-
siderable reduction in usage of FPGA logical resources—
by half in the case of flip-flops and 18 × 18 multipliers in
comparison with the float 8.6 version (Table 3, AD
column). Furthermore, it takes 85 fewer algorithm steps
to complete the computation.

It is worth mentioning that reprogrammable devices
offer the ability of adapting to the required type of com-
putations and the size of the computational element (i.e.,
data type and data bus bit width), based on the precision
required by a given algorithm. The above-mentioned mo-
difications are possible in working systems. This kind of
adjustment is not available in the case of general purpose
processors (GPP). Thus, where flexibility is required on
one hand (not offered by ASICs, which cannot be modi-
fied after manufacturing) along with processing speed and
low power consumption due to the adjustment of the ar-
chitecture to a particular task on the other (not possible
with GPPs), FPGA devices can be an alternative to other
computational environments.

Results of local thresholding for selected images with
non-uniform illumination are presented in Fig. 9.

6. Conclusion

The paper presents modern development trends in ima-
ge processing, analysis and recognition systems, based on
reconfigurable devices. It indicates that new possibilities
arise to create such systems, due to an increased availa-
bility of FPGA resources and development of high-level
tools for circuit design. The work’s focus was to verify
the usefulness of the Mitrion-C language and the Mitrion
Virtual Processor environment in image processing opera-
tions.

The research indicates that, althougy Mitrion-C cla-
ims to abstract from the underlying hardware, it is crucial
to take specific characteristics of the target resource in-
to consideration. The programmer should know the basic
structure of the FPGA and should have experience in de-
signing parallel algorithms—being able to think of data
flow rather than of the instruction execution sequence.

Implementation of the local thresholding algorithm,
which took advantage of the parallelism available in the
FPGA device after a data flow modification (as described
in Subsection 5.2), allowed reducing logic usage by half.
The computational resources analysis presented in Table 1
is worth reading. Data in columns 3, 5 and 7 indicate to-

578 T. Kryjak and M. Gorgoń

SOURCE

OTSU

Simple LT

Sauvola’s LT

Fig. 9. Local thresholding examples.

Parallel implementation of local thresholding in Mitrion-C 579

tal resource usage differences by particular operation and
video channel logic.

Sauvola’s local thresholding, which requires re-
al number operations, was successfully implemented in
Mitrion-C. Both floating-point and fixed-point implemen-
tations were realized. Furthermore, a modification of the
algorithm was proposed, enabling reduction of FPGA re-
source usage, which has virtually no effect on the final
quality of local thresholding.

Floating-point operations are easily implemented in
Mitrion-C. Logic resources usage strongly depends on the
chosen number of mantissa and exponent bits. The proper
selection of computational precision is very important to
assure adequate results, while using the least FPGA reso-
urces.

The usefulness of Mitrion-C (Mitrion version 1.0)
in image processing applications is limited to algorithms
which operate on a still image due to the execution mo-
del: input data is read from one RAM bank and results are
stored in another RAM bank. Implementation of a video
processing application (Fig. 1(a)) is impossible because
in the examined Mitrion-C version no input or output data
stream are supported. On the other hand, describing quite
complex algorithms, which require floating-point opera-
tions, is easy and does not take much time (in compari-
son to HDL description). Furthermore, the provided (with
Mitrion-C) SDK graphical simulator allows easy debug-
ging.

Concluding, Mitrion-C and the Mitron Virtual Pro-
cessor where designed for a very specific group of
applications—high performance reconfigurable compu-
ting. It supports FPGA boards which cooperates with
supercomputers—SGI RASC RC 100 and SGI Altix
4700, both available at the AGH ACC Cyfronet. When
an image processing algorithm is suitable for a hardware-
software implementation and operates only on still ima-
ges, a Mitrion-C implementation would be advisable. In
other cases, especially for real-time video processing ap-
plications,a different design flow (i.e., HDL) is advisable.

Acknowledgment

The authors are grateful to the Academic Computer Cen-
tre Cyfronet AGH for partial support of this work.

This work was supported by the AGH Univer-
sity of Science and Technology under AGH Grant
No. 11.11.120.612.

References

Asano, S., Maruyama, T. and Yamaguchi, Y. (2009). Perfor-
mance comparison of FPGA, GPU and CPU in image pro-
cessing, International Conference on Field Programmable
Logic and Applications, FPL 2009, Prague, Czech Repu-
blic, pp. 126–131.

Canto, E., Fons, M., Lopez, M. and Ramos, R. (2009). Accele-
ration of complex algorithms on a fast reconfigurable em-
bedded system on Spartan-3, International Conference on
Field Programmable Logic and Applications, FPL 2009,
Prague, Czech Republic, pp. 429–434.

Cho, J., Jin, S., Pham, X., Kim, D. and Jeon, J. (2007). FPGA-
based real-time visual tracking system using adaptive color
histograms, Proceedings of the IEEE International Confe-
rence on Robotics and Biomimetics, ROBIO 2007, Sanya,
China, pp. 172–177.

Claus, C., Huitl, R., Rausch, J. and Stechele, W. (2009). Opti-
mizing the SUSAN corner detection algorithm for a high
speed FPGA implementation, International Conference on
Field Programmable Logic and Applications, FPL 2009,
Prague, Czech Republic, pp. 138–145.

Denolf, K., Neuendorffer, S. and Vissers, K. (2009). Using C-
to-gates to program streaming image processing kernels
efficiently on FPGAs, International Conference on Field
Programmable Logic and Applications, FPL 2009, Pra-
gue, Czech Republic, pp. 626–630.

Edwards, S. (2006). The challenges of synthesizing hardware
from C-like languages, IEEE Design & Test of Computers
23(5): 375–386.

El-Araby, E., Nosum, P. and El-Ghazawi, T. (2007). Producti-
vity of high-level languages on reconfigurable computers:
An HPC perspective, International Conference on Field-
Programmable Technology, ICFPT 2007, Kitakyushu, Ja-
pan, pp. 257–260.

Gocławski, J., Sekulska-Nalewajko, J., Gajewska, E. and Wie-
lanek, M. (2009). An automatic segmentation method
for scanned images of wheat root systems with dark
discolourations, International Journal of Applied Ma-
thematics and Computer Science 19(4): 679–689, DOI:
10.2478/v10006-009-0055-x.

Gorgon, M. and Tadeusiewicz, R. (2000). Hardware-based ima-
ge processing library for Virtex FPGA, in J. Schewel, P.M.
Athanas, C.H. Dick and J.T. McHenrz (Eds.) Reconfigura-
ble Technology: FPGAs for Computing and Appplications
II, Proceedings of SPIE, Vol. 4212, pp. 1–10.

Ibarra-Manzano, M., Devy, M., Boizard, J.-L., Lacroix, P. and
Fourniols, J.-Y. (2009). An efficient reconfigurable archi-
tecture to implement dense stereo vision algorithm using
high-level synthesis, International Conference on Field
Programmable Logic and Applications, FPL 2009, Pra-
gue, Czech Republic, pp. 444–447.

ImpulseC (2009). Impulse accelerated technologies website,
www.impulseaccelerated.com.

Jabłoński, M., Przybyło, J. and Gorgon, M. (2006). Real-time
implementation of motion detection algorithm based on
Pixelstreams, Proceedings of the IFAC Workshop on Pro-
grammable Devices and Embedded Systems, PDeS 2006,
Napa, CA, USA, pp. 186–190.

Jin, S., Cho, J., Kwon, K. and Jeon, J. (2009). A dedicated
hardware architecture for real-time auto-focusing using an
FPGA, Machine Vision and Applications 21(5): 727–734.

www.impulseaccelerated.com.

580 T. Kryjak and M. Gorgoń

Kalaycioglu, C., Ulusel, O. and Hamzaoglu, I. (2009). Low po-
wer techniques for motion estimation hardware, Internatio-
nal Conference on Field Programmable Logic and Appli-
cations, FPL 2009, Prague, Czech Republic, pp. 180–185.

Kokufuta, K. and Maruyama, T. (2009). Real-time processing of
local contrast enhancement on FPGA, International Con-
ference on Field Programmable Logic and Applications,
FPL 2009, Prague, Czech Republic, pp. 288–293.

Lai, H.-C., Savvides, M. and Chen, T. (2007). Proposed FPGA
hardware architecture for high frame rate (100 fps) face de-
tection using feature cascade classifiers, Proceedings of the
First IEEE International Conference on Biometrics: The-
ory, Applications and Systems, BTAS 2007, Crystal City,
VA, USA, pp. 1–6.

Mitrion-C (2009). Mitrion website, www.mitrionics.com.

MitrionUserGuide (2008). Mitrion user guide—Image proces-
sing using Sobel convolution, Mitrionics AB, Lund.

Murthy, S., Alvis, W., Shirodkar, R., Valavanis, K. and Moreno,
W. (2008). Methodology for implementation of unman-
ned vehicle control on FPGA using system generator, Pro-
ceedings of the 7th International Caribbean Conference
on Devices, Circuits and Systems, ICCDCS 2008, Cancun,
Mexico, pp. 1–6.

Otsu, N. (1979). A threshold selection method from gray level
histograms, IEEE Transactions on Systems, Man and Cy-
bernetics 9(1): 62–66.

Piromsopa, K., Aporntewan, C. and Chogsatitvataa, P. (2001).
An FPGA implementation of a fixed-point square root ope-
ration, International Symposium on Communications and
Information Technology, ISCIT 2001, Bangkok, Thailand,
pp. 587–689.

Plavec, F., Vranesic, Z. and Brown, S. (2009). Enhancements
to FPGA design methodology using streaming, Internatio-
nal Conference on Field Programmable Logic and Appli-
cations, FPL 2009, Prague, Czech Republic, pp. 294–301.

Rafajłowicz, E., Wnuk, M. and Rafajłowicz, W. (2008). Lo-
cal detection of defects from image sequences, Internatio-
nal Journal of Applied Mathematics and Computer Science
18(4): 581–592, DOI: 10.2478/v10006-008-0051-6.

Russ, J.C. (2002). Image Processing Handbook, 4th Edn., CRC
Press, Inc., Boca Raton, FL.

Sauvola, J. and Pietikainen, M. (2000). Adaptive document ima-
ge binarization, Pattern Recognition 33(2): 225–236.

Sezgin, M. and Sankur, B. (2004). Survey over image threshol-
ding techniques and quantitative performance evaluation,
Journal of Electronic Imaging 13(1): 146–165.

Shafait, F., Keysers, D. and Breuel, T.M. (2008). Efficient imple-
mentation of local adaptive thresholding techniques using
integral images, Proceedings of the 15th Document Reco-
gnition and Retrieval Conference (DRR-2008), Part of the
IS&T/SPIE International Symposium on Electronic Ima-
ging, San Jose, CA, USA, pp. 681510–681510-6.

Sotiropoulos, I. and Papaefstathiou, I. (2009). A fast parallel ma-
trix multiplication reconfigurable unit utilized in face reco-
gnitions systems, International Conference on Field Pro-
grammable Logic and Applications, FPL 2009, Prague,
Czech Republic, pp. 276–281.

Vitabile, S., Gentile, A., Siniscalchi, S. and Sorbello, F. (2004).
Efficient rapid prototyping of image and video processing
algorithms, Euromicro Symposium on Digital System De-
sign, DSD 2004, Rennes, France, pp. 452–458.

Wiatr, K. (2003). Acceleration of Computations in Vision Sys-
tems, WNT, Warsaw, (in Polish).

Wildermann, S., Walla, G., Ziermann, T. and Teich, J. (2009).
Self-organizing multi-cue fusion for FPGA-based embed-
ded imaging, International Conference on Field Program-
mable Logic and Applications, FPL 2009, Prague, Czech
Republic, pp. 132–137.

Tomasz Kryjak earned the M.Sc. degree in auto-
matics and robotics in 2008 from the AGH Uni-
versity of Science and Technology in Cracow,
Poland. Since 2008 he has been a research assi-
stant at the Institute of Automatics of the same
university. His current research focuses on image
processing and recognition, biometrics, reconfi-
gurable FPGA systems, hardware algorithm ac-
celeration, and software/hardware co-design.

Marek Gorgoń earned the M.Sc. degree in elec-
tronics and control engineering in 1988, Ph.D. in
automatic control and robotics in 1995, and D.Sc.
(habilitation) in 2007, all three from the AGH
University of Science and Technology in Cracow,
Poland. Since 1994 he has been working at the
Institute of Automatics of the same university,
currently as an assistant professor. His research
interests include image processing, reconfigura-
ble devices and systems architecture, software-

hardware co-design, DSP and FPGA devices and applications. He is a
member of the IEEE Computer Society (since 2002) and the IEEE (sin-
ce 2006). He is a member of IPCs of many international conferences. He
is an author of 50 scientific papers and technical reports. He earned the
awards of the Rector of his home university in the years 2002, 2004 and
2008. He has participated in 11 scientific and industrial research pro-
jects. He regularly reviews for international conferences, journals, and
the Polish State Committee for Scientific Research.

Received: 20 June 2009
Revised: 18 November 2009
Re-revised: 1 March 2010

www.mitrionics.com.

	Introduction
	Mitrion-C
	Video channel and LUT implementations
	Local thresholding
	Implementing local thresholding in Mitrion-C
	First LT implementation (LT1)
	Modified LT implementation (LT2)
	Sauvola's LT implementation
	Sauvola's fixed-point LT implementation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

