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This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Set-
membership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval
models). These methods aims at checking the consistency between observed and predicted behaviour by using simple sets
to approximate the exact set of possible behaviour (in the parameter or the state space). When an inconsistency is de-
tected between the measured and predicted behaviours obtained using a faultless system model, a fault can be indicated.
Otherwise, nothing can be stated. The same principle can be used to identify interval models for fault detection and to
develop methods for fault tolerance evaluation. Finally, some real applications will be used to illustrate the usefulness and
performance of set-membership methods for FD and FTC.
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1. Introduction

Model-based fault detection of dynamic processes is
based on the use of models i.e., (analytical redundancy)
to check the consistency of the observed behaviour. How-
ever, when building a model of a dynamic process to
monitor its behaviour, there is always some mismatch be-
tween the modelled and real behaviours since some effects
are neglected, some non-linearities are linearised in order
to simplify the model, some parameters have tolerance
when compared between several units of the same com-
ponent, some errors in parameters (or in the structure) of
the model are introduced in the model calibration process,
etc. These modelling errors introduce some uncertainty in
the model. Usually, this uncertainty can be bounded and
included in the fault detection model.

There are several ways of considering the uncertainty
associated with the model depending if it is located in the
parameters (structured) or in the model structure (non-
structured). In the FD literature, a fault diagnosis algo-
rithm able to handle uncertainty is called robust. The ro-
bustness of an FD algorithm is the degree of sensitivity
to faults compared with the degree of sensitivity to uncer-
tainty (Chen and Patton, 1999). Research on robust fault
diagnosis methods has been very active in the FD commu-
nity in the last few years. One of the most well-developed

families of approaches, called active, is based on generat-
ing residuals which are insensitive to uncertainty while at
the same time sensitive to faults. This approach has been
extensively developed by several researchers using differ-
ent techniques: unknown input observers, robust parity
equations, H∞, etc. Chen and Patton (1999) present an
excellent survey of this active approach.

On the other hand, there is a second family of ap-
proaches, called passive, which enhances the robustness
of the fault detection system at the decision-making stage
by propagating the uncertainty to the residuals and gen-
erating an adaptive threshold. Seminal papers suggest-
ing this approach are the one by Horak (1988) in the
time domain and that by Emami-Naeini et al. (1988) in
the frequency domain. This passive approach has been
developed lately by several researches but still is under
development, see for example (Adrot and Flaus, 2008;
Armengol et al., 2008; Fagarasan et al., 2004; Hamelin
and Sauter, 2000; Ploix and Adrot, 2006; Puig et al.,
2006; 2008; Rambeaux, 2000; Sainz et al., 2002). This
approach has also been integrated with qualitative rea-
soning tools (coming from the AI community), see, e.g.,
the tools CA∼EN (Travé-Massuyes et al., 2001; Esco-
bet et al., 2001), SQualTrack (Armengol et al., 2008) or
MOSES (Rinner and Weiss, 2004). For a more detailed re-
view, the reader is referred to the work of Armengol et al.
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(2000).
This paper will review the passive approach when

considering the nominal model plus uncertainty on every
parameter bounded by intervals. This type of uncertainty
modelling provides a type of models known as interval
models. Noise will also be considered to be unknown
but bounded and modelled in a deterministic framework.
The use of interval models has received several names, de-
pending on the field of application: in circuit analysis it is
known as worst-case (or tolerance analysis), in automatic
control as set-membership (also known in this field as the
error-bounded approach) and in qualitative reasoning as
semi-quantitative.

In the automatic control literature, the set-
membership approach applied to parameter and state
estimation was treated extensively by Milanese et al.
(1996) while its application to control can be found in
the works of Bhattacharyya et al. (1995) and Ackermann
(2002). The worst-case analysis of circuits was treated
by Kolev (1993) and in several research papers appearing
in circuits journals and conferences. Finally, the semi-
quantitative approach was investigated by Kuipers (1994)
and in several papers appearing in artificial intelligence
journals and conferences.

This paper also reviews the different approaches that
can be used to identify interval models for fault detec-
tion. This research started with the seminal work of Ploix
et al. (1999). New application fields for set-membership
methods to areas close to FD as FTC are also presented.
Finally, the paper presents several industrial applications
where set-membership approaches have been successfully
used.

The remainder of the paper is organized as follows.
Section 2 introduces the use of interval models of dy-
namic systems for fault detection. In Section 3, fault de-
tection using the interval approach is recalled, while Sec-
tion 4 presents fault detection using the error-bounding
approach. Section 5 reviews the methods for interval and
error-bounding identification using real data. Section 6
presents the use of set-membership methods for fault tol-
erance evaluation of control laws. Section 7 presents sev-
eral successful applications of set-membership methods
for fault detection and fault-tolerant control. Finally, con-
clusions are summarised in Section 8.

2. Interval models of dynamic systems for
fault detection

2.1. Interval models of dynamic systems. The system
to be monitored can be described by a MIMO linear un-
certain dynamic model in discrete-time and a state-space
form as follows:

x(k + 1) = A(θ)x(k) + B(θ)u(k) + w(k),
y(k) = C(θ)x(k) + D(θ)u(k) + v(k), (1)

where y(k) ∈ R
ny , u(k) ∈ R

nu , x(k) ∈ R
nx are

the system output, input and state vectors, respectively,
w(k) ∈ R

nx and v(k) ∈ R
ny are the disturbance and

noise, respectively, both assumed unknown but bounded,
i.e., wi ∈ [δi, δi

]
and vi ∈ [σi, σi]; the state, input, out-

put and direct transmission matrices are A(θ) ∈ R
nx×nx ,

B(θ) ∈ R
nx×nu , C(θ) ∈ R

ny×nx and D(θ) ∈ R
ny×nu ,

respectively, θ ∈ R
nθ is the vector of uncertain pa-

rameters, where Θ is a bounded set (of the interval box
type) such that and in particular for each component θi ∈[
θi, θi

]
, i = 1, . . . , nθ . This is why the resulting model is

known as an interval model.
The set Θ contains all possible values of θ when the

system operates normally. Notice that when the parame-
ters θ are scheduled with the operating point using some
known scheduling function and variable, then the system
(1) is known as a linear parameter varying (LPV) sys-
tem (Rugh and Shamma, 2000). Intervals for uncertain
parameters can also be inferred from real data as will be
discussed in Section 5.

The system in Eqn. (1) can, alternatively, be ex-
pressed in the input-output form using the shift operator
q−1 and assuming zero initial conditions as follows:

y(k) = M(q−1, θ)u(k), (2)

where M(q−1, θ) is given by

M(q−1, θ) = C(θ)(qI − A(θ))−1B(θ) + D(θ).

2.2. Interval models for fault detection. The princi-
ple of model-based fault detection is to test whether the
system measurements are consistent with the behaviour
described by a model of the faultless system. Consistent
means that the measured system behaviour agrees with the
behaviour estimated using the model. If the measurements
are inconsistent with this model, the existence of a fault is
proved. The residual vector, known also as an analytical
redundant relation (ARR), defined as the difference be-
tween measured y(k) and predicted system outputs ŷ(k),

r(k) = y(k) − ŷ(k), (3)

is usually used to check the consistency.
Ideally, the residuals should only be affected by

faults. However, the presence of disturbances, noise and
modelling errors causes the residuals to become nonzero
and thus interferes with the detection of faults. Therefore,
the fault detection procedure must be robust against these
undesired effects (Chen and Patton, 1999). In the case of
modelling a dynamic system using an interval model, the
predicted output is described by a set that can be bounded
at any iteration by an interval

ŷi(k) ∈ [ŷi(k),ŷi(k)] (4)
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in a non-faulty case. Such an interval is computed inde-
pendently for each output (neglecting couplings between
outputs) as follows:

ŷi(k) = min
θ∈Θ

(ŷi(k, θ)) and ŷi(k) = max
θ∈Θ

(ŷi(k, θ)).

(5)
Such an interval can be computed using the algorithm

based on numerical optimization presented by Puig et al.
(2003). Then, the fault detection test is based on propa-
gating parameter uncertainty to the residual, and checking
if

y(k) ∈ [ŷ(k) − σ, ŷ(k) + σ
]
, (6)

where σ is the noise bound. Equivalently, the previous
test can be formulated in terms of the residual checking
whether or not

0 ∈ [r(k), r(k)] = y(k) − [ŷ(k) − σ, ŷ(k) + σ
]

(7)

holds. In case it does not hold, a fault can be indicated.
This test is named a direct test.

Alternatively, an inverse test consists in checking if
there exists some parameter value in the parameter uncer-
tainty set Θ such that the model (2) is consistent with the
system measurements. More formally, we check the con-
dition

∃θ ∈ Θ | ŷ(k, θ) ∈ [y(k) − σ,y(k) + σ] . (8)

In case this condition is not satisfied, a discrepancy be-
tween measurements and the model is detected and a
fault should be indicated. This test can be implemented
with parameter estimation algorithms used in the error-
bounding approach (Milanese et al., 1996), as will be dis-
cussed later in this paper. The direct test is related to
the use of the parity equation or observer methods, while
the inverse test is related to parameter estimation meth-
ods. According to Isermann (2006), parity equations and
observer approaches are more suitable for additive faults,
while the parameter estimation approach is better suited
for multiplicative (parametric) faults.

3. Fault detection using the interval
approach

3.1. Fault detection using interval observers. The
system described by Eqn. (1) can be monitored using a
linear observer with the Luenberger structure. The result-
ing interval observer can be written as

x̂(k + 1, θ) = A(θ)x̂(k) + B(θ)u(k) + w(k)
+ L(y(k) − ŷ(k)),

ŷ(k, θ) = C(θ)x̂(k) + v(k), (9)

where x̂(k, θ) is the estimated state-space vector and
ŷ(k, θ) is the estimated output vector for a given value

of θ ∈ Θ taking into account process and sensor noise
bounds. The observer gain matrix L ∈ R

nx×ny is de-
signed to stabilize the matrix Ao(θ) and to guarantee
the desired performance regarding fault detection for all
θ ∈ Θ (Chilali and Gahinet, 1996). Alternatively, the
observer given by Eqn. (9) can be expressed in the input-
output form using the q-transform and considering zero
initial conditions as follows:

ŷ(k) = G(q−1, θ)u(k) + H(q−1, θ)y(k), (10)

where

G(q−1, θ) = C(θ) (qI− Ao(θ))−1 B(θ),

H(q−1, θ) = C(θ) (qI− Ao(θ))−1 L,

Ao(θ) = Ao(θ) − LC(θ).

Interval observation requires solving the optimiza-
tion problems introduced in Eqn. (5) using Eqn. (10).
In order to preserve uncertain parameter time-invariance
and to avoid the wrapping effect 1 (Puig et al., 2003), the
observer output prediction in Eqn. (5) is substituted by

ŷ (k) = C (θ)A0 (θ)k x0

+ C (θ)
k−1∑

j=0

A0 (θ)(k−1−j) B (θ)u (j). (11)

When proceeding in this way, the optimization prob-
lems in Eqn. (11) will not be convex because of the non-
linearity with respect to parameters. Therefore, the ex-
istence of a unique optimum is not guaranteed. In or-
der to guarantee that the global optimum is reached, a
global optimization algorithm must be used. In particular,
a branch and bound interval arithmetic global optimiza-
tion based on Hansen’s algorithm (Hansen, 1992) can be
used. An additional computational problem appears when
using Eqn. (11), since the degree of the polynomial in
the objective function increases with time. This implies
that the amount of computation needed also increases with
time, being impossible to operate over a large time period.
This problem can be solved if the interval system (1) is
asymptotically stable (Puig et al., 2003). In this case, the
predicted system output at time k depends, approximately,
only on the inputs that occurred in a time sliding window
with a length � (whose value is of the order of the set-
tling time) and the state at the beginning of such a win-
dow. Then, Eqn. (11) can be approximated by limiting the
computation to a finite time horizon as proposed by Puig
et al. (2003).

1The problem of wrapping is related to the use of a crude approxima-
tion of the set of states associated with the interval simulation. If, at each
iteration, the true solution set is wrapped into its interval hull, since the
overestimation of the wrapped set is proportional to its radius, a spurious
growth of the enclosures may result if the composition of wrapping and
mapping is iterated.
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If uncertain parameters are considered time-varying,
an iterative algorithm can be used that obtains the set of
uncertain states at time k, Xk from the set Xk+1 using the
algorithm presented in Fig. 1 (Guerra et al., 2008).

Fig. 1. Interval observer.

To implement such an algorithm, the set of uncer-
tain states should be approximated since the exact set of
estimated states would be difficult to compute. Several
geometrical shapes have been proposed in the literature
ranging from parallelotopes (Chisci et al., 1996) or ellip-
soids (Maksarov and Norton, 1996) to zonotopes (Alamo
et al., 2005). A zonotope X of order m can be viewed as
the Minkowski sum of m segments:

X = p ⊕ HBm = {p + Hz : z ∈ Bm} , (12)

where the segments are defined by the columns of ma-
trix H and Bm is a unitary box composed of m unitary
intervals. The order m is a measure for the geometrical
complexity of the zonotopes (see Fig. 2 for a zonotope of
order 14).

Fig. 2. Zonotope.

Zonotope arithmetic possesses a set of operations
(such as sum, affine transformation, intersection) that can
be very efficiently implemented since they only involve
operations with matrices (Alamo et al., 2005).

3.2. Interval ARMA parity equations. If the ob-
server gain in Eqn. (9) is assumed to be equal to zero
(L = 0), the observer becomes an interval simulator,
since the output prediction is based only on the inputs and
previous output predictions, and Eqn. (10) becomes

ŷ(k) = M(q−1, θ)u(k),

while the residual is given by

r(k) = y(k) − ŷ(k) = y(k) − M(q−1, θ)u(k). (13)

According to Gertler (1998), Eqn. (13) corresponds
to an ARMA primary parity equation or residual. This is
an open-loop approach. Interval simulation requires solv-
ing optimization problems following the same strategy as
in the case of the interval observer but using the system
matrices (1). In order to reduce the computing complex-
ity, as in the observer case, a time window could also be
used. In this case, this approach is known as the �-order
ARMA parity equation (Tornil et al., 2003).

3.3. Interval MA parity equations. On the other
hand, if the observer gain in Eqn. (8) is designed such
that the poles are at the origin (deadbeat observer), the ob-
server becomes an interval predictor, since the output pre-
diction is based only on measured inputs and outputs and
follows the real system output after the minimum number
of samples. The prediction equation (10) is a moving av-
erage (MA) and follows a closed-loop approach. Thus,
the corresponding residuals are called MA primary parity
equations or residuals (Gertler, 1998). The optimization
problems (5) that must be solved now are linear with re-
spect to the parameters and, therefore, convex. This means
that there exist very efficient algorithms to solve them (as
the simplex algorithm). Because of the linearity, the exis-
tence of a unique optimum is guaranteed to be located at
one of the vertices of the parameter uncertainty intervals.
Interval prediction is not affected by the problem of wrap-
ping because the predicted output is based on the previous
output measurements instead of the interval of the previ-
ous predicted outputs (Puig et al., 2008). Thus, interval
prediction considers uncertain parameters as time varying.
But, time invariance in uncertain parameters being to be
preserved, an �-order MA parity equation should be used
(Tornil et al., 2003). Finally, Ploix and Adrot (2006) pro-
posed a method to obtain the interval parity equations di-
rectly from the state-space using the Chow-Wilsky scheme.

3.4. Comparison. In the work of Puig et al. (2008),
the behaviour of the different interval fault detection ap-
proaches considered so far is studied and compared using
the FD benchmark proposed in the DAMADICS project.
Table 1 summarises the results of this comparison. This
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table can be used as a guideline to decide in which ap-
plications an approach is more suitable than others. Pre-
diction and simulation approaches have antagonistic prop-
erties: prediction, because of its deadbeat observer be-
haviour, does not suffer from the wrapping effect and low
computational complexity, has low sensitivity to unmod-
eled dynamics but can suffer from the sensor following
fault effect and has high sensitivity to sensor noise. On
the other hand, the simulation approach exhibits opposite
properties, presenting good performance when detecting
sensor faults in noisy systems. Finally, the observer ap-
proach is in the middle, with the advantage that, since it
has one more degree of freedom (the observer gain), it can
be designed trying to minimize the bad effects and maxi-
mize the good effects of the other two approaches.

Table 1. Interval-based fault detection approaches features.

Issue Simulator Observer Predictor

Wrapping effect Yes Yes No
Computational complexity High High Low
Unmodeled dynamics sensitivity High Medium Low
Initial conditions sensitivity High Medium Low
Fault sensitivity actuator Dynamic Dynamic Constant

sensor Constant Pulse Deadbeat
Noise sensitivity process LP filter LP filter Gain

sensor Gain HP Filter HP filter

4. Fault detection using the error-bounding
approach

Alternatively to the interval approach presented in the
previous section, the error-bounding approach relies on
checking whether the measured sequence of system inputs
and outputs available at every time instant k could have
been generated by the model (2) and parameter values in
the parameter uncertainty set Θ (Ocampo et al., 2006).
This approach is related to the inverse test described in
Section 2.

4.1. Fault detection test in the parameter space. The
inverse test involves checking if there exists a parameter
in the parameter uncertainty set Θk such that the model
(2) is consistent with the systems measurements. This test
can be easily implemented using the error-bounding pa-
rameter estimation procedure described in Section 5 since
it can operate in the recursive form as follows:

Θk+1 = Θk ∩ Fk, (14)

where

Fk

=
{
θ ∈ R

nθ |y(k) − σ ≤ M(q−1, θ)u(k) ≤ y(k) + σ
}

is the strip of parameters consistent with the current mea-
surements. In fault detection using the inverse test, the

model is assumed invalidated and a fault is indicated if
Θk+1 = ∅ (Ingimundarson et al., 2008). Once the fault
has been indicated, the feasible parameter set Θk should
be reset to a set that contains all possible values even in
a faulty situation. Then, the faulty feasible parameter set
can be identified (fault isolation) and the fault size can be
estimated by comparing the feasible parameter set before
and after fault detection using, for example, the distance
between centres of these sets (fault estimation).

Although outer approximation is most often used in
fault detection since it contains all the consistent models,
inner approximation, which contains only consistent pa-
rameters, can complement the use of outer approximation
in order to improve the fault detection behaviour.

4.2. Fault detection test in the state space. An
error-bounded state estimator assumes a priori bounds on
noise and uncertain parameters and constructs sets of esti-
mated states that are consistent with the a priori bounds
and current measurements. Several researchers (Chisci
et al., 1996; Maksarov and Norton, 1996; Shamma, 1997;
Calafiore, 2001; Kieffer et al., 2002) have addressed this
issue. Consider the system given by Eqn. (1), an ini-
tial compact set Xo and a sequence of measured inputs
and outputs, the uncertain state set at time k using the
error-bounding approach can be computed using the al-
gorithm presented in Fig. 3. A fault is detected when
X

e
k = X

p
k ∩ X

y
k = ∅ (Planchon and Lunze, 2006; Guerra

et al., 2007).

Fig. 3. Error-bounding state estimation.

5. Identification for robust fault detection

5.1. Model parametrisation. One of the key points
in model based fault detection is how models are cali-
brated to fit real data taken from the monitored system
in non-faulty situations. Identification should deliver a
calibrated nominal model plus its modelling error in the
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form of interval parameters, which will provide an in-
terval of confidence for predicted behaviour, i.e., the in-
terval model, as already discussed in the introduction
of this paper. To this aim, several authors (Campi and
Calafiore, 2009; Calafiore et al., 2002; Ploix et al., 1999)
suggested an adaptation of classical system identifica-
tion methods to provide the nominal model plus the un-
certainty intervals for parameters that guarantee that all
recorded data from the system in non-faulty scenarios will
be included in the interval model. These algorithms are
based on using classical identification methods (for exam-
ple, least-squares) to provide the nominal estimate for sys-
tem parameters. Then the intervals of uncertainty for pa-
rameters are adjusted until all the measured data are cov-
ered by the model prediction interval.

These algorithms proceed considering that the inter-
val model (1) to be identified can be expressed in the re-
gressor form as follows:

y(k) = ϕT (k)θ + v(k) = ŷ(k) + v(k), (15)

where ϕ(k) is the regressor vector of dimension nθ which
can contain any function of inputs u(k) and outputs y(k);
v(k) is additive noise bounded by a constant |v(k)| ≤ σ;
θ ∈ Θk is the parameter vector of dimension nθ and Θk is
the set that bounds parameter values. This set can again be
approximated by ellipsoids, parallelotopes or zonotopes
(Milanese et al., 1996). If this set is described by a zono-
tope centered in the nominal model, it can be parame-
terised as follows (Bravo et al., 2006):

Θk = θ0 ⊕ HBn =
{
θ0 + Hz : z ∈ Bn

}
. (16)

Notice that a particular case corresponds to the case
where the parameter set Θk is an interval box:

[θi] =
[
θmin

i , θmax
i

]
=
[
θ0

i − λi, θ
0
i + λi

]
(17)

with i = 1, . . . , nθ. This set can be viewed as a zonotope
with H equal to an nθ × nθ diagonal matrix:

H = diag(λ1, λ2, . . . , λnθ
). (18)

Given a sequence of M regressor vector values ϕ(k)
in a fault free scenario and a model parameterised as in
Eqn. (15), the aim is to estimate model parameters and
their uncertainty (model set) following either an interval
or error-bounding parameter estimation approach.

5.2. Interval parameter estimation. In this case, the
set of uncertain parameters Θk should be obtained in such
a way that all measured data in a fault free scenario will
be covered by the predicted output interval produced by
using the model (15) and the uncertainty parameter set,
that is,

ŷ(k) ≥ y(k)−σ and ŷ(k) ≤ y(k)+σ, ∀k = 1, . . . , M,
(19)

where

ŷ(k) = max
(
ϕT (k)θ

)
with θ ∈ Θk, (20a)

ŷ(k) = min
(
ϕT (k)θ

)
with θ ∈ Θk. (20b)

This type of model identification was first suggested
by Ploix et al. (1999) in the context of fault detection using
a direct test and an interval LTI model in prediction.

Assuming that the parameter set Θk can be described
as the zonotope (16) and proceeding as Ploix et al. (1999),
the maximum and minimum interval prediction bounds
provided by the model (15) are given by

ŷ(k) = ŷ0(k) +
∥
∥ϕT (k)H

∥
∥

1
, (21a)

ŷ(k) = ŷ0(k) − ∥∥ϕT (k)H
∥
∥

1
, (21b)

where ŷ0(k) is the model output prediction with nom-
inal parameters, i.e., ŷ0(k) = ϕT (k)θ0 where θ0 =
(θ0

1 , . . . , θ
0
nθ

).
Notice that in the particular case of interval parame-

ters
∥
∥ϕT (k)H

∥
∥

1
=

n∑

i=1

λi |ϕi(k)| (22)

replacing Eqns. (21a) and (21b) in the inclusion conditions
(19), the optimal zonotope that fulfills the interval predic-
tion condition can be computed using Algorithm 1. In this
algorithm, the cost function f in Algorithm 1 is usually
the interval prediction thickness that can be calculated as

N∑

k=1

(ŷ(k) − ŷ(k)) = 2
N∑

k=1

∥
∥ϕT (k)H

∥
∥

1
. (23)

Algorithm 1 Interval parameter estimation (general case).

min
H

f(Θk(H))

subject to
∥∥ϕT (k)H

∥∥
1
≥ ∣∣y(k) − ŷ0(k)

∣∣− σ, ∀k = 1, . . . , M

In order to reduce the complexity of Algorithm 1, the
zonotope that bounds Θk can be parameterised such that
H = λH0, corresponding with a zonotope with a prede-
fined shape (determined by H0 ) and a scalar λ. Then, in
this case, the interval prediction thickness (23) is given by

N∑

k=1

(ŷ(k) − ŷ(k)) = 2 |λ|
N∑

k=1

∥
∥ϕT (k)H0

∥
∥

1
= f(|λ|),

(24)
and restrictions of Algorithm 1 can be expressed as fol-
lows:

λ
∥
∥ϕT (k)H0

∥
∥

1
≥ ∣∣y(k) − ŷ0(k)

∣
∣− σ, (25)
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leading to

λ ≥
∣
∣y(k) − ŷ0(k)

∣
∣− σ

‖ϕT (k)H0‖1

(26)

such that Algorithm 1 can be rewritten as Algorithm 2.
The optimal solution provided by such algorithm is

λ = sup
k∈{1,...,M}

(∣
∣y(k) − ŷ0(k)

∣
∣− σ

‖ϕT (k)H0‖1

)

. (27)

Algorithm 2 Interval parameter estimation (particular
case).

min
λ

2 |λ|
N∑

k=1

∥∥ϕT(k)H0

∥∥
1

subject to

λ ≥
∣
∣y(k) − ŷ0(k)

∣
∣− σ

‖ϕT (k)H0‖1

, ∀k = 1, . . . , M

5.3. Error-bounding parameter estimation. On the
other hand, the set of uncertain parameters Θk using an
error-bounded parameter estimation approach is obtained
in such a way that the predicted behaviour is consistent
with all the measured data in a fault-free scenario. In this
case, the obtained model satisfies the assumption that the
predicted behaviour is always inside the interval of possi-
ble measurements, that is,

ŷ(k) − σ ≤ y(k) ≤ ŷ(k) + σ, ∀k = 1, . . . , M, (28)

where
ŷ(k) = ϕT (k)θ

and θ ∈ Θk.
Algorithms for identifying such a kind of model are

also known as bounded-error parameter estimation algo-
rithms. In the work of Milanese et al. (1996), there is a
survey of such methods.

Using this approach, the parameter set Θk that con-
tains all models consistent with data, known as the feasi-
ble parameter set (FPS), is defined as follows:

FPS =
{
θ ∈ Θk | y(k) − σ ≤ ϕT (k)θ ≤ y(k) + σ,

k = 1, . . . , M} .
(29)

In general, the exact description of the FPS is not
simple. For this reason, existing algorithms usually ap-
proximate the FPS using inner/outer simpler shapes such
as boxes, ellipsoids or zonotopes (Milanese et al., 1996).
The approximation set is called an approximated feasible
parameter set (AFPS). In this paper, algorithms that pro-
vide an inner/outer AFPS employing zonotopes when us-
ing the model parameterised as in (15) are presented.

5.3.1. Outer approximations. Outer approximation
algorithms find the parameter set Θk of a minimum vol-
ume such that FPS ⊆ Θk. This kind of algorithm usu-
ally implies an excessive computational cost, and recur-
sive forms have been proposed, such as the one described
by Bravo et al. (2006). This recursive approach is based
in computing iteratively the AFPS using zonotopes and
related operations as follows:

AFPSk+1 = AFPSk ∩ Fk (30)

where

Fk =
{
θ ∈ R

nθ | y(k) − σ ≤ ϕT (k)θ ≤ y(k) + σ
}

.

5.3.2. Inner approximations. Inner approximation al-
gorithms find the parameter set Θk of a maximum volume
such that Θk ⊆ FPS.

A bounded-error inner approximation using zono-
topes parameterised as in Eqn. (16) for models expressed
as in (15) can be obtained in a similar way as proposed in
Algorithm 2. The inner approximation algorithm comes
from fact the FPS conditions (29) can be bounded by

y(k) − σ ≤ ŷ(k) ≤ ϕT (k)θ ≤ ŷ(k) ≤ y(k) + σ,

where ŷ(k) and ŷ(k) are defined as in (20a)–(20b), respec-
tively, and, if Θk is a zonotope, calculated as in (21a)–
(21b). Then, the maximum inner zonotope, centered at
θ0, can be computed using Algorithm 3, where the cost
function f in the error-bounded approach is usually the
volume of the zonotope defined by (16). This volume only
depends on matrix H and on Bn with a volume equal to
2n. In the particular case, H is a square matrix (nθ = n),
the volume is given by vol(Θk) = 2n |det(H)|. See the
research by Montgomery (1989) for more details.

Algorithm 3 Inner bounded-error zonotope (general case).

max
H

f(Θk(H))

subject to
∥
∥ϕT (k)H

∥
∥

1
≤ σ − ∣∣y(k) − ŷ0(k)

∣
∣ , ∀k = 1, . . . , M

As in Algorithm 1, to reduce the computational com-
plexity, the particular case when H = λH0 will be con-
sidered. Then, if H0 is a square matrix, vol(Θk) =
|2λ|n |det(H0)| and restrictions of Algorithm 3 can be ex-
pressed as

∥
∥ϕT (k)H0

∥
∥

1
≤ σ − ∣∣y(k) − ŷ0(k)

∣
∣ , (31)

leading to

λ ≤ σ − ∣∣y(k) − ŷ0(k)
∣
∣

‖ϕT (k)H0‖1

(32)
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such that it can be rewritten as Algorithm 4. The optimal
solution provided by such an algorithm is

λ = inf
k∈{1,...,M}

(
σ − ∣∣y(k) − ŷ0(k)

∣∣

‖ϕT (k)H0‖1

)

. (33)

Algorithm 4 Inner bounded-error zonotope (particular
case).

max
λ

vol(Θk) = f(|λ|)
subject to

λ ≤ σ − ∣∣y(k) − ŷ0(k)
∣
∣

‖ϕT (k)H0‖1

, ∀k = 1, . . . , M

6. Fault tolerance evaluation using
set-membership approaches

6.1. Motivation. The objective of this section is to
assess the tolerance of a certain actuator fault configu-
ration considering a linear predictive/optimal control law
with constraints showing the potential of set-membership
methods for FTC. This issue has been already treated in
the literature for the case of the LQR problem but with-
out constraints (Staroswiecki, 2003), thanks to the exis-
tence of an analytical solution. However, constraints (on
states and control signals) are always present in real indus-
trial control problems and could be easily handled using
model predictive control (MPC). In general, an analyti-
cal solution for these kinds of control laws does not exist,
which makes it difficult to reproduce the fault tolerance
evaluation analysis proposed by Staroswiecki (2003). The
method proposed in this section is not of analytical but of
computational nature. It follows the idea proposed by Ly-
doire and Poignet (2005), in which the calculation of the
control law for a predictive/optimal controller with con-
straints can be divided in two steps: first, the calculation
of a solutions set that satisfies the constraints (feasible so-
lution set), and then, optimal solution determination.

Faults in actuators will cause changes in the set of
feasible solutions since constraints on control signals vary.
This could make the set of admissible solutions for the
control objective empty. Therefore, the admissibility of
the control law facing actuator faults can be determined
knowing the feasible solutions set. This section provides
a method to compute this set and then evaluate the admis-
sibility of the control law.

To find the feasible solutions set for the problem of
MPC, a constraint satisfaction problem could be formu-
lated (Ocampo et al., 2006). However, this problem is
computationally demanding and should be solved approx-
imately in an iterative way in time, bounding it by its inter-

val hull. Moreover, when proceeding in this way, an inter-
val simulation problem is implicitly solved exhibiting typ-
ical difficulties associated with it (such as the wrapping ef-
fect, among others) (Puig et al., 2003), already described
in Section 3. In order to avoid such problems, the set of
possible states should be approximated using more com-
plex domains than intervals. In this section, a zonotope-
based method to evaluate the admissibility of fault actua-
tor configurations is proposed and discussed.

6.2. Admissibility of the control law. The solution to
a control problem consists in finding a control law in a
given set of control laws U such that the controlled sys-
tem achieves the control objectives O while its behaviour
satisfies a set of constraints C. The solution of the prob-
lem is completely defined by the triple 〈U, O, C〉 . In the
case of a linear constrained predictive control law, it can
be formulated as follows:

O : min
ũ

J(x̃, ũ),

subject to

C :

⎧
⎨

⎩

xk+1 = Axk + Buk,
uk ∈ U k = 1, . . . , N − 1,
xk ∈ X k = 0, . . . , N,

where

U = {uk ∈ R
m|umin ≤ uk ≤ umin} ,

X = {xk ∈ R
n|xmin ≤ xk ≤ xmin}

and

ũk = (uj)k−1
0 = (u0,u1, . . . ,uk−1),

x̃k = (xj)k−1
0 = (x0,x1, . . . ,xk).

The feasible solution set is given by

Ω =
{

x̃, ũ| (xk+1 = Axk + Buk)N−1
0

}
(36)

and gives the input and state sets compatible with system
constraints which originate the set of predictive states.

On the other hand, the feasible control objectives set
is given by

JΩ = {J(x̃, ũ)| (x̃, ũ) ∈ Ω} (37)

and corresponds to the set of all values of J(x̃, ũ) obtained
from feasible solutions in the set (36)

Finally, the admissible solution set is given by

A = {(x̃, ũ) ∈ Ωf | J(x̃, ũ) ∈ JA} , (38)

where Ωf corresponds to the feasible solution set of an ac-
tuator fault configuration and JA is defined as the admis-
sible control objective set according to controller specifi-
cations in a faulty situation. These specifications are given
by the end user as part of the controller specifications.
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The admissibility evaluation using a set computation
approach starts obtaining the feasible solution set Ω in-
troduced in (36) given a set of initial states Xo, the sys-
tem dynamics and the system operating constraints over
N using Algorithm 5, which is represented graphically by
Fig. 4.

Algorithm 5 Computation of the feasible solution set Ω.
1: X0 ⇐ X

2: Ω0 ⇐ X0 × U

3: for k = 1 to N do
4: Uk−1 ⇐ U

5: Compute X
p
k from Xk−1 and Uk−1 taking into ac-

count that

X
p
k = {xk = Axk−1 + Buk−1 |xk−1 ∈ Xk−1,

uk−1 ∈ U}

6: Compute X
c
k = X ∩ X

p
k

7: Compute U
c
k−1 from X

c
k and X

c
k−1 taking into ac-

count that

U
c
k−1 = {uk−1 ∈ U |xk = Axk−1 + Buk−1

xk ∈ X
c
k, xk−1 ∈ X

c
k−1

}

8: Ωk = X
c
k × U

c
k−1

9: Xk ⇐ X
c
k

10: end for

11: Ω =
N⋃

k=0

Ωk

Fig. 4. Feasible solution set computation.

While the feasible solution set Ω is being computed,
the feasible control objectives set JΩ at time k can be ob-
tained using Algorithm 6, which is represented by Fig. 5.
A given fault actuator configuration is admissible if

JA ∩ JΩ �= ∅.
Otherwise, it is not admissible.

Algorithm 6 Admissibility evaluation of a given actua-
tor fault configuation (AFC) and some admissible control
objective set JA.

1: Xk ⇐ X0

2: Ω0 ⇐ X0

3: for k = 1 to N do
4: Compute Ωk using Algorithm 5
5: Compute JΩk

defined in Eq. (38)
6: end for

7: JΩ =
N⋃

k=0

JΩk

8: if JA ∩ JΩ = ∅ then
9: AFC is not admissible

10: else
11: AFC is admissible
12: end if

Fig. 5. Admissibility evaluation: admissible AFC (a), non-
admissible AFC (b).

More details on how Algorithms 5 and 6 can be im-
plemented using zonotopes can be found in the work of
Guerra et al. (2007).

7. Real applications

The FD/FTC set-membership methods described in this
paper were used in some real applications, in which the
Advanced Control Systems (SAC)2 research group at Uni-
versitat Politècnica de Catalunya (UPC)3 was deeply in-
volved.

2http://websac.upc.edu
3http://www.upc.edu

http://websac.upc.edu
http://www.upc.edu
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7.1. FD Application: DAMADICS case study.
DAMADICS was a Research Trained Network funded by
the European Commission under the 5th Framework pro-
gramme. It started in 2000 and ended in 2003. The ob-
jectives were providing the training and mobility of re-
searchers working on the synthesis and development of
methods and on-line diagnostic tools for applications in
power, food processing and chemical industries. Within
this network, a benchmark for fault diagnosis was devel-
oped based on an industrial smart actuator used in the
evaporation station of a sugar factory in Poland (Bartys
et al., 2006). The smart actuator consists of a control
valve, a pneumatic servomotor and a smart positioner (see
Fig. 6). In this paper, this benchmark will be used for
testing and comparing the fault detection and identifica-
tion methods presented in Sections 3 and 5. In particular,
the focus will be on the pneumatic servomotor and the
electro-pneumatic transducer components of the smart ac-
tuator (see Fig. 7).

Fig. 6. DAMADICS smart actuator.

Fig. 7. DAMADICS smart actuator block diagram.

7.1.1. Interval model of the system. The pneumatic
servomotor has non-linear second-order dynamics (Bartyś

and de las Heras, 2003) described by

m
d2X

dt2
= −kv

dX

dt
− kx (k + X) + AePs + mg, (39)

where X is the servomotor rod displacement (neglecting
hysteresis), Ps is the pressure in the servomotor chamber,
Ae is the diaphragm area, m is the mass rod, kx is the
spring and diaphragm constant, k is a constant (0.00925)
and kv is the valve constant.

On the other hand, the electro-pneumatic transducer
has non-linear first-order dynamics described by

dPs

dt
= (Ps + Pa)

(
1

ma

dma

dt
− Ae

V

dX

dt

)
, (40)

where Ae is the diaphragm area, CV P is the command
pressure, Pa is the athmospheric pressure, Ps is the pres-
sure in the servomotor’s chamber, Pz is the positioner sup-
ply pressure, k1 is a units conversion factor (2.5 × 10−6),
V is the chamber volume, R is the constant for ideal gases,
T is the ambient temperature, ma = (Ps + Pa)V /RT is
the air mass and dma/dt is the air mass flow is given by

dma

dt
=
{

k1CV P
√

Pz − Ps if CV P > 0,
k1CV P

√
Ps if CV P ≤ 0.

(41)

Assuming that the volume V is constant and consid-
ering the case when CV P > 0, the discrete-time trans-
fer function (in terms of the q-operator) that relates X(k)
with CV P (k) can be obtained by replacing Ps in (39) by
a linearised version of Eqn. (40):

X (k) =
bx2q

−2 + bx3q
−3

1 + ax1q
−1 + ax2q

−2 + ax3q
−3

CV P (k) .

(42)
Using this model for the servomotor and a scenario

free of faults, an interval model for simulation, prediction
and observation that will produce an interval for the pre-
dicted behaviour including all non-modelled effects, noise
and modelling errors is derived using interval identifica-
tion algorithms presented in Section 5. In the observer
approach, the observer gain was pre-designed using the
nominal parameters of the simulation approach such that
it provides dynamics four times faster than the servomotor
(L = [−0.1286 − 0.0087 0.0717]). It should be noticed
that in Table 2 some parameters are not considered un-
certain since after the interval identification process the
obtained uncertainty is negligible.

7.2. Application to several fault scenarios.

7.2.1. Fault f10 (“diaphragm perforation”). In this
scenario, a fault in the pneumatic servomotor is intro-
duced. The fault is a servomotor diaphragm perforation
caused by the fatigue of the diaphragm material. In the
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Table 2. Interval model parameter estimation.

Parameter Simulator Predictor Observer

ax1 0.0501 [0.0027, 0.0207] [0.0485, 0.0517]
ax2 -0.0032 [0.0002, 0.0022] -0.0032
ax3 [−0.8595,−0.8495] [−1.5616,−1.5716] -0.8545
bx2 [−0.6681,−0.6581] [0.3570, 0.3590] -0.6631
bx3 [0.5384, 0.5484] [0.2111, 0.2311] [0.5353, 0.5595]

DAMADICS benchmark, this fault is named as f10. It the
present experiments, the fault scenario that will be used
corresponds to the abrupt big size (Bartys et al., 2006).
The fault appears at time instant t = 2100 s.

In Fig. 8, results of the interval simulation approach
are presented. It can be observed that the real measure-
ment goes out of the simulation envelope immediately and
the fault indicator is activated permanently after fault ap-
pearance. This is one the main properties of the simulation
approach since the output prediction only uses the input
but not the output.

In Fig. 9, results of the interval prediction approach
are presented. In this case, it can be observed that the
measurement goes out of the prediction envelope. But, af-
ter some time instants, it comes back inside the envelope
because of the use of output measurements to produce the
output prediction. This is the fault following effect that
is a feature of the prediction approach. The fault indica-
tor is only activated when the measurement is outside the
envelope, but when the measurement comes back inside
the envelope, it is deactivated. Since this approach is very
sensitive to noise, even when the measurement is inside
the envelope, it can go out for a few seconds. Recall that
the prediction approach is based on the previous measure-
ments corrupted by the noise.

Finally, in Fig. 10, results of the interval observation
are presented. In this case, the situation can be viewed as
intermediate between the two previous approaches. The
measurement goes out of the observation envelope when
the fault appears. But because of partial measurement cor-
rection it comes back inside the envelope after 300 s of the
initial fault detection time. Clearly, fault detection persis-
tency is bigger than in the case of the prediction approach.
Since this approach only corrects the prediction partially
with measurements, the effect of noise is less important
than in the case of the prediction approach, being the num-
ber of fault false indications due to the noise effect.

7.2.2. Fault f1 (“valve clogging”). In this case, a fault
in the control valve is introduced. The fault is valve clog-
ging. It consists in blocking servomotor rod displace-
ment by an external event of mechanical nature. In the
DAMADICS benchmark, this fault is named as f1. It the
present experiments the fault scenario that will be used
corresponds to the abrupt big size (Bartys et al., 2006).
The fault appears at time instant t = 2100 s. Results pre-

Time (s) 

Position (m) 

Fig. 8. Fault detection of f10 using interval simulation.

Time (s) 

Position (m) 

Fig. 9. Fault detection of f10 using interval prediction.

sented in Fig. 11–13 confirm the same interpretations as
in the case of f10.

7.2.3. Discussion of results. From the application re-
sults presented so far, it can be observed that the simula-
tion approach is most persistently sensitive to faults in the
sense that when a fault appears its existence is constantly
indicated, although it is very conservative (thick predic-
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Position (m) 

Time (s) 

Fig. 10. Fault detection of f10 using interval observation.

Position (m) 

Time (s) 

Fig. 11. Fault detection of f1 using interval simulation.

tion envelopes since no correction with measurements is
introduced). On the other hand, the two other approaches
are less conservative (tighter envelopes thanks to the cor-
rection with measurements) and very sensitive to faults
when they appear, but also tend to follow the faulty sys-
tem (fault following effect). However, when using an ob-
server, designing properly the observer gain, the time to
follow the fault can be increased. Regarding the effect of
the noise on the different approaches, the prediction ap-
proach is very sensitive because it substitutes the output
prediction by its measurement. The observation approach
is less sensitive because of the correction of the output
prediction is partial and controlled by the observer gain.
Finally, the simulation approach is most insensitive to the
noise effect of the three approaches because no correc-
tion of the output prediction is introduced. To deal with
the noise, the test given by (3) is not usually sufficient. It

Position (m) 

Time (s) 

Fig. 12. Fault detection of f1 using interval prediction.

Position (m) 

Time (s) 

Fig. 13. Fault detection of f1 using interval observation.

must be complemented with a more sophisticated test such
as evaluating residual energy (Emami-Naeini et al., 1988).

7.3. FTC application: Barcelona sewer network.

7.3.1. Introduction. Sewer networks are complex
large-scale systems which, in turn, require highly sophisti-
cated supervisory-control systems to ensure that high per-
formance can be achieved and maintained under adverse
conditions. Most cities around the world have sewage sys-
tems that combine sanitary and storm water flows within
the same network. This is why these networks are known
as combined sewage systems (CSSs). During rain storms,
wastewater flows can easily overload these CSSs, thereby
causing operators to dump the excess of water into the
nearest receiver environment (rivers, streams or sea). This
discharge to the environment, known as the combined
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sewage overflow (CSO), contains biological and chemi-
cal contaminants creating a major environmental and pub-
lic health hazard. A possible solution to the CSO prob-
lem is to use a highly sophisticated real-time control
(RTC) scheme which ensures that high performance can
be achieved and maintained under adverse meteorolog-
ical conditions (Schütze et al., 2004; Marinaki and Pa-
pageorgiou, 2005). Comprehensive reviews that include
a discussion of some existing implementations are given
by Schilling et al. (1996) and Schütze et al. (2004) and
the cited references therein, while practical issues are dis-
cussed by Schütze et al. (2002), among others. The mul-
tivariable and large-scale nature of sewer networks has
led to the use of some variants of model predictive con-
trol (MPC), as the control strategy widely use (Ocampo
et al., 2008).

The MPC control system need of operating in ad-
verse meteorological conditions involves, with a high
probability, sensor and actuator malfunctions (faults).
This problem calls for the use of an on-line FD system
able to detect and correct such faults (if possible) by acti-
vating fault tolerance mechanisms, such as soft sensors or
embedded tolerance of the MPC controller, which allow
avoiding stopping the control system every time a fault
appears (Puig, 2009).

7.3.2. Fault tolerance evaluation. The case study
to illustrate the MPC fault-tolerance evaluation approach
presented in Section 6 corresponds to a piece of the
Barcelona sewer network. The modelling methodology
used to obtain a control oriented model of this network is
based on the approach proposed by Gelormino and Ricker
(1994) as well as Cembrano et al. (2004). In this method-
ology the sewer system is divided into connected sub-
groups of catchments and treated as interconnected virtual
tanks. At any given time, the stored volume represents the
amount of water inside the sewers. The volume is calcu-
lated through the mass balance of the stored volume, tak-
ing into account area rainfall and flow exchanges between
the tanks. For each tank (catchment), the equation is

xi(k + 1) = xi(k) + ϕSPi(k)

+ Δt(qin
i (k) − qout

i (k)),

where ϕ is the ground absorption coefficient of the i-th
catchment, S is the area of the i-th catchment, P is the
precipitation intensity in Δt of the i-th catchment and Δt
is the time interval between measurements. Here qin

i (k)
and qout

i (k) are the sums of inflows and outflows, respec-
tively. Using this modeling methodology, the model for
the piece of the Barcelona sewer network considered is
described by the following discrete-time state equations
(Fig. 14):

vk+1 = Avk + Bquk
+ Bpdk, (43)

where

A =

⎛

⎝
1 − Δtβ1 0 0

0 1 0
Δtβ1 0 1 − Δtβ3

⎞

⎠ ,

B = Δt

⎛

⎝
1 0 0
0 1 −1
−1 −1 1

⎞

⎠ ,

Bp = Δt

⎛

⎝
0 α2 0
0 0 0
1 0 α3

⎞

⎠ ,

with sampling time Δt = 300 s and system parameters
α2 = 0.5715, α3 = 0.0783, β1 = 5.8 × 10−4 and
β3 = 1.0 × 10−3, which are estimated from real data.
The system has three state variables vi, corresponding to
virtual/real tank volumes, and three input signals qui , cor-
responding to the manipulated inflows by the command
gates (Ocampo et al., 2006). Vector d is related to the rain
inflows (measured disturbances). The system constraints
include:

• bounding constraints (refer to physical restrictions):

v2k ∈ [0, +∞], qu1k ∈ [0, 11],
v3k ∈ [0, 35000], qu2k ∈ [0, 25], (44)

v4k ∈ [0, +∞], qu3k ∈ [0, 7],

• mass conservation constraints:

d1k = qu1k + q14k,

qv1k = qu2k + q24k, (45)

qv2k ≥ qu3k,

where qvi(k) = βivi(k) (Ocampo et al., 2006). For the
admissibility study, since it is done off-line, it is supposed
that the vector dk (rain) is known at each time instant k,
which means a known perturbation. This means that the
obtained results are used for the evaluation of the tolerant
control system.

It is desired to evaluate the admissibility of differ-
ent actuator fault configurations not only in reconfigura-
tion but also in accommodation. Configuration admissi-
bility is evaluated using Algorithm 6, which compares the
control objectives degradation with respect to the nominal
(without fault) configuration for a given rain episode. The
selected rain episode corresponds to the one that occurred
on September 14, 1999. This day severe flooding occurred
as a consequence of a rain storm. The actuator faults are
not simultaneous and they are present from the beginning
of the scenario. Actuator faults are considered changes in
the operating limits in the case of accommodation or as
completely damaged in the case of reconfiguration.
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Fig. 14. Application case: three-tank catchment.

7.4. Control objective and admissibility criterion.
The control objective is defined as pollution (water vol-
ume that goes to the sea through collector qsea). Thus,
the control objective in terms of system variables can be
written as follows:

J = Vsea = Δt

N∑

k=0

qsea(k), (46)

where qsea(k) = max(0, qv3(k) − qmax
3 ) is the water flow

to sea.
The admissibility criterion is based on a direct com-

parison between the minimum volume in fault V faulty
sea and

non-faulty configuration V nom
sea . That is, setting α as the

accepted level of degradation, if

V faulty
sea > αV nom

sea , (47)

then the evaluated system configuration is not admissible.
Otherwise, it is admissible. In the case study considered,
the design condition α was set to 2 taking into account the
heuristic knowledge of the system network operators.

7.5. Reconfiguration case. First, the case of actuators
completely damaged due to a fault is considered. In partic-
ular, the case of gates completely closed is studied, that is,
qui ∈ [0, 0] and qi ∈ [0, +∞]. The fault tolerant strategy
that is used in this situation considers the reconfiguration
of the control loop neglecting the faulty actuators. Ad-
missibility evaluation results of each actuator fault config-
urations obtained applying Algorithm 6 are summarized

in Table 3. The second column shows the minimum value
of water released to the sea at the end of the time horizon
considered. Figure 15 shows the minimum feasible vol-
ume released to the sea (pollution) for each actuator fault
configuration compared against the admissibility thresh-
old (47) when reconfiguration is used.

Table 3. Admissibility of fault configurations for pollution: re-
configuration.

Fault Min. volume Admissibility
location [m3] status

No fault 5209 —
Fault in qu1 11395 Not admissible
Fault in qu2 44089 Not admissible
Fault in qu3 5209 Admissible

Fig. 15. Minimum volume to the sea in different fault scenarios
in reconfiguration.

7.6. Accommodation case. Now, faults that cause a
reduction in the actuator operating range (for example
from 0–100% to 0–50%) are considered. The fault tol-
erant strategy that is used in this case is based on accom-
modating the controller by changing the actuator operat-
ing ranges according to the fault. Application of Algo-
rithm 6 to two accommodation ranges for each actuator
fault configuration are considered. The results of admis-
sibility evaluation are summarized in Table 4. This table
does not consider the case of a fault in qu3 due to system
insensitivity to this actuator fault, as shown in Table 3.
Figure 16 shows the minimum feasible volume released
to the sea (pollution) for each actuator fault configuration
compared against the admissibility threshold (47) when
accommodation is used.

8. Conclusions

This paper has reviewed the use of set-membership meth-
ods in robust FD and FTC. Alternatively to statistical
methods, set-membership methods use a deterministic
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Table 4. Admissibility of fault configurations: accommodation
Fault Operation Min. volume Admissibility

location range [m3] status

No fault — 5209 —
Fault in qu1 0-20% 10005 Admissible
Fault in qu1 0-50% 8149 Admissible
Fault in qu2 0-20% 27705 Not Admissible
Fault in qu2 0-50% 9887 Admissible

Fig. 16. Minimum volume to the sea in different fault scenarios
in accomodation

unknown-but-bounded description of noise and paramet-
ric uncertainty (interval models). Using approximating
sets to enclose the exact set of possible behaviours (in the
parameter or the state space), these methods allow check-
ing the consistency between the observed and predicted
behaviours. When an inconsistency is detected the fault
can be indicated, otherwise nothing can be stated. The
same principle has been used to estimate interval models
for fault detection and to develop methods for fault toler-
ance evaluation. Finally, a real application of these meth-
ods has been used to exemplify the successful use of the
proposed set-membership methods in FD/FTC.
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