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The paper presents a simple mathematical model called a coupled map lattice (CML). For some range of its parameters, this
model generates complex, spatiotemporal behavior which seems to be chaotic. The main purpose of the paper is to provide
results of stability analysis and compare them with those obtained from numerical simulation. The indirect Lyapunov
method and Lyapunov exponents are used to examine the dependence on initial conditions. The net direction phase is
introduced to measure the symmetry of the system state trajectory. In addition, a real system, which can be modeled by
the CML, is presented. In general, this article describes basic elements of environment, which can be used for creating and
examining methods of chaos controlling in systems with spatiotemporal dynamics.
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1. Introduction

Deterministic chaos is complex behavior which can be ge-
nerated by a nonlinear dynamic system as a result of sta-
te trajectory evolution when its previous history is known
(Ott, 2002). The origin of this phenomenon in nonlinear
dynamic systems is connected with their sensitivity to ini-
tial conditions. In fact, chaotic behavior is a common phe-
nomenon discovered in physics (liquids (Procaccia and
Meron, 1986; Langenberg et al., 2004), lasers (Yamada
and Graham, 1980; Used and Martin, 2010), plasma (Held
et al., 1984; Banerjee et al., 2010)), mechanics (Chui and
Ma, 1982; Ott, 2002), electronics (Gunaratne et al., 1989;
Yim et al., 2004), chemistry (Argoul et al., 1987; Córdo-
ba et al., 2006), biology (action of human heart (Govindan
et al., 1998) and brain (Andrzejak et al., 2001; Gautama
et al., 2003)), and in many other branches of science and
industry.

Chaotic systems, due to their sensitivity to initial
conditions, are unpredictable but, as has been proved,
they can be effectively controlled (Ott et al., 1990; Sin-
ger et al., 1991; Dressler and Nitsche, 1992; Chen and
Dong, 1993; Alsing et al., 1994; Pyragas, 2001; Andrie-
vskii and Fradkov, 2003). The control of chaos in such
a type of system is considered a process which changes
an irregular and unpredictable behavior to a well-ordered
and periodical one. Sensitivity to initial conditions is par-

ticularly important in real, physical systems. For exam-
ple, a chaotic behavior in chemical reactors can cause
unpredictable and negative results. Moreover, many real
systems and their mathematical models represent similar
spatiotemporal behaviors, where chaos can be observed
both in time and space. As has been shown, chaos in spa-
tially distributed dynamical systems can also be control-
led (Auerbach, 1994; Astakhov et al., 1995; Parmanan-
da, 1997; Parekh et al., 1998; Zhu and Chen, 2001; Miha-
liuk et al., 2002; Beck et al., 2002; Boukabou and Manso-
uri, 2005). This makes this issue even more essential and
it seems that it could have numerous practical applications
(i.e., chemical reactors, lasers, plasma).

The main purpose of the paper is to provide results
of both analytical and numerical research regarding CML
system stability. In addition, we found it very important to
chose and present proper tools which can be useful during
the examination of the system sensitivity to initial con-
ditions. Based on measurements of this property and the
level of state trajectory symmetry, some conclusions about
the existence of chaos in the system can be made.

The presented model and tools can be helpful while
creating and checking new algorithms of controlling cha-
os for spatiotemporal systems. It is even more essential as
its potential, physical application is presented. In general,
this article describes basic elements of environment which
can be used for creating and examining methods of con-
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Table 1. Classification of systems with spatiotemporal dynamics.
Model Space Time Local structure

Partial differential equations (PDEs) C C C
Iterated functional equations (IFEs) C D C
Oscillator chains (OCs) D C C
Lattice dynamical systems (LDSs) D D C
Cellular automata (CA) D D D

trolling chaos in systems with spatiotemporal dynamics.

2. Models of systems with spatiotemporal
dynamics

2.1. Classification. The classification of mathematical
methods used for modeling systems with spatiotempo-
ral dynamics was presented by Crutchfield and Kaneko
(1987). This classification is based on choices of the di-
scretization of space, time and local state variables (see
Table 1).

The letter ‘C’ in particular columns of Table 1 stands
for continuous values while the letter ‘D’ for discrete va-
lues. The table contains five most frequently used models
for systems with spatiotemporal dynamics. For instance,
partial differential equations (PDEs) require a continu-
ous function of time and space to specify a state. Latti-
ce dynamic systems (LDSs) and cellular automata (CA)
(Weimar, 1997; Chopard et al., 2002; Jacewicz, 2002)
are constructed using discrete lattices (N -dimensional in
general) and their states change according to a discrete
clock. The difference between LDSs and CA results from
different types of values in each node of lattice. In LDSs,
the set of states is infinite and contains real values, while
in CA only integers are allowed. The LDS class includes
also the coupled map lattice, i.e., the model which is pre-
sented in this article.

When the distribution of nodes in the lattice is consi-
dered, CA and the CML can be put into a single common
class known as spatially distributed dynamic systems with
a regular structure. This class is special, because there is
a symmetry of local connections for all lattice nodes. This
symmetry remains unchanged for the whole system.

2.2. Brief characteristic of classes. Real-valued state
variables in the CML make this model more efficient than
CA when it comes to the modeling of real systems. Even
for a small lattice size, behaviors similar to real ones can
be observed (Kaneko, 1990). In CA, each cell is treated as
a macro-particle, therefore a bigger lattice size is necessa-
ry to perform a real simulation (Weimar, 1997; Chopard
et al., 2002; Jacewicz, 2002; Korus, 2007). For both types
of systems, i.e., CA and the CML, principles of dynamic
systems theory and information theory can be applied. Be-
cause of complex behaviors obtained in CMLs even for

small lattice sizes, this model is frequently used for mo-
deling chaos. In addition, it is worth stating that both CA
and CMLs are easy to implement as computer algorithms,
mainly due to their simple structure. In practice, it is much
easier to implement CA or CMLs than to use PDEs on
computers.

To sum up, it has to be highlighted that CMLs can
be used as simple dynamic systems where complex col-
lective behaviors, including spatiotemporal chaos, may be
observed.

3. CML: Model definition

A single-dimensional coupled map lattice can be consi-
dered as a set of simple components numbered as n =
1, . . . , N . The state of each component given by xt(n)
changes in discrete time steps: t = 1, . . . , T . It is calcu-
lated based on state values from the previous time step in
surrounding components according to the evolution func-
tion (Crutchfield and Kaneko, 1987; Kaneko, 1990):

xt+1(n) = f(xt(n)) + εLg(xt(n − 1))
+ ε0g(xt(n)) + εRg(xt(n + 1)),

(1)

where the vector

ε = (εL, ε0, εR) (2)

is the coupling kernel. The function f defines local dyna-
mics and it is the most often taken as a logistic map

f(x) = px(1 − x), (3)

or a circular map

f(x) = ω + x + k sin(2πx). (4)

The function g defines coupling dynamics and may
be selected as the linear coupling

g(x) = x, (5)

or the same as a local function

g(x) = f(x). (6)

The system states in a particular time step can be collected
using the vector

xt = (xt(1), xt(2), . . . , xt(N)). (7)
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The paper presents examination results for the CML
with diffusive coupling. The kernel for this system is given
by the vector

ε = (εL, ε0, εR) =
(ε

2
, 1 − ε,

ε

2

)
. (8)

Replacing the coupling kernel from the general evolution
function (1) with (8) and removing the part representing
local dynamics, the evolution function of the system can
be written as

xt+1(n) = (1 − ε)g(xt(n))

+
ε

2
[g(xt(n − 1)) + g(xt(n + 1))],

(9)

where the coupling function is given by the logistic equ-
ation

g(x) = px(1 − x). (10)

A detailed analysis of transition to chaos in the logistic
equation can be found in the work of Ott (2002).

At the beginning of simulation, i.e., for the time step
t = 1, states values for all components are generated from
a uniform distribution. The boundary conditions depend
on the modeled problem and can be chosen as fixed, pe-
riodic, free, etc. In this paper, a CML model with fixed
boundary conditions

x(N + 1) = 0,

x(0) = 0
(11)

is examined.
Figure 1 presents the structure of a single-

dimensional coupled map lattice. Figure 2 contains three
diagrams which show the behavior of the CML in time and
space domains for ε = 0.8 and p = 4. Chaotic properties
of the coupling function, which is the logistic equation in
this case, are additionally strengthened in the CML by co-
uplings with surrounding components.

4. Detection of chaotic behavior

In this section, two coefficients which provide quantitative
evaluation of chaotic properties are described.

4.1. Lyapunov exponents. Lyapunov exponents pro-
vide quantitative information about the separation ra-
te of preliminarily close trajectories (Ott, 2002). For
single-dimensional discrete equations given by the formu-
la xt+1 = g(xt), we have

h = lim
T→∞

1
T

T∑
t=1

ln |g′(xt)| . (12)

The positive Lyapunov exponent means that chaos is pre-
sent.

Fig. 1. Structure of the coupled map lattice under examination.

4.2. Net direction phase. The net direction phase in-
troduced by Wei et al. (2000) is an indicator similar to
magnetization, which can be defined as

M =
1
T

T∑
t=1

S(t), (13)

where S(t) = 1 for xt+1 − xt ≥ 1 and S(t) = −1 for
xt+1 − xt < 1, and T is the iteration number. The direc-
tion S(t) = 1 can be denoted by S↑ and S(t) = −1 as S↓.
Whenever M = 0, the situation can be described as the
zero net direction phase. This means that the system tra-
jectory xt switches symmetrically from the upward direc-
tion phase (S↑) to downward direction phase (S↓) and the
system behaves regularly. If M �= 0, this means that the
arrangement of the upward and downward direction pha-
ses is disordered and the system generates non-periodical
trajectories.

The bifurcation diagram and diagrams of the Lyapu-
nov exponent and the net direction phase versus parameter
p for the logistic equation (10) are shown in Fig. 3.

5. CML: Stability analysis

This section contains results of stability analysis for the
CML model given by (9). The analysis was performed
using the indirect Lyapunov method for non-linear dyna-
mic systems. The method is called indirect because conc-
lusions on the stability of a nonlinear dynamic system are
formulated based on results of stability analysis obtained
for its linear approximation. Consider a discrete dynamic
system

yt+1 = F (yt), (14)

where yt and yt+1 are consecutive state vectors. The first
step of the method is to form a linear approximation of the
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Fig. 2. Diagram illustrating the lattice behavior in time and space domains for ε = 0.8 and p = 4.

Fig. 3. Bifurcation diagram x(p), the net direction phase M and
the Lyapunov exponent h versus the parameter of the
logistic equation p.

original nonlinear system:

yt+1 = Jyt + r, (15)

where J = ∂Fi/∂yj is a Jacobi matrix and r is the infini-
tesimal remainder, satisfying

lim
yt→0

r(yt)
||yt|| = 0.

Thus, the nonlinear system (14) can be written as lineari-
zation

yt+1 ≈ Jyt, (16)

where J is the Jacobi matrix determined at a fixed point
yF . The next step is to examine the stability of the line-
ar approximation and to draw conclusions concerning the
nonlinear system. According to the Lyapunov method, a
nonlinear system is locally stable asymptotically when its
linear approximation is asymptotically stable at this point.
A nonlinear system is unstable if so is its linear approxi-
mation. However, if the linear approximation is stable, but
not necessarily asymptotically, nothing can be concluded
about the stability of a the original nonlinear system.

The general evolution equation (9) can be also writ-
ten in matrix form:

xt+1 = WG(xt), (17)

where

xt+1 = [xt+1(1) . . . , xt+1(N)]T , (18)

xt = [xt(1), . . . , xt(N)]T , (19)
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W =

⎡
⎢⎢⎢⎢⎢⎣

(1 − ε) ε
2 0 . . . 0

ε
2 (1 − ε) ε

2 . . . 0
0 ε

2 (1 − ε) . . . 0
...

...
...

. . .
...

0 0 0 . . . (1 − ε)

⎤
⎥⎥⎥⎥⎥⎦

.

(20)
The linearization of such a system around a fixed point
xF , can be written as follows:

et+1 ≈ J(xF )et, (21)

where

et+1 = [xt+1(1) − xF , . . . , xt+1(N) − xF ]T , (22)

et = [xt(1) − xF , . . . , xt(N) − xF ]T , (23)

J =

⎡
⎢⎢⎢⎢⎢⎣

(1 − ε)Λ ε
2Λ . . . 0

ε
2Λ (1 − ε)Λ . . . 0
0 ε

2Λ . . . 0
...

...
. . .

...
0 0 . . . (1 − ε)Λ

⎤
⎥⎥⎥⎥⎥⎦

, (24)

with Λ = g′(xF ). Assuming that A = (1 − ε)Λ and
B = (ε/2)Λ, the Jacobi matrix can be written as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A B 0 . . . 0 0
B A B . . . 0 0
0 B A . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . A B
0 0 0 . . . B A

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

While determining the eigenvalues of J(xF ), it is
worth using the transformation (Kwon et al., 1997)

J = Λ(I − ε(I + Ĵ)), (26)

where I is the N -dimensional identity matrix and

Ĵ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
2 0 . . . 0 0

− 1
2 0 − 1

2 . . . 0 0
0 − 1

2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 − 1

2
0 0 0 . . . − 1

2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

The eigenvalues of the matrix J are

λi = Λ(1 − ε(1 + λ̂i)), (28)

where λ̂i are the eigenvalues of the matrix Ĵ . They can be
determined from the formula (Kwon et al., 1997)

λ̂i = cos
(

iπ

N

)
, (29)

where i = 1, . . . , N . Substituting (29) into (28), we get

λi = A − Λελ̂i = A − Λε cos
(

iπ

N

)
. (30)

If we use (30) and assume that A = (1 − ε)Λ, mini-
mal and maximal values for the eigenvalues of the matrix
J can be found:

λmin = A + Λε = (1 − ε)Λ + Λε = Λ, (31)

λmax = A − Λε = (1 − ε)Λ − Λε = (1 − 2ε)Λ. (32)

The suffixes “min” and “max” in (31) and (32) depend
on the values of the parameters ε and p, and therefore they
may be swapped. The system will be asymptotically stable
for each lattice component when |λi| < 1 for each i. In
practice, it is sufficient to check the following conditions:

{
|λmin| < 1,
|λmax| < 1.

(33)

According to the Lyapunov method, since the linear ap-
proximation is asymptotically stable, the original nonline-
ar dynamic system will be asymptotically locally stable.

The nontrivial period-1 fixed point of the logistic
map denoted by xF can be determined on the condition
that xt+1 = xt = xF . Hence, using this and the logistic
equation, it can be shown that xF = 1 − 1/p. Then, the
derivative of the logistic function g(x) at the point xF can
be written as

Λ = g′(xF ) = 2 − p. (34)

From (31)–(34) we obtain
{

|2 − p| < 1,
|(1 − 2ε)(2 − p)| < 1.

(35)

According to (35), when the conditions

p − 3
2p − 4

> ε >
p − 1
2p− 4

for p ∈ (1, 2)

and

p − 3
2p − 4

< ε <
p − 1
2p− 4

for p ∈ (2, 3)

are met, the system is stable. Figure 4 illustrates the
system behavior in time and space for p = 2.95 and
ε = 0.8. Figure 5 shows the state trajectory for the
component n = 25 versus time. Based on the analysis of
the system behavior shown in these two figures, it can be
concluded that the values of all lattice states stabilize at
the specified level.

The Lyapunov exponents are calculated by taking lo-
garithms of the minimal and maximal of eigenvalues given
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Fig. 4. Lattice behavior x(n, t) for p = 2.95 and ε = 0.8.

Fig. 5. State trajectory xt(25) for p = 2.95 and ε = 0.8.

by (31) and (32). In the case of CMLs, we have

hmin =
1
T

T∑
t=1

ln |g′(xt(n)|,

hmax = ln(|1 − 2ε|) +
1
T

T∑
t=1

ln |g′(xt(n)|.
(36)

The element ln(|1 − 2ε|) is related to the coupling
with surrounding components in the CML and extends
Eqn. (12), which defines the Lyapunov exponent for one-
dimensional, discrete equations.

Figures 6 and 7 show the distribution of the Lyapu-
nov exponents and the net direction in space. As we can
observe in Fig. 6, the Lyapunov exponents are negative
for almost all lattice components, which indicates orde-
red system trajectories. Similar conclusions can be drawn
from the distribution of the net direction phase (Fig. 7).

Fig. 6. Lyapunov exponents for all components h(n) for
p = 2.95 and ε = 0.8.

Fig. 7. Net direction phase for all components M(n) for p =
2.95 and ε = 0.8.

The values of this performance index are similar for all
lattice components and close to zero. This confirms the re-
gular nature of system state trajectories and a symmetrical
switching from increasing to decreasing state trajectories.

When the system parameters are set to p = 4 and
ε = 0.8, the eigenvalues are

{
λmin = (2 − p) = −2,
λmax = (1 − 2ε)(2 − p) = 1.2.

(37)

Both the values mentioned above are out of the range de-
termined by (33), which means that the system is unstable.
An irregular behavior of the system in time and space can
be observed in the diagram shown in Fig. 8. The sensitivi-
ty to initial conditions for states in all lattice components
is indicated by the distribution of the Lyapunov exponents
(Fig. 9). The lack of symmetry in switching between in-
creasing and decreasing trajectories is confirmed by the
distribution of the net direction phase (Fig. 10). Lyapunov
exponents are positive for all lattice components, while
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Fig. 8. Lattice behavior x(n, t) for p = 4 and ε = 0.8.

Fig. 9. Lyapunov exponents for all components h(n) for p = 4
and ε = 0.8.

the net direction phase is nonzero. Both the facts confirm
the chaotic nature of the system behavior (verified by si-
mulation).

6. CML: Chaotic behavior

Figures 2 and 8 contain diagrams which illustrate the
CML behavior in time and space for parameters ε = 0.8
and p = 4. Based on these diagrams, it can only be sta-
ted that the system behavior is complex and disordered.
Further conclusions can be drawn after the analysis of the
Lyapunov exponents (Fig. 9) and the net direction phase
(Fig. 10) for all lattice components. These diagrams con-
firm strong sensitivity to initial conditions and the lack
of symmetry in state trajectories. The above mentioned
conclusions, along with the fact that the logistic map (10)
is used as the coupling function, indicate that state tra-
jectories generated by all system components are chaotic.

Fig. 10. Net direction phase for all components M(n) for p = 4
and ε = 0.8.

Fig. 11. Mapping which transforms the values of the compo-
nents in time for the element n = 25 for ε = 0.8 and
p = 4.

Fig. 12. Change in cell values in time versus the logistic equ-
ation parameter p for n = 25.

The main source of chaos in the CML is the chaotic na-
ture of the logistic equation (10), which is used as the co-
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Fig. 13. Change in cell values in space versus the logistic equ-
ation parameter p for t = 190.

Fig. 14. Lyapunov exponent versus the parameter of the logistic
equation h(p) for a particular cell (n = 25).

upling function in the CML evolution equation (9). The
chaotic behavior derived from the same lattice component
but a previous time step is additionally strengthened by
coupling with surrounding components. It also makes the
mapping, which transforms the state values of time com-
ponents, close to the logistic map, but the generated po-
ints are additionally scattered (Fig. 11). Moreover, such
properties of the coupling function result in a chaotic be-
havior observed not only in time, but also in space. This is
confirmed by diagrams which illustrate scenarios of trans-
ition to chaos in time and space shown in Figs. 12 and 13.
The first of these figures shows the bifurcation of period
doubling in time for the component n = 25 when the pa-
rameter p of the logistic map changes. Figure 13 shows
a change in cell values in space for a fixed time moment
t = 190 versus the logistic equation parameter p. The sce-
nario of transition to chaos in the space domain is more

Fig. 15. Net direction phase versus the parameter of the logistic
equation M(p) for a particular cell (n = 25).

complex and it is not about period doubling.

Based on these two diagrams, which present scena-
rios of transition to chaos in time and space domains, it
can be concluded that, if we increase the value of the lo-
gistic equation parameter p, the set of possible state valu-
es becomes larger. This makes the system behavior more
disordered and unpredictable. Figures 14 and 15 present
the Lyapunov exponent and the net direction phase versus
the logistic equation parameter p for the lattice component
n = 25. As can be seen from Fig. 14, beyond some criti-
cal value of the parameter p, the values of the Lyapunov
exponent remain mainly positive. This indicates the cha-
otic nature of system dynamics for this range. Trajectories,
which are close to each other at the beginning, exhibit then
an exponentially increased distance between them.

The diagram which shows the net direction phase
versus the parameter p of the logistic equation (Fig. 15)
additionally confirms that, beyond some value of para-
meter p, the system behaves irregularly. This corresponds
to the range of the parameter p where the values of the
net direction phase are different from zero (Mn �= 0).
This is connected with a nonsymmetric switching betwe-
en the upward and downward direction phases of the tra-
jectories. Then, the chaotic behavior of the system can
be observed. Similar phenomena can be observed during
the examination of Lyapunov exponents and net direc-
tion phases for all lattice components (Figs. 16 and 17).
Both the diagrams show transition from a regular behavior
(hn < 0, Mn ≈ 0) to a chaotic one (hn > 0, Mn �= 0).

Based on these two diagrams, it can be also stated
that the system passes to a strongly chaotic behavior at
about p > 3.6. However, it should be added that also abo-
ve this value of the parameter p, there are such ranges of
time t for some components, where the Lyapunov expo-
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nents are negative. This indicates the regular nature of the
trajectories.

Fig. 16. Lyapunov exponents for all components hn versus the
parameter p of the logistic equation.

Fig. 17. Net direction phase for all components Mn versus the
parameter p of the logistic equation.

To sum up the results given in this section, the CML
is a mathematical model in which deterministic chaos can
be observed in time and space. Chaos which is connected
with the usage of the logistic map in the CML is additio-
nally strengthened by coupling with surrounding compo-
nents. Such a type of model can be used for modeling real
systems with nonlinear interconnected elements. For in-
stance, a CML was used to model the chain of vibrating
objects in seismology (Greilich and Markus, 2003).

7. CML: Example application

Coupled map lattices, as has been illustrated in previous
sections, are simple models with chaotic, spatiotemporal

dynamics. They can be used for the modeling of real phy-
sical objects. As an example, a tubular reactor is presented
in this section. The main aim of this object (Fig. 18) is to
convert substance A into product B. Due to the distribu-
ted nature of this object, the time variable t ∈ [0, T ] and
the space variable n ∈ [0, N ] can be considered. Process
variables are defined as functions of time and space:

• xt(n): distributed state of the process, i.e., the con-
centration of raw material substance A at time t at
point n of the tubular reactor;

• pt(n): distributed control of the process, i.e., the in-
tensity of the heat source at time t at point n of the
reactor;

• ut: concentrated boundary control of the process, i.e.,
the concentration of raw material substance A at time
t in the input stream of the reactor;

• vt: concentrated flow control of the process, i.e., the
flow intensity of the mixture through the reactor at
time t.

There are two types of control in this system: con-
centrated and distributed. The physical system shown in
Fig. 18 has a structure similar to the mathematical mo-
del presented in the previous sections. The lattice state at
a specific time t, given by the vector (7), corresponds to
the distributed state of the process in the tubular reactor.
The vector of control parameters in the CML can be equ-
ated with a distributed control of the process in the tubular
reactor. The concentrated control defined for the tubular
reactor can also be performed in the CML by changing
parameters for border components only. Hence, the struc-
tures of both the systems, the tubular reactor and the CML,
are similar. The main issue is to select a proper coupling
and local functions in the CML, which will assure that the
model will fit to the modeled system.

Fig. 18. Tubular reactor.

8. CML in micro and macro scales

Spatially distributed dynamic systems, such as the CML,
can be observed in two scales: micro and macro. Similar
to other chaotic systems, this one is also sensitive to chan-
ges in the initial conditions in micro scale. This means that
a small change in the initial state in the particular compo-
nent makes the system trajectory at this point of the lattice
exponentially separate in time from the previous one. On
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the other hand, while observing collective behaviors of all
lattice components in macro scale, it can be shown that a
radical change in the initial conditions yields no change
in the type of system behavior. This means that the sta-
te trajectory for a given component is dependent on initial
conditions, but taking into consideration the whole system
of collective components, it behaves very repetitively.

9. Conclusions

As was shown in this paper, the coupled map lattice is
a simple mathematical model which generates complex,
chaotic spatiotemporal behaviors for some range of its
parameters. Based on the indirect Lyapunov method, the
analysis of system stability was performed. Analytical re-
sults were compared with those obtained from numerical
simulation. To review the existence of chaos during nu-
merical studies, Lyapunov exponents and the net direction
phase were introduced. Scenarios of transition to chaos in
time and space domains were also provided. In addition, a
real system which can be modeled by CMLs was presen-
ted. To sum up, the article described basic elements of the
environment, which can be used for modeling spatiotem-
poral chaos. The presented model and tools can be also
helpful while creating and examining algorithms of con-
trolling chaos.
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