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A method for system matrix calculation in the case of iterative reconstruction algorithms in SPECT was implemented and
tested. Due to a complex mathematical description of the geometry of the detector set-up, we developed a method for sys-
tem matrix computation that is based on direct measurements of the detector response. In this approach, the influence of the
acquisition equipment on the image formation is measured directly. The objective was to obtain the best quality of recon-
structed images with respect to specified measures. This is indispensable in order to be able to perform reliable quantitative
analysis of SPECT images. It is also especially important in non-hybrid gamma cameras, where not all physical processes
that disturb image acquisition can be easily corrected. Two experiments with an 131I point source placed at different distan-
ces from the detector plane were performed allowing the detector response to be acquired as a function of the point source
distance. An analytical Gaussian function was fitted to the acquired data in both the one- and the two-dimensional case. A
cylindrical phantom filled with a water solution of 131I containing a region of “cold” spheres as well as a uniform solution
(without any spheres) was used to perform algorithm evaluation. The reconstructed images obtained by using four different
of methods system matrix computation were compared with those achieved using reconstruction software implemented in
the gamma camera. The contrast of the spheres and uniformity were compared for each reconstruction result and also with
the ranges of those values formulated by the AAPM (American Association of Physicists in Medicine). The results show
that the implementation of the OSEM (Ordered Subsets Expectation Maximization) algorithm with a one-dimensional fit to
the Gaussian CDR (Collimator-Detector Response) function provides the best results in terms of adopted measures. Howe-
ver, the fit of the two-dimensional function also gives satisfactory results. Furthermore, the CDR function has the potential
to be applied to a fully 3D OSEM implementation. The lack of the CDR in system matrix calculation results in a very noisy
image that cannot be used for diagnostic purposes.
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1. Introduction

Nuclear medicine imaging can be used to generate a spa-
tial or temporal activity distribution of a radioisotope ad-
ministered to the subject of a study. Like in many other
modalities, the 3D distribution is determined from 2D re-
presentations of the 3D distribution. The activity distribu-
tion of interest is projected onto a flat detector. Gamma
rays which are not perpendicular to the surface of the de-
tector are filtered out by a parallel-hole collimator. Other
collimator types such as a pin-hole or a fan-beam are not
within the scope of this paper. The detector rotates around

the centre of rotation acquiring a projection for each an-
gle. The matrix containing projection measurements for
all angles is referred to as a sinogram and is used in the
reconstruction process.

Reconstruction algorithms proposed in the literature
(Cherry et al., 2003; Zeng, 2001; Zaidi, 2006) can be divi-
ded into two classes: analytical and iterative. The former
assume noiseless data, an ideal collimator, no attenuation
and no scatter of gamma radiation. These assumptions can
make the reconstruction result an inaccurate representa-
tion of the true activity distribution. Therefore, additio-
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nal data filtering and postprocessing are necessary. The
most commonly used method is the Filtered Back Projec-
tion (FBP) algorithm (Zaidi, 2006), based on the inverse
Radon transform. The FBP method introduces streak ar-
tifacts when large differences in activity are imaged. The
latter (Vandenberghe et al., 2001) allow a complex model
of gamma radiation interaction to be taken into account,
and statistical variability of measured data. These are re-
commended for quantitative image analysis (Zaidi, 2006)
which is crucial, for example, in dosimetry. In the com-
mercial software provided with the gamma camera system
the possibility to adjust various parameters is limited. It is
especially important in non-hybrid systems, where possi-
ble corrections are restricted to those based only on the
emission data.

The aim of our work was to obtain the best quali-
ty reconstructed images in terms of specified measures. It
is paramount to perform reliable quantitative analysis of
SPECT images, especially in non-hybrid gamma cameras
as the necessary corrections are more challenging than in
SPECT/CT cameras.

The OSEM algorithm was implemented to allow the
implementation of all reconstruction corrections since this
is not possible with the software provided by the gam-
ma camera manufacturer. A set of phantom measurements
was performed to obtain parameters necessary to compute
the system matrix. The approach developed herein is ba-
sed on direct measurements. Finally, phantom tests were
performed to verify which method was most useful accor-
ding to the specified measures.

2. Image reconstruction problem
formulation

In clinical routine the reconstruction of 3D data is usually
performed as a set of 2D disjoint reconstruction problems
that result in a set of transaxial slices. The surface of the
detector is pixelated; therefore, the discrete description of
the image space is widely used. However, with this ap-
proach the 3D nature of photon interaction is neglected
and an assumption is needed to limit all interactions to the
thickness of one slice (voxel size).

An unknown activity distribution of interest can be
represented as an N × N λ-matrix, where N is typically
128 (maximum 256 because of the time needed to acquire
a useful number of counts). For ease of numerical com-
putations, λ is often reshaped into a 1 × B vector, where
B = N2. A sinogram n is an A × N matrix, where A
enumerates the angles. For the same reasons as in the case
of λ, the sinogram n is reshaped to a 1 × AN vector.

A system matrix (p) connects the unknown activity
distribution vector λ with the measurement vector n:

n = p · λ. (1)

It is an AN × N2 matrix. The physical meaning of its

element pij is the probability that the element λi produces
a signal in a given detector element at a certain angle (nj).
The size of the matrix p, assuming projections of 128 ×
128 pixels acquired from 64 angles, is 64 × 1283, which
is over 134× 106 elements. Since a very sparse and large-
scale matrix p is very difficult to invert, which would be
the straightforward way to compute the unknown λ from
the measured signal n, it is necessary to use an iterative
approach to retrieve the activity distribution of interest.

In nuclear medicine the acquired count values are ra-
ther low, so the data tend to be noisy. Therefore, statistical
reconstruction methods seem to be a reasonable choice,
although we must remember that it is impossible to find a
true solution from such data. Many assumptions about the
noise can be made, but for the emission data the Poisson
model seems to be most adequate.

One of the most commonly used statistical iterative
algorithms is the Maximum Likelihood Expectation Ma-
ximization (MLEM) algorithm (Shepp and Vardi, 1982)
and its modification—the Ordered Subsets Expectation
Maximization (OSEM) algorithm (Hudson and Larkin,
1994).

2.1. Maximum likelihood expectation maximization
algorithm. Let n∗(d) be the measurement in the detec-
tor element d, for d = 1, 2 . . . , D. The measured data can
be described by a Poisson distribution and have the proba-
bility mass function given by

f(n∗|λ∗(d)) = e−λ∗(d) λ
∗(d)n∗(d)

n∗(d)!
, (2)

where

λ∗(d) =
B∑

b=1

λ(b)p(b, d) (3)

is the expected value of n∗(d), and λ(b) represents the
unknown activity distribution at position b. The maximum
likelihood estimator L(λ) is connected with the measured
data and can be expressed as

L(λ) =
∏

d=1,...,D

e−λ∗(d) λ
∗(d)n∗(d)

n∗(d)!
. (4)

The logarithm of the function L(λ) can be used in-
stead to simplify the calculation, because this operation
does not change the maximum of the function. If we write
l(λ) = log L(λ), the expression becomes

l(λ) =
D∑

d=1

[−λ∗(d) + n∗(d) log λ∗(d) − log n∗(d)!].

(5)
The formula of the final algorithm can by obtained by fin-
ding a local maximum using the derivative of Eqn. (5)
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with respect to λ(b):

λ(k+1)(b) =
λ(k)(b)

D∑
d=1

p(b, d)

D∑

d=1

n∗(d)p(b, d)
B∑

b′=1

λ(k)(b′)p(b′, d)
. (6)

2.2. Ordered subsets expectation maximization algo-
rithm. Many practical implementations of the algorithm
shown by Eqn. (6) were described by Zaidi et al. (2006).
Most of them focused on reconstruction quality, omit-
ting the problem of computation time. Hudson and Lar-
kin (1994) modified the MLEM algorithm in a way that
allowed a significant reduction in the evaluation time and
made practical applications possible. In the proposed idea,
the measurements were divided into independent subsets,
and then the maximum of Eqn. (6) was found using suc-
cessive subsets of the measurements in successive itera-
tions. In this way, the achieved acceleration in computa-
tion time was almost equal to the number of subsets.

This method is referred to as the OSEM algorithm
and can formally be written as

λ(k+1)(b)

=
λ(k)(b)

S∑
d∈Jm

p(b, d)

S∑

d∈Jm

n∗(d)p(b, d)
B∑

b′=1

λ(k)(b′)p(b′, d)
, (7)

where S is the number of independent subsets:
J1, J2, . . . , JS .

Any strategy can be used to assign measured data to
a specific subset. However, the choice of the strategy has
an effect on the convergence quality and speed of the algo-
rithm. The most commonly used strategy (Bruyant, 2002)
is to successively assign measurements to subsets.

2.3. System matrix p. The crucial factor, beside the
quality of the acquired images, is the system matrix (p-
matrix). Each element p(b, d) gives the probability of de-
tecting the photon emitted from the image point b in
the detector at point d. The basis of the system matrix
construction is gamma camera geometry. It depends on
the field of view of the detector point (Fig. 1). Assu-
ming ideal collimation of the beam, this matrix can be
determined using a ray-based or a pixel-based approach
(Bruyant, 2002). In the easiest case we can consider that
an ideal collimator has an infinite length and totally non-
penetrable septa resulting in the situation where the detec-
tor point’s observable area is very narrow and formed by
two parallel lines (Fig. 1, solid lines). If the finite length
of the collimator’s hole (for high energy collimators it is
5.08 cm) is taken into account, it is necessary to extend the
field of view of the detector point (Fig. 1, dotted line). The
second case was described analytically by Loudos (2008)

�(b) 

n(d) 

Fig. 1. System matrix p whose element p(b, d) gives the proba-
bility of detecting the photon emitted from the image po-
int b at the detector point d. The field of view is marked
with solid lines for an ideal collimator and with dotted
lines when the finite size of the collimator is taken into
account.

including the hexagonal shape of collimator holes, and it
was used to compute the system matrix.

The detector response also depends on the interaction
of the gamma rays with the collimator septa so the detec-
tor counts photons that were scattered in the collimator
septas or passed through them as well as those photons
that go through the collimator holes. Autret et al. (2005)
showed the impact of the scattered and septal penetration
photons in the projection images by means of Monte Carlo
simulations.

An alternative to the analytical methods mentioned is
to compute the system matrix using Monte Carlo simula-
tions (Rafecas et al., 2004; Lazaro et al., 2005). The ac-
curacy of this method depends on the models used in the
simulation. However, in this case, a full model of the me-
asurement equipment can be included in the system ma-
trix. Some papers (Lazaro et al., 2005) show very intere-
sting results but also indicate that, because of computatio-
nal complexity, the use of MC methods in clinical routine
can nowadays be problematic.

The method presented here is based on direct me-
asurement of the detector response to a point source. It
is the most straightforward way to compute a system ma-
trix, especially when only the interpolation of the measu-
rements is used. An analytical expression could be found
with appropriate parameters because the data suggest a
Gaussian shape to the response function. In this way, by
knowing the distance between the image point from the
detector plane and the detector centre, the p-matrix ele-
ments can be computed.

There are a few similar solutions in the literature that
also treat the problem of spatial system response compen-
sation. Formiconi et al. (1989) used a line source to ob-
tain the FWHM of the Gaussian response function. In the
work of Liang et al. (1992), a linear dependence of the
FWHM parameter on the distance between the point sour-
ce and the detector was also found. A Gaussian function
was also fitted to point source measurements by Gilland
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et al. (1994). In all the works where the detector respon-
se was included in the reconstruction process the authors
declared improved resolution and noise characteristics of
the reconstructed images. In the present paper, point so-
urce measurements were carried out which are easier to
perform than in the line source case. Two dimensional
projections were used to obtain the appropriate detector
response function and to validate its usefulness in recon-
struction. The higher resolution of the measurements was
also examined in relation to the quality of the detector re-
sponse function fit.

3. Materials and methods

3.1. Gamma camera response measurements. In this
work, a Siemens e.Cam Duet gamma camera was used,
equipped with a 1 inch thick NaI(Tl) crystal. A High Ener-
gy (designed for 131I study), parallel, hexagonal shaped
hole collimator was used with an effective spatial resolu-
tion of 22.3 mm. Other characteristics of the collimator
include 8× 103 holes, hole length: 50.8 mm, septal thick-
ness: 2 mm, hole diameter: 3.4 mm, 3.5% septal penetra-
tion.

The focus of this work was the 131I isotope which
has its main photopeak energy at 364 keV, physical half-
life of 8.02 days and is used to diagnose and treat many
thyroid diseases, including thyroid cancer.

Two experiments were conducted. In the first one, an
131I point source of 1 MBq activity was measured with
one detector at distances ranging from 5 to 29 cm counting
from the gamma camera head in 2 cm steps. The matrix
size was set to 128 × 128 points and the zoom was set
to 1 with the resulting pixel size of 4.795 × 4.795 mm2.
The acquisition time was adjusted with the source-gamma
camera distance to obtain a constant count of 3 × 104.

In the second experiment, an 131I point source of 13
MBq of the activity was used to measure the detector re-
sponse in the distance range from 7 to 31 cm in 2 cm steps
using two detectors at the same time (7 to 17 cm for De-
tector 1 and 21 to 31 cm for Detector 2). The matrix size
was set to a maximum available value of 1024× 1024 po-
ints and the zoom was set to 1 with the resulting pixel size
of 0.599× 0.599 mm2. The acquisition time was constant
and set to 20 minutes for each distance.

The second experiment with the use of the highest
available resolution was performed in order to obtain bet-
ter function adjustment and better parameter fit than in the
standard resolution.

The final verification of the implemented OSEM re-
construction algorithm was conducted with a point source
without attenuation material, with 8 iterations and 4 sub-
sets in each case.

3.2. Collimator-detector function. For every measu-
rement in the first experiment, a profile at a maximum va-

lue was used to find the analytical function. Considering
the shape of the plotted profiles and after a few tests with
different fitting functions, it was decided that the Gaussian
function was satisfactory. Then, the analytical function,
which was described by

fd(x, a, b, c) = a exp

(
−(x − b)2

c2

)
, (8)

was fitted to the obtained data, where the parameters a, b,
c are distance dependent. Functions describing those para-
meters in relation to the distance were found as described
in Section 4.

In the second experiment, a surface fitting was per-
formed. The analytical function was described by

fd(x, a, bx, by, cx, cy)

= a exp

(
− (x − bx)2

c2
x

− (y − by)2

c2
y

)
. (9)

This case allows the 3D nature of the photon interactions
that occur in the detector plane to be taken into account.
In later computations, however, we applied this fitting to
a standard reconstruction algorithm performed in a slice-
by-slice way.

3.3. OSEM verification. To verify the OSEM algori-
thm and p matrix computations, phantom measurements
were performed with a 20 cm high plexiglass cylinder fil-
led with a 131I water solution of 500 MBq activity. Inside
the phantom there were 6 “cold” spheres (filled with wa-
ter, without activity). The phantom is presented in Fig. 2.
The spheres diameters were 3.85, 3.0, 2.4, 1.85, 1.5, 1.15
cm.

12

3

4 5

6

Fig. 2. Phantom for the validation and verification of the recon-
struction algorithm. The phantom was filled with a 131I
water solution and 6 “cold” spheres were placed inside.
General view of the phantom (left) and schematic repre-
sentation of the “cold” spheres.

3.3.1. Computation of the matrix p. In this work the
matrix p was determined in four ways:

• including a basic point-detector geometry function as
shown in Fig. 1 (solid lines), p(b, d) = a(b, d);
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• including an intrinsic crystal response and geometric,
septal penetration and septal scatter components that
depend on the collimator characteristics (Collimator
Detector Response—CDR) based on the first measu-
rement and interpolation, p(b, d) = pCDRinterp (b, d);

• including a CDR function obtained from the set of
fitting functions for the first experiment, p(b, d) =
pCDR1D(b, d);

• including a CDR function obtained from the sur-
face fit of the second experiment data, p(b, d) =
pCDR2D(b, d).

3.3.2. Reconstruction tests. In all cases a photon at-
tenuation was included based on the attenuation map de-
rived from the CT scan registered with the SPECT study
(Borys et al., 2006). The CT scan provides an electron
density map of the phantom in Hounsfield Units. These
allow a linear attenuation coefficients distribution to be
obtained. These coefficients were used to calculate an at-
tenuation map. In the case of the presented phantom, one
attenuation coefficient (μ = 0.11 [cm−1] for 131I in water,
(Hubbell and Seltzer, n.d.)) was used for the whole phan-
tom as it was filled with the water solution resulting in a
uniform density of the examined volume. All data were
scatter corrected with the TEW (Triple Energy Window)
method (Ichihara et al., 1993), and the dead time effect
was removed.

Five reconstructions were made with different p-
matrices using measurements of the phantom:

• Reconstruction A: system matrix based only on ideal
collimator geometry a(b, d);

• Reconstruction B: system matrix based on the CDR
from the interpolation;

• Reconstruction C: system matrix based on the CDR
from the 1D fitting function;

• Reconstruction D: system matrix based on the CDR
from the 2D fitting function;

• Reconstruction E: result obtained with software inc-
luded with the gamma camera.

Two slices from each reconstruction were analyzed:
the one with the cold spheres and then that which was
considered a uniform part of the phantom. The quality
of the reconstruction was estimated by the contrast of the
“cold” spheres (Eqn. (10)) and by the integral uniformity
(Eqn. (11)), as well as the root-mean-square noise (RMS,
Eqn. (12)) (Graham et al., 1995) for the uniform region
of the phantom. In addition to the measures used by Gra-
ham et al. (1995), a differential uniformity was added. It

is expressed by the same equation as for the integral uni-
formity (Eqn. (11)), but the integral uniformity is deter-
mined for a small (15 × 15 pixels) square central Region
Of Interest (ROI) and differential uniformity is determi-
ned for every point of this central ROI including a 5-point
neighbourhood. It is calculated consecutively for the verti-
cal and horizontal neighbourhood and the maximum value
is taken as a result. The following parameters were used
for quality evaluation:

C =
Pavg − Pmin

Pavg
, (10)

Uint =
Pmax − Pmin

Pmax + Pmin
, (11)

RMS =
Pstd

Pavg
× 100. (12)

P in the above equations represents the count sta-
tistics in the appropriate region. In the case of contrast,
the mean count in the small central uniform region is
Pavg and the minimal count number in the cold sphere
is Pmin. For the uniform area, the measures of uniformity
and the RMS noise, all statistics are determined in a small
central region: maximum and minimum count, Pmax and
Pmin, standard deviation and mean count value, Pstd and
Pavg, respectively. Additionally, we compared our results
with those obtained from the OSEM implementation pro-
vided by the gamma camera provider (Siemens eSoft). All
reconstruction parameters were identical (8 iterations, 4
subsets). In the gamma camera software, the Chang atte-
nuation correction method was also used (Chang, 1978).

3.3.3. OSEM parameters. The basic parameter in the
iterative reconstruction algorithm is the number of itera-
tions and, in the case of OSEM, the number of subsets
is also important. In all comparisons of the contrast and
uniformity measures described above, 8 iterations with 4
subsets were used. To account for this choice, a recon-
struction with the use of one of the previously computed
p-matrices (Reconstruction C) was performed. The chan-
ge in all of the above indices with the change in the num-
ber of iterations (1, 2, 4, 6, 8, 10, 12, 16, 20 iterations with
4 subsets) was visualized.

The results were compared with the appropriate
ranges defined in the work of Graham et al. (1995).
The ranges for the consecutive spheres were deter-
mined for the “cold” region: Sphere 1 (0.53; 0.73),
Sphere 2 (0.35; 0.56), Sphere 3 (0.21; 0.38), Sphere 4
(0.11; 0.27). Furthermore, ranges for the integral unifor-
mity (10.7; 18.8) and RMS (3.6; 7.2) were determined.

4. Results

4.1. CDR function measurement and fit. The results
of the CDR function measurements performed in the first
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experiment are presented in Fig. 3. The measurements we-
re normalized to make the integral of the CDR function
equal to unity along the shift direction for each distance.
In the case of the second experiment, where the whole sur-
face was taken into account, normalization was applied so
as to make the area under the surface equal to unity.

�100 �50 0 50 100 0
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distance [mm]

shift [mm]

Fig. 3. CDR function as measured for a point source of 131I and
using the HE collimator. The measurements are norma-
lized for each point source distance.

The measurements were assumed to be Gaussian
functions and described by Eqn. (8) and (9). The parame-
ters of this relationship are dependent on the distance be-
tween the source and the detector. Therefore, parameters
a, b, c were found as a function of distance (d) in order
to obtain the best fit of the acquired data. The following
parameters and functions minimize the fitting error:

• a(d) = aae−bad, where aa = 0.124 ± 0.003 and
ba = 2.77 ± 0.10 · 10−3;

• b(d) = abd + bb, where ab = −5.08 ± 1.82 · 10−3

and bb = 0.22 ± 0.01;

• c(d) = acd + bc, where ac = 0.024 ± 0.001 and
bc = 3.13 ± 0.14.

Two examples of the fitting quality are shown in
Fig. 4 for source-detector distances of 5 and 29 cm. The
analytical functions fitted to the parameters a and c, de-
scribed above, are shown in Fig. 5.

In the second experiment, identical relationships for
the CDR function parameters were found, although diffe-
rent parameter values were obtained. The most important
parameter values are presented below:

• aa = 0.0055±0.0005 and ba = 0.0079±0.7 ·10−3;

• acX = 0.0495±1.7 ·10−3 and bcX = 3.7032±0.35.

Figure 6 shows the CDR to a point source in the se-
cond experiment. The single response of each collimator
hole is visible and was the cause of some problems with
the Gaussian surface fitting.
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Fig. 4. Example of fitting functions for the first (5 cm distan-
ce, upper plot) and the last measurement (29 cm distan-
ce, lower plot). The measurement points are denoted by
circles and the solid line shows the fitted model.
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Fig. 5. Analytical functions fitted to the parameters a (upper,
exponential plot) and c (lower, linear plot) in the CDR
function.

Fig. 6. CDR measurements with the detector matrix set to
1024 × 1024 pixels at two distances of the source from
the detector: 9 mm (left plot) and 31 mm (right plot).
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Fig. 7. OSEM reconstruction results (8 iterations, 4 subsets) for the slice with cold spheres. Letters denote the reconstruction methods
applied.

4.2. OSEM verification. The images shown in Figs.
7 and 8 were obtained from the phantom measurement
and Reconstructions A–E described above. Visual asses-
sment of the results indicates that only Reconstruction A
presents abnormal noise levels. The smallest sphere is not
visible on any reconstruction because its diameter was be-
low the effective resolution. Table 1 presents the differen-
ces in the contrast of the spheres in the phantom.

The reconstruction of the slice with no spheres is
shown in Fig. 8. Since the images were similar, distingu-
ishing reconstruction quality was possible only by compa-
ring the uniformity and RMS parameters. The quantitative
parameters describing the uniformity of the reconstruc-
ted slice are shown in Table 2. The best (lowest) factors
were found for the reconstruction performed by the sys-
tem provider’s software—Reconstruction E (Udiff), and
for the reconstruction based on the CDR function with
interpolation—Reconstruction B (Udiff ,RMS).

The system matrix based on the one dimensional fit
of the CDR function (Reconstruction C) gave the highest
contrast in the three biggest spheres and other measures
that were comparable with the results obtained with other
reconstruction methods (for example, integral uniformi-
ty).

Reconstruction results B–D present a lower signal le-
vel in the centre of the phantom than the standard softwa-
re result, as shown in Fig. 7. In the slice without the cold
spheres (Fig. 8), the centre is more uniform compared with
the result of reconstruction E. In this image, ring artifacts
are also visible that are not present in the other results.

Table 1. Contrast results for 5 spheres (from s1 to s5) for the fi-
ve different OSEM reconstructions (8 iterations, 4 sub-
sets).

recon. s 1 s 2 s 3 s 4 s 5

A 0.589 0.472 0.378 0.347 0.231

B 0.568 0.394 0.269 0.249 0.110

C 0.570 0.414 0.286 0.229 0.081

D 0.562 0.352 0.187 0.152 0.073

E 0.527 0.439 0.318 0.222 0.127

Table 2. Uniformity (Uint: integral and Udiff : differential) and
the RMS results for the uniform slice. 5 different
OSEM reconstructions (8 iterations, 4 subsets).

recon. Uint Udiff RMS

A 42.315 42.315 13.837

B 11.597 8.017 4.736

C 12.145 8.240 5.001

D 15.117 9.937 6.571

E 12.310 7.971 5.452

The reconstruction algorithm was checked with a po-
int source measurement without any attenuation material
using 8 iterations and 4 subsets in each case. The results
are shown in Fig. 9.

Fig. 9. Point source reconstruction verification: reconstruction
with the gamma camera software as a reference (left
plot) and the implemented OSEM reconstruction, sys-
tem matrix built with a 1D fit CDR function (right plot).

4.2.1. Investigation into the iteration number. The
relationship between contrasts of the spheres, the integral
and differential uniformity, RMS and the number of itera-
tions were investigated. The results are shown in Figs. 10–
12. If the range for a value was given in the AAPM report,
then it was marked in plots as a solid horizontal line. The
presented plots show that the minimal number of itera-
tions is 8, assuming 4 subsets (see Figs. 10 and 11: plot
for Sphere 1 and plot for the integral uniformity). Looking
at the contrast plots, one can say that the more iterations,
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Fig. 12. Total numbers of counts in the reconstructed images:
circles represent a slice with “cold” spheres and crosses
a uniform slice. We performed 1, 2, 4, 6, 8, 10, 12, 16
and 20 iterations with a 4 subset OSEM algorithm.

the better, but taking into account uniformities and RMS
dependence, it can be found that the maximum number of
iterations is 16 (for 4 subsets).

At least 6 iterations for 4 subsets are needed to stabi-
lize the total counts in both reconstructed slices (Fig. 12).

5. Discussion

In this work, a method of system matrix computation ba-
sed on direct CDR function measurements and CT-based
attenuation correction was verified. It was shown that the
CDR function based on a one-dimensional fit provides sli-
ghtly better results. The two-dimensional surface fit was
more difficult and not as good as the one-dimensional ca-
se. It was shown by two measurement examples that the
Gaussian function in the two-dimensional case is only an
approximation. The quality of fit also changes in the one-
dimensional case—the closer the source is to the detector,
the worse the Gaussian fit that can be obtained.

The proposed reconstructions with system matrix
computation based on direct measurements produce con-
trasts and uniformity factors that are in accordance with
appropriate ranges proposed by the American Association
of Physicists in Medicine (AAPM) in a quality SPECT

performance report (Graham et al., 1995). However, be-
cause in this study a different isotope of interest was used
than the one mentioned in the report (in our case it was
131I instead of 99mTc, in the report), which entailed diffe-
rent collimators, etc., these ranges cannot be directly com-
pared to our results. However, if the AAPM values are
defined for an isotope and collimators with higher spatial
resolution, then obtaining those values with 131I can be
considered an improvement.

Assuming 8 iterations with 4 subsets in our imple-
mentation of the OSEM algorithm (which gives 32 itera-
tions for the MLEM algorithm), all the ranges were held,
so in our opinion these values are satisfactory.

In this approach, the 3D nature of photon interac-
tions was not taken into account while performing the re-
construction in a slice-by-slice way. Some authors report
that fully 3D reconstruction can improve image quality
(Lazaro et al., 2005).

6. Conclusions

The method presented for the computation of the system
matrix for iterative reconstruction algorithms in emission
tomography is simple and much faster than Monte Carlo
simulations. It gives the ability to take into account ma-
ny processes that occur during the imaging procedure. In
this case, the measurements are easy and fast to perform,
and also simple to repeat. This is very important because
it has to be done for every isotope–collimator pair used
on a particular machine. A two-dimensional fit provides a
similar quality of the resulting images and is required for
a fully 3D reconstruction, which can improve the quality
even more. However, a fully 3D reconstruction requires
the use of parallel computers or a powerful graphics pro-
cessor and will be the focus of our future work.
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2009) and published in a shortened form in the conference
proceedings.
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