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The paper is concerned with stability analysis for a class of impulsive Hopfield neural networks with Markovian jump-
ing parameters and time-varying delays. The jumping parameters considered here are generated from a continuous-time
discrete-state homogenous Markov process. By employing a Lyapunov functional approach, new delay-dependent stochas-
tic stability criteria are obtained in terms of linear matrix inequalities (LMIs). The proposed criteria can be easily checked
by using some standard numerical packages such as the Matlab LMI Toolbox. A numerical example is provided to show that
the proposed results significantly improve the allowable upper bounds of delays over some results existing in the literature.
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1. Introduction

In recent years, the study of stochastic Hopfield neural
networks have been extensively intensified, since it has
been widely used to model many of the phenomena aris-
ing in areas such as signal processing, pattern recogni-
tion, static image processing, associative memory, espe-
cially for solving some difficult optimization problems
(Cichocki and Unbehauen, 1993; Haykin, 1998). One
of the important and interesting problems in the analy-
sis of stochastic Hopfield neural networks is their stabil-
ity. In the implementation of networks, time delays exist
due to the finite switching speed of amplifiers and trans-
mission of signals in the network community, which may
lead to oscillation, chaos and instability. Consequently,
stability analysis of stochastic neural networks with time
delays has attracted many researchers and some results
related to this problem have been reported in the litera-
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ture (Balasubramaniam and Rakkiyappan, 2009; Balasub-
ramaniam et al., 2009; Li et al., 2008; Singh, 2007; Zhou
and Wan, 2008).

Markovian jump systems are a special class of hybrid
systems with two different states. The first one refers to
the mode which is described by a continuous-time finite-
state Markovian process, and the second one refers to
the state which is represented by a system of differential
equations. Jump or switching systems have the advantage
of modeling dynamic systems to abrupt variation in their
structures, such as component failures or repairs, sudden
environmental disturbance, changing subsystem intercon-
nections, operating at different points of a nonlinear plant.

Neural networks with Markovian jumping parame-
ters and time delay have received much attention (Mao,
2002; Shi et al., 2003; Wang et al., 2006; Yuan and
Lygeros, 2005; Zhang and Wang, 2008). In the work of Li
et al. (2008), the problem of delay-dependent robust sta-
bility of uncertain Hopfield neural networks with Marko-
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vian jumping parameters delays is investigated. Sufficient
conditions are derived by Lou and Cui (2009) to guarantee
the stochastic stability for a class of delayed neural net-
works of neutral type with Markovian jump parameters.

Moreover, many physical systems also undergo
abrupt changes at certain moments due to instantaneous
perturbations, which leads to impulsive effects. Neural
networks are often subject to impulsive perturbations that,
in turn, affect dynamical behaviors of the systems. There-
fore, it is necessary to consider the impulsive effect when
investigating the stability of neural networks. The sta-
bility of neural networks with impulses and time delays
has received much attention (Li et al., 2009; Rakkiyap-
pan et al., 2010; Song and Wang, 2008; Song and Zhang,
2008). However, neural networks with Markovian jump-
ing parameters and impulses have received little attention
in spite of their practical importance (Dong et al., 2009).
To the best of our knowledge, up to now, the stability
analysis problem of time varying delayed Hopfield neu-
ral network with Markovian jumping parameters and im-
pulses has not appeared in the literature and this moti-
vates our present work. The main aim of this paper is
to study the stochastic stability for a class of time varying
delayed Hopfield neural networks with Markovian jump-
ing parameters and impulses by constructing a suitable
Lyapunov–Krasovskii functional. The stability conditions
are formulated in terms of LMIs and can be easily solved
by using the Matlab LMI Control Toolbox. Further, a nu-
merical example is given to show the stability criteria ob-
tained in this paper are less conservative than some exist-
ing results.

2. Problem formulation

Notation. The notation in this paper is of standard form.
The superscript ‘T ′ stands for matrix transposition; R

n de-
notes the n-dimensional Euclidean space; P > 0 means
that P is real symmetric and positive definite; I and 0 rep-
resents the identity and zero matrices, respectively. The
symbol ‘∗′ within a matrix represents the symmetric term
of the matrix. Furthermore, diag{·} denotes a block-
diagonal matrix and E{·} represents the mathematical ex-
pectation operator.

Consider the following Hopfield neural networks
with impulses and a time-varying delay:

ẋ(t) = −Ax(t) +Bf(x(t− h(t)))

+D

∫ t

t−τ(t)

f(x(s)) ds + U, t �= tk,

x(tk) = Ckx(t−k ), t = tk, (1)

for t > 0 and k = 1, 2, . . . , where

x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n

is the state vector associated with the n neurons at time t;

f(x(t− h(t)))

=
[
f1(x(t−h(t))), f2(x(t−h(t))), . . . , fn(x(t−h(t)))

]T

denotes the activation function; U = [U1, U2, . . . , Un]T

is the constant external input vector; the matrix A =
diag(a1, a2, . . . , an) has positive entries ai > 0; h(t)
and τ(t) denote time-varying delays; the matrices B =
[bij ]n×n and D = [dij ]n×n represent the delayed con-
nections weight matrix and the connection weight matrix,
respectively; x(tk) = Ckx(t−k ) is the impulse at mo-
ment tk, the fixed moment of time tk satisfies t1 < t2 <
. . . , limk→+∞ tk = +∞ and x(t−) = lims→t− x(s); Ck

is a constant real matrix at moments of time tk.
Let PC([−ρ, 0],Rn) denote the set of piece-

wise right continuous functions φ : [−ρ, 0] → R
n

with the sup-norm |φ| = sup−ρ≤s≤0‖φ(s)‖. For
given t0, and φ ∈ PC([−ρ, 0],Rn), the ini-
tial condition of the system (1) is described as
x(t0 + t) = φ(t), for t ∈ [−ρ, 0], φ ∈ PC([−ρ, 0],Rn),
ρ ∈ max{h, τ}.

Throughout this paper, we assume that the following
conditions hold:

(i) The neuron activation function f(·) is continuous and
bounded on R and satisfies the following inequality:

0 ≤ fq(s1) − fq(s2)
s1 − s2

≤ lq, q = 1, 2, . . . , n,

s1, s2 ∈ R, s1 �= s2.

(ii) The time-varying delay h(t) satisfies

0 ≤ r1 ≤ h(t) ≤ r2, ḣ(t) ≤ μ, (2)

where r1, r2 are constants. Furthermore, the
bounded function τ(t) represents the distributed de-
lay of systems with 0 ≤ τ(t) ≤ τ̄ , τ̄ is a constant.

Let x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T ∈ R

n be the equilib-
rium point of Eqn. (1). For simplicity, we can shift the
equilibrium x∗ to the origin by letting y(t) = x(t) − x∗

and ψ(t) = x(t0 + t) − x∗. Then the system (1) can be
transformed into the following one:

ẏ(t) = −Ay(t) +Bg(y(t− h(t)))

+D

∫ t

t−τ(t)

g(y(s)) ds, t �= tk,

y(tk) = Cky(t−k ), t = tk, (3)

y(t0 + t) = ψ(t), t ∈ [−ρ, 0],

where
y(t) = (y1(t), y2(t), . . . , yn(t))T
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is the state vector of the transformed system. It follows
from Assumption (i) that the transformed neuron activa-
tion function satisfies

gj(0) = 0, 0 ≤ gq(yq)
yq

≤ lq, ∀ yq �= 0,

q = 1, 2, . . . , n. (4)

Now, based on the model (3), we are in a position
to introduce Hopfield neural networks with Markovian
jumping parameters. Let {r(t), t ≥ 0} be a right-
continuous Markov process on the complete probability
space (Ω,F , {Ft}t≥0, P ) taking values in a finite state
space S = {1, 2, . . . , N} with generator Π = (πij)N×N

given by

p{r(t+ Δ) = j|r(t) = i}

=

{
πijΔ + o(Δ) if i �= j,

1 + πiiΔ + o(Δ) if i = j,

where Δ > 0 and limΔ→0 o(Δ)/Δ, πij is the transition
rate from i to j if i �= j, and

πii = −
∑
j �=i

πij .

In this paper, we consider the following time varying
delayed Hopfield neural networks with Markovian jump-
ing parameters and impulses, which are actually a modifi-
cation of (3):

ẏ(t) = −A(r(t))y(t) +B(r(t))g(y(t − h(t)))

+D(r(t))
∫ t

t−τ(t)

g(y(s)) ds, t �= tk

y(tk) = Ck(r(t))y(t−k ), t = tk, (5)

y(t0 + t) = ψ(t), t ∈ [−ρ, 0], r(0) = r0,

where r0 ∈ S is the mode of the continuous state. For
simplicity, we write r(t) = i, while A(r(t)), B(r(t)) and
D(r(t)) are denoted as Ai, Bi and Di, respectively.

Let us first give the following lemmas and definitions
which will be used in the proofs of our main results.

Lemma 1. (Gu et al., 2003) Let a, b ∈ R
n, P be a posi-

tive definite matrix. Then 2aT b < aTP−1a+ bTPb.

Lemma 2. (Gu et al., 2003) For any positive definite
matrix W > 0, two scalars b > a, and a vector function
ω : [a, b] → R

n, such that the integrations concerned are
well defined, the following inequality holds:

(∫ b

a

ω(s) ds
)T

W
( ∫ b

a

ω(s) ds
)

< (b− a)
∫ b

a

ωT (s)Wω(s) ds.

Definition 1. The system (5) is said to be stochastically
stable when U = 0, for any finite ψ(t) ∈ R

n defined on
[−ρ, 0] and r(0) ∈ S, the following condition is satisfied:

lim
t→∞E

{∫ t

0

yT (s)y(s) ds|ψ, r0
}
<∞.

Definition 2. (Zhang and Sun, 2005) The function V :
[t0,∞) × R

n → R
+ belongs to class v0 if

(i) the function V is continuous on each of the sets
[tk−1, tk) × R

n and for all t ≥ t0, V (t, 0) ≡ 0;

(ii) V (t, x) is locally Lipschitzian in x ∈ R
n;

(iii) for each k = 1, 2, . . . , there exist finite limits

lim
(t,q)→(t−k ,x)

V (t, q) = V (t−k , x),

lim
(t,q)→(t+k ,x)

V (t, q) = V (t+k , x),

with V (t+k , x) = V (tk, x).

3. Stochastic stability results

In this section, we will derive conditions for the stochastic
stability of delayed Hopfield neural networks with Marko-
vian jumping parameters and impulsive effects.

Theorem 1. Consider the neural network system (5)
satisfying Assumptions (i) and (ii). Given scalars r2 >
r1 ≥ 0, μ and τ̄ > 0, the system (5) is stochasti-
cally stable if there exist positive definite matrices Pi >
0, Q1, Q2, Q3, Q4 > 0, R1, R2 > 0, S1, S2 > 0 and di-
agonal matrices Tj = diag{t1j , t2j , . . . , tnj} ≥ 0, (j =
1, 2), such that the following LMIs hold:

CT
ikPjCik − Pi < 0, (6)

for i = 1, 2, . . . , s, and k = 1, 2, . . . , along with (7),
where

Φ1 = −PiAi −AT
i Pi +

s∑
j=1

πijPj +Q1 +Q2 +Q3

+ r21R1 + (r2 − r1)2R2,

Φ2 = Q4 + τ̄2S1 + 2τ̄2DT
i S2Di − 2T2,

Φ3 = −(1 − μ)Q4 − 2T1,

Φ4 = −S1 − 2DT
i S2Di.

Proof. In order to prove the stability result, we construct
the following Lyapunov–Krasovkii functional

V (t, y(t), r(t) = i) = V1 + V2 + V3 + V4 + V5, (8)
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Υi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 0 0 0 LT
2 T2 PiBi 0 0 PiDi

∗ −(1 − μ)Q1 0 0 0 LT
1 T1 0 0 0

∗ ∗ −Q2 0 0 0 0 0 0
∗ ∗ ∗ −Q3 0 0 0 0 0
∗ ∗ ∗ ∗ Φ2 0 0 0 0
∗ ∗ ∗ ∗ ∗ Φ3 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −R1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (7)

where

V1 = yT (t)Piy(t),

V2 =
∫ t

t−h(t)

yT (s)Q1y(s) ds

+
∫ t

t−r1

yT (s)Q2y(s) ds+
∫ t

t−r2

yT (s)Q3y(s) ds

+
∫ t

t−h(t)

gT (y(s))Q4g(y(s)) ds,

V3 = r1

∫ t

t−r1

[s− (t− r1)]yT (s)R1y(s) ds,

V4 = (r2 − r1)
∫ t−r1

t−r2

[s− (t− r2)]yT (s)R2y(s) ds,

V5 = τ̄

∫ 0

−τ̄

∫ t

t+σ

gT (y(s))S1g(y(s)) ds dσ (9)

+ 2τ̄
∫ 0

−τ̄

∫ t

t+σ

gT (y(s))DT
i S2Dig(y(s)) ds dσ.

When t = tk, we have

V (tk, y, j) − V (t−k , y, i)

= yT (tk)Pjy(tk) − yT (t−k )Piy(t−k )

+
∫ tk

tk−h(tk)

yT (s)Q1y(s) ds

−
∫ t−k

t−k −h(t−k )

yT (s)Q1y(s) ds

+
∫ tk

tk−r1

yT (s)Q2y(s) ds

−
∫ t−

k

t−k −r1

yT (s)Q2y(s) ds

+
∫ tk

tk−r2

yT (s)Q3y(s) ds−
∫ t−

k

t−k −r2

yT (s)Q3y(s) ds

+
∫ tk

tk−h(tk)

gT (y(s))Q4g(y(s)) ds

−
∫ t−k

t−k −h(t−k )

gT (y(s))Q4g(y(s)) ds

+ r1

∫ tk

tk−r1

[s− (t− r1)]yT (s)R1y(s) ds

− r1

∫ t−k

t−k −r1

[s− (t− r1)]yT (s)R1y(s) ds

+ (r2 − r1)
∫ tk−r1

tk−r2

[s− (t− r2)]yT (s)R2y(s) ds

− (r2 − r1)
∫ t−k −r1

t−k −r2

[s− (t− r2)]yT (s)R2y(s) ds

+ τ̄
[ ∫ 0

−τ̄

∫ tk

tk+σ

gT (y(s))S1g(y(s)) ds dσ

−
∫ 0

−τ̄

∫ t−k

t−k +σ

gT (y(s))S1g(y(s)) ds dσ
]

+ 2τ̄
[ ∫ 0

−τ̄

∫ tk

tk+σ

gT (y(s))DT
j S2Djg(y(s)) ds dσ

−
∫ 0

−τ̄

∫ t−k

t−k +σ

gT (y(s))DT
i S2Dig(y(s)) ds dσ

]

= yT (t−k )CT
ikPjCiky(t−k ) − yT (t−k )Piy(t−k )

+
∫ t−k

tk−h(tk)

yT (s)Q1y(s) ds+
∫ tk

t−
k

yT (s)Q1y(s) ds

−
∫ t−k

t−
k
−h(t−

k
)

yT (s)Q1y(s)ds

+
∫ t−

k

tk−r1

yT (s)Q2y(s) ds+
∫ tk

t−k

yT (s)Q2y(s) ds

−
∫ t−

k

t−k −r1

yT (s)Q2y(s) ds+
∫ t−

k

tk−r2

yT (s)Q3y(s) ds

+
∫ tk

t−k

yT (s)Q3y(s) ds

−
∫ t−k

t−k −r2

yT (s)Q3y(s) ds
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+
∫ t−k

tk−h(tk)

gT (y(s))Q4g(y(s)) ds

+
∫ tk

t−k

gT (y(s))Q4g(y(s)) ds

−
∫ t−k

t−k −h(t−k )

gT (y(s))Q4g(y(s)) ds

+ r1

∫ t−k

tk−r1

[s− (t− r1)]yT (s)R1y(s) ds

+ r1

∫ tk

t−k

[s− (t− r1)]yT (s)R1y(s) ds

− r1

∫ t−k

t−k −r1

[s− (t− r1)]yT (s)R1y(s) ds

+ (r2 − r1)
∫ t−k −r1

tk−r2

[s− (t− r2)]yT (s)R2y(s) ds

+ (r2 − r1)
∫ tk−r1

t−k −r1

[s− (t− r2)]yT (s)R2y(s) ds

− (r2 − r1)
∫ t−

k
−r1

t−k −r2

[s− (t− r2)]yT (s)R2y(s) ds

+ τ̄
[ ∫ 0

−τ̄

∫ t−
k

tk+σ

gT (y(s))S1g(y(s)) ds dσ

+
∫ 0

−τ̄

∫ tk

t−k

gT (y(s))S1g(y(s)) ds dσ

−
∫ 0

−τ̄

∫ t−k

t−k +σ

gT (y(s))S1g(y(s)) ds dσ
]

+ 2τ̄
[ ∫ 0

−τ̄

∫ t−k

tk+σ

gT (y(s))DT
j S2Djg(y(s)) ds dσ

+
∫ 0

−τ̄

∫ tk

t−k

gT (y(s))DT
j S2Djg(y(s)) ds dσ

−
∫ 0

−τ̄

∫ t−k

t−k +σ

gT (y(s))DT
i S2Dig(y(s)) ds dσ

]

= yT (t−k )(CT
ikPjCik − Pi)y(t−k )

+
∫ tk

t−k

yT (s)Q1y(s) ds+
∫ tk

t−k

yT (s)Q2y(s) ds

+
∫ tk

t−k

yT (s)Q3y(s) ds+
∫ tk

t−k

gT (y(s))Q4g(y(s)) ds

+ r1

∫ tk

t−k

[s− (t− r1)]yT (s)R1y(s) ds

+ (r2 − r1)
∫ tk−r1

t−k −r1

[s− (t− r2)]yT (s)R2y(s) ds

+ τ̄

∫ 0

−τ̄

∫ tk

t−k

gT (y(s))S1g(y(s)) ds dσ

+ 2τ̄
∫ 0

−τ̄

∫ tk

t−k

gT (y(s))DT
j S2Djg(y(s)) ds dσ.

Since Cik are constant matrices, the terms
involving positive-definite constant matrices
Q1, Q2, Q3, Q4, R1, R2, S1, S2 will be equal to zero
and hence

V (tk, y, j) − V (t−k , y, i) < 0. (10)

Let F(·) be the weak infinitesimal generator of the pro-
cess {y(t), r(t), t ≥ 0} for the system (5) at the point
{t, y(t), r(t)} given by

F{V (t, y(t), r(t))}

=
∂V

∂t
+ ẏT (t)

∂V

∂y

∣∣∣∣∣
r(t)=i

+
s∑

j=1

πijV (t, y(t), i, j).

For t ∈ [tk−1, tk), taking account of (8), FV can be de-
rived as

FV1(t) = 2yT (t)Piẏ(t) + yT (t)
s∑

j=1

πijPjy(t)

= 2yT (t)Pi[−Aiy(t) +Big(y(t− h(t)))

+Di

∫ t

t−τ(t)

g(y(s)) ds]

+ yT (t)
s∑

j=1

πijPjy(t)

= yT (t)[−PiAi −AT
i Pi]y(t)

+ 2yT (t)PiBig(y(t− h(t)))

+ 2yT (t)PiDi

( ∫ t

t−τ(t)

g(y(s)) ds
)

+ yT (t)
s∑

j=1

πijPjy(t), (11)

FV2(t) ≤ yT (t)Q1y(t)

− (1 − μ)yT (t− h(t))Q1y(t− h(t))

+ yT (t)Q2y(t) − yT (t− r1)Q2y(t− r1)

+ yT (t)Q3y(t) − yT (t− r2)Q3y(t− r2)

+ gT (y(t))Q4g(y(t))

− (1 − μ)gT (y(t− h(t)))Q4g(y(t− h(t))),
(12)

FV3(t) = r21y
T (t)R1y(t) − r1

∫ t

t−r1

yT (s)R1y(s) ds

≤ r21y
T (t)R1y(t)

−
( ∫ t

t−r1

y(s) ds
)T

R1

( ∫ t

t−r1

y(s) ds
)

(13)

FV4(t) = (r2 − r1)2yT (t)R2y(t)

− (r2 − r1)
∫ t−r1

t−r2

yT (s)R2y(s) ds
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≤ (r2 − r1)2yT (t)R2y(t)

−
(∫ t−r1

t−r2

y(s) ds
)T

R2

(∫ t−r1

t−r2

y(s) ds
)
, (14)

FV5(t) = τ̄2gT (y(t))S1g(y(t))

− τ̄

∫ t

t−τ̄

gT (y(s))S1g(y(s)) ds

+ 2τ̄2gT (y(t))DT
i S2Dig(y(t))

− 2τ̄
∫ t

t−τ̄

gT (y(s))DT
i S2Dig(y(s)) ds

≤ gT (y(t))[τ̄2S1 + 2τ̄2DT
i S2Di]g(y(t))

−
( ∫ t

t−τ̄

g(y(s)) ds
)T

[S1 + 2DT
i S2Di]

×
( ∫ t

t−τ̄

g(y(s)) ds
)
. (15)

From Assumption (i), we can get the following in-
equalities:

2gT (y(t− h(t)))T1Ly(t− h(t))

− 2gT (y(t− h(t)))T1g(y(t− h(t))) ≥ 0 (16)

and

2gT (y(t))T2Ly(t) − 2gT (y(t))T2g(y(t)) ≥ 0. (17)

From (11)–(15), we obtain

FV (t)

≤ yT (t)[−PiAi −AT
i Pi +

s∑
j=1

πijPj +Q1

+Q2 +Q3 + r21R1 + (r2 − r1)2R2]y(t)

+ yT (t)LTT2g(y(t)) + 2yT (t)PiBig(y(t))

+ 2yT (t)PiDig(y(t− h(t)))

+ yT (t− h(t))[−(1 − μ)Q1]y(t− h(t))

+ yT (t− h(t))LTT1g(y(t− h(t)))

− yT (t− r1)Q2y(t− r1)

− yT (t− r2)Q3y(t− r2)

+ gT (y(t))[Q4 + τ̄2S1 + 2τ̄2DT
i S2Di − 2T2]g(y(t))

+ gT (y(t− h(t)))[−(1 − μ)Q4 − 2T1]g(y(t− h(t)))

−
(∫ t

t−r1

y(s) ds
)T

R1

( ∫ t

t−r1

y(s) ds
)

−
(∫ t−r1

t−r2

y(s) ds
)T

R2

( ∫ t−r1

t−r2

y(s) ds
)

−
(∫ t

t−τ̄

g(y(s)) ds
)T

[S1 + 2DT
i S2Di]

×
(∫ t

t−τ̄

g(y(s)) ds
)

= ζT (t) Υi ζ(t), (18)

where Υi is defined in (7) and

ζ(t) =
[
yT (t) yT (t− h(t)) yT (t− r1) yT (t− r2)

gT (y(t)) gT (y(t− h(t)))
(∫ t

t−r1

y(s) ds
)T

(∫ t−r1

t−r2

y(s) ds
)T ( ∫ t

t−τ̄

g(y(s)) ds
)T ]T

.

This implies that Υi < 0. Setting

δ1 = min{λmin(−Υi), i ∈ S},
we get δ1 > 0. For any t ≥ h, we have

F[V (y(t), i)] ≤ −δ1ζT (t)ζ(t) ≤ −δ1yT (t)y(t).

By Dynkin’s formula, we get

E{V (y(t), i)} − E{V (y0, r0)}

≤ −δ1E
{∫ t

0

yT (s)y(s) ds
}

and hence

E
{∫ t

0

yT (s)y(s) ds
}

≤ 1
δ1

{
V (ψ, r0) − E{V (y(t), i)}

}
. (19)

On the other hand, from the definitions of Vi(y(t), i), (i =
1, 2, 3, 4, 5), there exists a scalar δ2 > 0, such that for any
t ≥ 0 we have

E{V (y(t), i)}
= E{V1(y(t), i)} + E{V2(y(t), i)} + E{V3(y(t), i)}

+ E{V4(y(t), i)} + E{V5(y(t), i)}
≥ δ2E{yT (t)y(t)}, (20)

where δ2 = min{λmin(Pi), i ∈ S} > 0. From (19) and
(20) it follows that

E
{
yT (t)y(t)

}

≤ −β1E
{∫ t

0

yT (s)y(s) ds
}

+ β2V (y0, r0),

where β1 = δ1δ
−1
2 , β2 = δ−1

2 . Thus we have

E
{∫ t

0

yT (s)y(s) ds|ψ, r0
}

≤ β−1
1 β2[1 − exp(−β1t)]V (y0, r0).
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As t→ ∞, there exists a scalar η > 0 such that

lim
t→∞E

{∫ t

0

yT (s)y(s) ds|ψ, r0
}
≤ β−1

1 β2V (y0, r0)

≤ η sup
−ρ≤s≤0

|ψ(s)|2.

Thus, by Definition 2, the impulsive Hopfield neural net-
work with Markovian switching (5) is stochastically sta-
ble. The proof is thus complete. �

4. Numerical example

Example 1. Consider the stochastic Hopfield neural
networks with Markovian jumping parameters and im-
pulses (5):

A1 =
[
1.4576 0

0 1.3680

]
, Π =

[−1 1
2 −2

]
,

A2 =
[
1.7631 0

0 0.0253

]
,

B1 =
[−0.9220 −1.7676
−0.6831 −2.0429

]
,

B2 =
[−2.8996 0.4938
−0.6736 −1.0183

]
, D1 =

[
0.5 −0.5
0.2 0.7

]
,

D2 =
[

0.3 0.2
−0.5 0.4

]
, C1 =

[
0.1 0
0 0.1

]
,

C2 =
[
0.3 0
0 0.3

]
, L1 =

[
0.2 0
0 0.3

]
,

L2 =
[
0.4 0
0 0.6

]
.

By solving the LMIs in Theorem 1 for positive def-
inite matrices P1, P2, Q1, Q2, Q3, Q4, R1, R2, S1, S2 and
diagonal matrices T1, T2, it can be verified that the system
(5) is stochastically stable and a set of feasible solutions
can be obtained as follows:

P1 =
[
161.1159 31.7466
31.7466 6.4729

]
,

P2 =
[

52.5649 −68.1129
−68.1129 267.9161

]
,

Q1 =
[
48.2983 11.0789
11.0789 174.3372

]
,

Q2 =
[

0.4483 −0.3879
−0.3879 0.5140

]
,

Q3 =
[

0.4483 −0.3879
−0.38797 0.5140

]
,

Q4 =
[
4.8974 4.2524
4.2524 4.4817

]
,

R1 =
[
461.2151 0

0 461.2151

]
,

R2 =
[

0.0104 −0.0085
−0.0085 0.0119

]
,

S1 =
[

24.1828 −12.4256
−12.4256 7.3894

]
,

S2 =
[
3.0184 0.6498
0.6498 0.8849

]
,

T1 =
[
1.4261 0

0 2.0428

]
× 103,

T2 =
[
1.3894 0

0 0.5656

]
× 103.

In the work of Zhang and Sun (2005), when μ = 0,
the maximum allowable bounds for r2 and τ̄ are obtained
as r2 = 0.3 and τ̄ = 0.6. In the paper by Liu et al.
(2009), the stochastic stability of a delayed Hopfield neu-
ral network with Markovian jumpings and constant delays
is discussed, but the upper bound of the delay is not taken
into account. In this paper, when μ = 0 and r1 = 0, by
using Theorem 1, we obtain the maximum allowable up-
per bounds r2 = τ̄ = 6.7568. Moreover, it is obvious that
the upper bound obtained in our paper is better than those
found by Liu et al. (2009) or Zhang and Sun (2005). The
result reveals the stability criteria obtained in this paper
are less conservative than some existing results.

If we take the initial values of (5) as [y1(s), y2(s)] =
[cos(s), 0.3 sin(s)], s ∈ [−2, 0]. Figure 1 depicts the time
response of state variables y1 and y2 with and without im-
pulsive effects.
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