
Int. J. Appl. Math. Comput. Sci., 2011, Vol. 21, No. 2, 401–412
DOI: 10.2478/v10006-011-0030-1

DESIGN OF MICROPROGRAMMED CONTROLLERS
TO BE IMPLEMENTED IN FPGAS

REMIGIUSZ WIŚNIEWSKI ∗, ALEXANDER BARKALOV ∗, LARISA TITARENKO ∗,
WOLFGANG A. HALANG ∗∗

∗ Faculty of Electrical Engineering, Computer Science and Telecommunications
University of Zielona Góra, ul. Podgórna 50, 65–246 Zielona Góra, Poland

e-mail: {r.wisniewski,a.barkalov,l.titarenko}@iie.uz.zgora.pl

∗∗Faculty of Mathematics and Computer Science
University of Hagen, 58084 Hagen, Germany

e-mail: wolfgang.halang@fernuni-hagen.de

In the article we propose a new design method for microprogrammed controllers. The traditional structure is improved by
modifying internal modules and connections. Such a solution allows reducing the total number of logic elements needed
for implementation in programmable structures, especially Field Programmable Gate Arrays (FPGAs). Detailed results
of experiments show that on the average the application of the proposed methods yields up to 30% savings as far as the
destination device is considered.

Keywords: control unit, microprogrammed controller, field programmable gate array.

1. Introduction

A Control Unit (CU) is one of the main parts of any
digital system (De Micheli, 1994; Maxfield, 2004; Gaj-
ski, 1996; Łuba, 2005). The traditional method of desi-
gning a digital system implements a CU as a Finite State
Machine (FSM) (Łuba et al., 2009; Baranov, 1994; Adam-
ski and Barkalov, 2006). Very often such a solution con-
sumes many logic blocks of the implementation devi-
ce, which could more effectively be used for other func-
tions (Wiśniewski, 2009). It is known that in the case
of the linear flow-chart, the microprogrammed control-
ler (also known as the compositional microprogram con-
trol unit) consumes less hardware than controllers ba-
sed on the traditional FSM model (Barkalov and Titaren-
ko, 2009; Garcia-Vargas et al., 2007).

In a microprogrammed controller, the control unit is
decomposed into two main parts. The first one is respon-
sible for addressing microinstructions kept in the control
memory. It is a simple finite state machine (Barkalov and
Titarenko, 2009). The role of the second part is to hold
and generate adequate microinstructions. Such a solution
permits to minimise the number of logic elements used
to implement the CU. Thus, wider areas of the target de-

vice are available for other modules of the designed sys-
tem. The control unit’s memory can be implemented using
either logic elements or dedicated memory blocks on a
chip (Wiśniewski, 2009). The rest of the system is reali-
sed by the logic blocks of the programmable device (for
example, a field programmable gate array,) employed for
implementation (Łuba, 2005). All logic functions are per-
formed by Look-Up Tables (LUTs). As these LUTs have
a limited number of inputs (Łuba, 2005; Maxfield, 2004),
all Boolean functions (or the whole design) ought to be
decomposed (Sentovich, 1993; Kania, 2004; Wiśniewska
et al., 2007), which very often consumes an additional
area on the destination FPGA.

This problem is addressed in the sequel by presen-
ting a way to reduce the number of logic blocks requ-
ired to implement microprogrammed controllers. Its main
idea is to reduce the hardware amount by changing the
structure of the controller. The internal blocks and con-
nections of the control unit are modified to achieve bet-
ter performance. The proposed method is compared with
the traditional realisation technique of microprogrammed
controllers. Detailed results of implementation and expe-
rimentation are given which indicate that the presen-

{r.wisniewski,a.barkalov,l.titarenko}@iie.uz.zgora.pl
wolfgang.halang@fernuni-hagen.de

402 R. Wiśniewski et al.

ted solution allows reducing the number of logic blocks
by over 30%.

2. Microprogrammed controllers

Let a control algorithm be represented by a flow-chart Γ
(Baranov, 1994; Barkalov and Titarenko, 2009) with a set
of operational vertices B = {b1, . . . , bK} and a set of
edges E. Each vertex bk ∈ B contains the microopera-
tions Y (bk) ⊆ Y , where Y = {y1, . . . , yN} is the set
of microoperations. Each conditional vertex of the flow-
chart contains one element from the set of logic conditions
X = {x1, . . . , xL}.

2.1. Main definitions. Let us introduce some defini-
tions needed to explain the proposed methods.

Definition 1. The Operational Linear Chain (OLC) of
the flow-chart Γ is a finite sequence of the operational
vertices αg = 〈bg1, . . . , bgFg〉 such that for any pair of
adjacent components of the vector αg there is an edge
〈bgi, bgi+1〉 ∈ E, where i is the number of the component
in the vector αg (i = 1, . . . , Fg − 1).

Definition 2. The vertex bq ∈ B is called an input of the
OLC αg if there is an edge 〈bt, bq〉 ∈ B, where bt is either
an initial or a conditional vertex of the flow-chart Γ, or an
operational vertex not belonging to the OLC αg .

Definition 3. The vertex bq ∈ B is named an output of
the OLC αg if there is an edge 〈bq, bt〉, where bt is either
a conditional or a final vertex of the flow-chart Γ, or an
operational vertex not belonging to the OLC αg .

Definition 4. The flow-chart Γ is called a linear flow-chart
if the number of chains is at least twice less than the num-
ber of operator vertices (Barkalov and Titarenko, 2009).

2.2. Microprogrammed controller with mutual me-
mory. Let Dg be a set of operational vertices included
in the chain αg , C = {α1, . . . , αG} a set of OLCs of the
flow-chart Γ satisfying the condition

Dg ∩ Dq = Ø (g �= q, g, q ∈ {1, . . . , G}),
B = D1 ∪ D2 ∪ · · · ∪ DG,
Dg �= Ø (g ∈ {1, . . . , G}),

(1)

and let natural addressing of microinstructions be execu-
ted for each αg:

A(bgi+1) = A(bgi) + 1 (i ∈ {1, . . . , Fg−1}), (2)

where A(bg) is the address of the microinstruction cor-
responding to the vertex bg ∈ B. Then the flow-chart Γ
can be interpreted as a Compositional Microprogrammed
Control Unit (CMUC) with mutual memory denoted by
UMM (Fig. 1).

CC CT CM
T A

Y

X

y0

Fig. 1. Structure of a microprogrammed controller with mutual
memory.

In this control unit, the combinational circuit CC is
responsible for generating excitation functions for the co-
unter CT, which keeps an address of microinstructions.
The variables Ar ∈ A are used to represent addresses
A(bk), bk ∈ B. Microinstructions are kept in the control
memory CM, and each word (microinstruction) has N +2
bits in the case of unitary encoding of microoperations
(Barkalov and Titarenko, 2009). One of the additional bits
is used to keep a variable y0 to organise the addressing
mode (2). The second additional bit keeps a variable yK

to organise the microinstruction fetching from CM. For
simplicity, this variable is not shown in all figures in this
paper.

The controller operates as follows. At the beginning,
the counter is set to the value that corresponds to the ini-
tial state of the FSM, which is equal to the address of the
first microinstruction of the control algorithm to be im-
plemented. If transitions are executed inside some chain
αg ∈ C, then y0 = 0. This causes the CT to be incremen-
ted and prohibits changing the current state of the control
unit. When the output of αg ∈ C is reached, y0 = 1 and
the circuit CC forms the excitation function for the coun-
ter

T = f(X, A). (3)

This function forms the code of the state of transition and
the address of the input of the next OLC αg ∈ C as well.
If the controller reaches an address of the microinstruction
Y (bk) such that 〈bk, bE〉 ∈ E, then yK = 1. Thus, the
operation of the CMCU UMM is finished.

2.3. Example of synthesising a microprogrammed
controller with mutual memory. To elucidate the idea
of the CMCU with mutual memory, a method for syn-
thesising such a controller is now illustrated with a sim-
ple example. Figure 2 shows a hypothetical algorithm
of the control unit U1. Here the symbol U1 stands for
the CMCU UMM in our example. There are 11 opera-
tional vertices B = {b1, . . . , b11} and three conditional
vertices with conditions from the set X = {x1, x2, x3}
in the flow-chart Γ1. Thus, the circuit should generate
11 microinstructions that consist of five microoperations
Y = {y1, . . . , y5}.

In order to design a microprogrammed controller
with mutual memory, first the set C of operational linear

Design of microprogrammed controllers to be implemented in FPGAs 403

Fig. 2. Flow-chart Γ1.

chains ought to be formed (Fig. 3). In the presented exam-
ple, there are four OLCs C = {α1, α2, α3, α4}, where
α1 = 〈b1, b2〉, α2 = 〈b3, . . . , b7〉, α3 = 〈b8, b9〉, and
α4 = 〈b10, b11〉. All OLCs, except for α2, have one in-
put: for α1 it is the vertex b1 and for α3 and α4 they are
b3 and b4, respectively. The OLC α2 has two inputs: the
vertices b3 and b6. Therefore, the set of inputs contains
five elements: I = {I1

1 , I1
2 , I2

2 , I1
3 , I1

4}, where I1
1 = b1,

I1
2 = b3, I2

2 = b6, I1
3 = b8 andI1

4 = b10. Each OLC
may have only one output. Thus, there are four outputs in
the set of OLCs: O = {O1, . . . , O4}, where O1 = b2,
O2 = b7, O3 = b9 and O4 = b11.

Fig. 3. OLC flow-chart of the CMCU U1.

In the next step of the design process, the content of
the control memory is formed. To this end, the addresses
of all microinstructions have to be encoded. For a con-
trol unit with mutual memory, the encoding method is not
important. Therefore, according to (2), natural binary co-
des are used. As there are 11 operational vertices in the
flow-chart Γ1, the microinstructions are encoded using fo-
ur bits. In the presented example, the microinstructions
are addressed as A(b0) = 0000, A(b1) = 0001, . . .,
A(b11) = 1010.

Each microinstruction written at the vertex bk consi-
sts of microoperations that are written in this vertex. Two
additional microoperations are necessary for the CMCU
to function properly: y0 and yK . The first one is set up
(y0 = 1) if the vertex bk belongs to the set of outputs O.
Otherwise, y0 = 0. In the example, y0 is produced by the
vertices b2, b7, b9 and b11. The microoperation yK is equal
to 1 only if the vertex bk is connected with the final vertex
of the flow-chart. For the flow-chart Γ1, yk is set at the
vertex b7 only.

Next, microinstructions are encoded and the table of
the control memory content is formed. Table 1 represents
the content of CM for the control unit U1.

Table 1. Content of the control memory of the CMCU U1.

Vertex Address
Microinstruction

y0 y1 y2 y3 y4 y5 yK

b1 0000 0 1 1 0 0 0 0
b2 0001 1 0 0 1 1 0 0
b3 0010 0 0 1 1 0 0 0
b4 0011 0 1 0 0 1 0 0
b5 0100 0 0 0 0 0 1 0
b6 0101 0 1 0 1 0 0 0
b7 0110 1 0 1 1 0 1 1
b8 0111 0 1 1 0 0 0 0
b9 1000 1 1 0 1 0 1 0
b10 1001 0 0 0 1 1 0 0
b11 1010 1 1 0 1 0 0 0

To determine the excitation function T for the co-
unter, the table of transitions of the CMCU U1 has to be
formed. This table describes transitions between all ope-
rational linear chains depending on input values (set of
operational vertices X). In the presented example, the ta-
ble of transitions (Table 2) has H = 8 lines.

Based on the address SA(Og) (which is represented
by the set of variables A = {a1, . . . , a4}) and on the set of
conditional vertices X , the counter’s excitation function T
is formed:

t4 = a4· a3· a2· a1·x1·x2,

t3 = a4· a3· a2· a1·x1·x2 + a4· a3· a1·x3,

t2 = a4· a3· a2· a1· (x1 + x1·x2),
t1 = a4· a3· a2· a1·x1 + a4· a3· a1·x3.

(4)

404 R. Wiśniewski et al.

Table 2. Table of transitions of the CMCU U1.

Og
SA(Og)

Xh It
j

K(It
j) T h

a4 a3 a2 a1 t4 t3 t2 t1

O1 0 0 0 1 x1 I1
2 0 0 1 0 t2 1

O1 0 0 0 1 x1 x2 I1
3 0 1 1 1 t3 t2 t1 2

O1 0 0 0 1 x1 x2 I1
4 1 0 0 1 t4 t1 3

O2 0 1 1 0 – – – – – – – 4
O3 1 0 0 0 x3 I2

2 0 1 0 1 t3 t1 5
O3 1 0 0 0 x3 I1

1 0 0 0 0 – 6
O4 1 0 1 0 x3 I2

2 0 1 0 1 t3 t1 7
O4 1 0 1 0 x3 I1

1 0 0 0 0 – 8

Now, the CMCU U1 can easily be prototyped using har-
dware description languages such as Verilog (Lee, 1999;
Thomas and Moorby, 2002) or VHDL (Brown and Vrane-
sic, 2000; Zwolinski, 2000). Based on such a description,
the CMCU can be logically synthesised and finally imple-
mented in an FPGA.

A relevant example was prepared and implemented
using a type XC2VP30 FPGA of the Virtex-II Pro family
of Xilinx. Figure 4 shows a simplified technological dia-
gram of the controller. Initially, the diagram was genera-
ted after logic synthesis by the Xilinx XST tool. It was
modified to clarify the logic structure of circuit U1. Here
10 LUTs corresponding to the combinational circuit we-
re replaced by one block. Similarly, four LUTs and fo-
ur flip-flops forming the counter are represented by two
further blocks. Being a Xilinx primitive, FDC represents
a D-type flip-flop with asynchronous reset. Additionally,
the main nets were named (in the example T , A) to show
the similarity to the logic diagram.

10 LUTs
T

Reset

Clk

X

Y1 BRAM

Clr

Clk

A
4 LUTs 4 FDCs

Clr
Clk

y
0

Fig. 4. Technological structure of the CMCU U1.

Two blocks of the microprogrammed controller U1

are synchronous: counter and control memory. Therefore,
the clock signal Clk ought to be delivered to them. The
counter is triggered by the rising edge of the clock signal.
Because of feedback signals, however, the control memo-
ry is active on the falling edge of Clk. Now, an address
of a microinstruction is formed on a positive edge, while
outputs are generated when the clock signal goes low. Ne-
edless to say that critical timing paths should be checked
to avoid timing skews in the circuit (placement and timing
paths are automatically verified by Xilinx tools during lo-
gical implementation of the design).

The circuit of the CMCU U1 took 14 LUT elements

and one dedicated memory block of FPGA resources. In
contrast, when prepared as a traditional finite state machi-
ne, the controller required 14 LUT elements and one dedi-
cated memory block as well (here microinstructions we-
re also implemented using dedicated memory). This sim-
ple example reveals that a controller designed as a CMCU
with mutual memory may not give better results than the
equivalent FSM-based circuit.

The results achieved with more tests (as presented
in Section 5 in detail) showed for controllers interpreting
a linear flow-chart that CMCUs with mutual memory re-
quire fewer logic blocks than traditional FSMs. Although
the benefit is rather low (about 9%), these results were
an inspiration to search for new design ideas of control
units. The aim of the research was to reduce the number
of logic elements required to implement controllers using
programmable devices. The next sections show how to im-
prove microprogrammed controllers with mutual memory.

3. Microprogrammed controller with
identification of outputs

In the microprogrammed controller with mutual memo-
ry, as shown in the previous section, the microinstruction
address generated by the counter is used to recognise the
controller’s current operational linear chain. Based on this
code, the module CC executes the system function accor-
ding to (3). Here, the full address is used as a feedback
function—in our example we used |A| = 4 bits. However,
since there are only |C| = 3 OLCs in the controller, they
may be encoded with only ROI=	log2 3
 = 2 bits. Such
a solution may be possible, depending on the encoding of
each OLC’s output.

If we encode microinstructions as shown in Table 3,
we see that the OLC outputs correspond to the addres-
ses A(O1) = 0001, A(O2) = 0110, A(O3) = 1000
and A(O1) = 1100. Now each output can be recognised
with two major bits of its address. Finally, the OLC out-
puts are encoded as follows: K(O1) = 00, K(O2) = 01,
K(O3) = 10 and K(O4) = 11. There are only two va-
riables used to represent each code: Q = {a3, a4}, where

Design of microprogrammed controllers to be implemented in FPGAs 405

Q ∈ A. This means that the set of feedback variables used
to identify the current state of the controller is reduced to
the minimum. A combinational circuit generates the func-
tion T for the counter (Wiśniewski et al., 2006; Barkalov
et al., 2006):

T = f(X, Q), (5)

where Q ⊆ A, |Q| = ROI , Q = {Q1, . . . , QROI}.

Table 3. Microinstruction addressing in the microprogrammed
controller U2.

Vertex Address Comment

b1 0000 I1
1

b2 0001 O1

b3 0010 I1
2

b4 0011 –
b6 0101 I2

2

b7 0110 O2

b8 0111 I1
3

b9 1000 O3

b10 1011 I1
4

b11 1100 O4

Figure 5 illustrates the structure of the micropro-
grammed controller with output identification. As already
mentioned, the main idea of the device presented is to use
the part Q of the address A to identify the control unit’s
internal states.

CC CT CM
T A

Y

X

Q

y0

Fig. 5. Structure of the CMCU with output identification.

3.1. Synthesis of the CMCU with output identifica-
tion. The method proposed to synthesise the CMCU
with output identification includes the following steps:

1. Formation of the OLC set. The set of operational li-
near chains is created. For each OLC, its output and
all inputs are determined. There are M2 operational
linear chains, and the length of the longest one is spe-
cified by the value M1. The total number of microin-
structions is represented by the parameter M3.

2. Addressing microinstructions and encoding OLC
outputs. Let Q ⊆ A be a set of variables suffi-
cient for one-to-one identification of the OLC,
αg ∈ C and ROI = |Q|. Addressing the CMCU’s
microinstructions is carried out as follows:

(a) At the beginning, all microinstructions are en-
coded using natural binary codes.

(b) The value of ROI is set to ROI = R2, where
R2 = 	log2 M2
.

(c) The addressing table is created. It has 2ROI co-
lumns marked by ROI major address bits and
2R3−ROI lines marked by R3 −ROI minor ad-
dress bits. Here, R3=	log2 M3
.

(d) If outputs of two different OLCs αi, αj ∈ C
are located in the same column and none of the
outputs is connected with the final vertex of the
flow-chart, then the information is shifted to the
right starting from the first vertex of the OLC
αj (j > i). The table’s cells releasing entries
are filled with the symbol ‘∗’. This operation is
performed until the outputs Oi and Oj are in
different columns of the table.

(e) If the outputs of all OLCs are identified one-to-
one by ROI bits, then the algorithm moves on
to point (g).

(f) If the address of any vertex is beyond the actual
addressing space, then ROI := ROI + 1. Next,
the algorithm is repeated from point (c) on.

(g) End.

Finally, all microinstructions are encoded. Now each
microinstruction’s code is formed as concatenation
of major (columns) and minor (lines) addresses of
the created table. Outputs of OLCs are encoded using
only major address bits. The outcome of this enco-
ding is further used to form the transition table of the
microprogrammed controller.

3. Formation of the control memory content. The con-
tent of control memory is formed. Addresses of mi-
croinstructions are created according to the algorithm
presented in the previous step.

4. Formation of the transition table of the CMCU UOI

and the counter’s excitation function. At this stage,
the table of transitions between the OLCs is created.
It contains the columns Og , MA(Og), Xh, It

j , K(It
j),

T , h, where

• Og is the output of the chain from which the
transition is executed;

• MA(Og) is the major part of the output’s Og

address; this address was calculated at Stage 2;

• Xh is the input signal causing transition
〈Og, I

j
t 〉; it is equal to the conjunction of the

elements from the set X ;

• It
j is the input of the chain αj ∈ C in which the

transition is executed;

406 R. Wiśniewski et al.

• K(It
j) is the address of the input It

j ;

• T is the set of variables forming the excitation
function for the counter;

• h is the number of the transition (h =
1, . . ., H).

Based on this table, the counter’s excitation function
T is formed as

Tr =
H∨

h=1

CrhEh
g Xh (r ∈ {1, . . . , ROI}). (6)

Here Crh is a Boolean variable that is equal to 1 if
and only if the function Tr is written in the h-th line
of the table of transitions; Eh

g is a conjunction of the
internal variables Qr ∈ Q corresponding to the ad-
dress MA(Og) of the output Og from the h-th line of
the table of transitions.

5. Implementation of CMCU UOI. This step is executed
in the same manner as was shown during the design
process of the CMCU UMM. The combinational cir-
cuit and the counter are implemented using LUT ele-
ments while the control memory is realised with de-
dicated memory blocks of FPGAs.

3.2. Example of synthesising the microprogrammed
controller with identification of outputs. To elucida-
te the idea of OLC encoding, the design process of the
CMCU UOI with output identification is illustrated by
an example. Once again, the flow-chart Γ1 is used as in-
itial description of controller U2. There are M3 = 11
operational vertices and M2 = 4 operational linear cha-
ins. The longest OLC is α2 containing M1 = 5 ele-
ments. According to the algorithm of microinstruction
addressing, the initial value of variable ROI is equal to
R2 = 	log2 M2
 = 2. Thus, at the beginning, the table of
addressing has 2ROI = 2 columns and 2R3−ROI = 2 lines
(Fig. 6).

a
3
 a

4
a

1
 a

2 00 1001 11

00

01

10

11

b1 = I 1
1

b2 = O 2

b4

b
3
 = I

2
1

b5

b6 = I2
2

b8 = I3
1

b10 = I4
1

b11= O4

b9 = O3 *

*

*

**

b7 = O2

Fig. 6. Initial table of addressing.

Initially, all addresses of microinstructions are enco-
ded in natural binary code. In the presented example, the

outputs O3 of α3 and O4 of α4 are located in the same
column. Since neither O3 nor O4 are connected to the fi-
nal vertex of the flow-chart Γ1, all components that have
higher addresses than output O3 are shifted. This move-
ment is performed while output O4 is in the same column
as O3.

Figure 7 presents the table after the shift operation.
Now each OLC output is located in a different column,
and there are no vertices beyond the addressing space.
This means that all addresses are encoded and the algo-
rithm is finished.

a
3
 a

4
a

1
 a

2 00 1001 11

00

01

10

11

b1 = I 1
1

b2 = O 2

b4

b
3
 = I

2
1

b5

b6 = I2
2

b8 = I3
1

b11= O4

b10 = I4

b9 = O3

* *

*

*

*b7 = O2

1

Fig. 7. Table of addressing after shift operations.

In the next step, the table of transitions of the CMCU
U2 is created. Here the symbol U2 stands for the CMCU
UOI as implemented in our example. The table is similar
to the one created for the CMCU with mutual memory,
although now there are only two major bits of the whole
address used as OLC output identification (Tab. 4).

Based on the address MA(Og) (represented by the
set of variables Q = {a3, a4}) and the set of logical con-
ditions X , the counter’s excitation function T is formed:

t4 = a4· a3·x1·x2,

t3 = a4· a3·x1·x2 + a4·x3,

t2 = a4· a3,

t1 = a4· a3·x1 + a4·x3.

(7)

The microprogrammed controller U2 can be prototyped
using Hardware Description Languages (HDLs). In com-
parison to the excitation function formed for the controller
with mutual memory, T contains fewer variables and shor-
ter equations. Therefore, it is expected that the CMCU U2

should consume fewer logic elements than the CMCU U1.
In fact, implementing the controller on an FPGA showed
that the CMCU U2 with output identification requires 11
LUT elements (Fig. 8), which means a reduction by 21%
in comparison with the microprogrammed controller U1

with mutual memory.

Design of microprogrammed controllers to be implemented in FPGAs 407

Table 4. Transition table of the CMCU U2.

Og
MA(Og)

Xh It
j

K(It
j) T h

a4 a3 t4 t3 t2 t1

O1 0 0 x1 I1
2 0 0 1 0 t2 1

O1 0 0 x1 x2 I1
3 0 1 1 1 t3 t2 t1 2

O1 0 0 x1 x2 I1
4 1 0 1 1 t4 t2 t1 3

O2 0 1 – – – – – – – 4
O3 1 0 x3 I2

2 0 1 0 1 t3 t1 5
O3 1 0 x3 I1

1 0 0 0 0 – 6
O4 1 1 x3 I2

2 0 1 0 1 t3 t1 7
O4 1 1 x3 I1

1 0 0 0 0 – 8

4. Microprogrammed controller with
identification of outputs and a function
decoder

Figure 9 shows the microprogrammed controller with a
function decoder. The main idea for improving the struc-
ture of the CMCU with output identification is to reduce
the number of logic blocks of the target FPGA by employ-
ing an additional block (function decoder), which may be
implemented using dedicated memories. As a result, fe-
wer LUT elements are needed to realise the control unit
as compared to the CMCUs shown in previous sections.

4.1. Main idea of the method. In the CMCU UOD, the
variables forming the counter’s excitation function are en-
coded with the minimum number of bits. To this end, all
inputs of operational linear chains ought to be encoded.
Moreover, an address of each microinstruction is encoded
and recognised with Q bits, according to (5). Now the mo-
dule CC generates a function Z:

Z = f(X, Q), (8)

7 LUTs
T

Reset

Clk

X

Y1 BRAM

Clr

Clk

A
4 LUTs 4 FDCs

Clr
Clk

y
0

Q

Fig. 8. Technological structure of the microprogrammed con-
troller U2.

CC CT CM
T

A

Y

X

FD
Z

Q

y0

Fig. 9. Structure of CMCU with output identification and a
function decoder.

which contains the encoded addresses E(I) of all inputs
in the set of OLCs. They are further decoded by the block
FD, which indicates the proper code for the counter:

T = f(Z), (9)

where T means the set of variables forming the counter’s
excitation function.

The number of bits required to encode all inputs can
be calculated as RZ = 	log2 MZ
, where MZ = |I| is
equal to the number of all inputs in the set of OLCs.

The presented solution permits to reduce the num-
ber of outputs generated by the circuit CC. The additio-
nal block of the function decoder is implemented with de-
dicated FPGA memories. Therefore, the number of logic
elements needed to implement the entire controller is re-
duced.

4.2. Synthesising the microprogrammed controller
with identification of outputs and a function decoder.
The proposed design method for the CMCU UFD inclu-
des the following steps:

1. Forming the set of OLCs and encoding their inputs.
The set of OLCs is formed in the same manner as
shown during the synthesis of the microprogrammed
controller with mutual memory. Next, the addresses
A of all microinstructions are calculated. The
encoding style is not important, so natural binary
codes may be used. Finally, the addresses K(It

j) of
all inputs of the set of OLCs are encoded with the
minimum number of bits RZ . Now each input has a
unique code E(It

j).

2. Addressing microinstructions and encoding OLC out
puts. Addresses of microinstructions are represented
using the algorithm shown in the previous section.
The outputs of OLCs are encoded employing major
address bits only. The outcome of the encoding
is further used in forming the microprogrammed
controller’s table of transitions.

408 R. Wiśniewski et al.

3. Formation of the control memory content. In accor-
dance with the addresses calculated in the previous
stage, the content of the control memory is prepared.

4. Formation of the CMCU’s transition table. The table
of transitions is the basis to form the system (8) and
to synthesise the circuit CC. This table contains only
transitions for such OLCs whose outputs are not con-
nected to the final vertex of the flow-chart. The table
of transitions contains the columns Og , MA(Og),
Xh, It

j , E(It
j), Z , h, where

• Og is the output from which the transition is
executed;

• MA(Og) is the major part of the output’s Og

address; this address was calculated at the stage
of microinstruction addressing;

• Xh is the input signal causing transition
〈Og, I

j
t 〉; it is equal to the conjunction of the

elements from set X ;

• It
j is the input of the chain αj ∈ C to which the

transition is executed;

• E(It
j) is the address of input It

j ;

• Z is the set of variables forming the decoder’s
excitation function;

• h ∈ {1, . . ., H} is the number of the transition.

Based on the transition table, the excitation function
Z can be determined. The system (8) is represented
as

zr =
H∨

h=1

CrhFh
g Xh (r ∈ {1, . . . , R1}), (10)

where Crh is a Boolean variable equal to 1 if and on-
ly if the function zr is written in the h-th line of the
table of transitions; Fh

g is a conjunction of the inter-
nal variables ar ∈ A corresponding to the address
SA(Og) of the output Og from the h-th line of the
table of transitions.

5. Formation of the function decoder’s table. Based on
the code E(It

j), the function decoder generates the
proper address K(It

j) of the OLC input. The set of
addresses K(It

j) form the counter’s excitation func-
tion T . The function decoder’s table contains the co-
lumns It

j , K(It
j), E(It

j), T , m, where

• It
j is the input of the chain αj ∈ C;

• E(It
j) is the encoded address of input It

j ;

• K(It
j) is the code of input It

j ;

• T is the set of variables forming the counter’s
excitation function;

• m is the consecutive line in the truth-table of
the function decoder (m = 1, . . . , M).

Based on this table, the circuit of the function de-
coder can be implemented with dedicated memory
blocks. The code E(It

j) represents inputs and K(It
j)

represents outputs of the function decoder. The vo-
lume of memory required to implement the function
decoder can be calculated as SFD=R1 · 2RZ , where
R1 counts the number of variables forming the coun-
ter’s excitation function and RZ stands for the num-
ber of bits required for OLC input encoding.

6. Implementation of the CMCU UOD. The main ad-
vantage of the microprogrammed controller with out-
put identification and a function decoder is the possi-
bility to implement both blocks (FD and CM) with
dedicated memory blocks. Moreover, due to output
identification, the number of feedback functions for
the combinational circuit decreases in comparison
with the CMCU UMM. Therefore, implementation
of the CMCU UOD consumes the least logic ele-
ments of programmable devices in comparison with
the CMCUs UMM, UFD and UOI. It should be poin-
ted out, however, that the presented controller uses at
least two dedicated memory blocks of an FPGA.

4.3. Example of synthesising a CMCU with identifi-
cation of outputs and a function decoder. To illustra-
te the synthesis of the microprogrammed controller UOD,
the flow-chart Γ1 is used as its initial description. Let us
denote by U3 the CMCU UOD as in this example. The pro-
totyping process of the CMCU U3 with output identifica-
tion and a function decoder is a conjunction of the designs
of the CMCUs U1 and U2. At the beginning, the set of
OLCs is formed and all OLCs inputs are encoded. As was
presented in the previous sections, there are four OLCs
which have five inputs. Thus, OLC inputs may be enco-
ded using |Z| = 3 bits. In this example, a natural binary
code is used: E(I1

1) = 000, E(I2
1) = 001, E(I2

2) = 010,
E(I1

1) = 011 and E(I1
1) = 100.

At the next stage, the addressing of microinstruc-
tions and the encoding of OLC outputs are to be per-
formed. According to the algorithm presented in Sec-
tion 3.1, microinstructions corresponding to the verti-
ces b1, . . . , b9 are addressed consecutively in a natu-
ral binary code: A(b1) = 0000, A(b2) = 0001,
A(b3) = 0010, . . . , A(b9) = 1000. The addresses of
the last two microinstructions are shifted. Thus their co-
des are A(b10) = 1011 and A(b11) = 1100. The outputs
of OLCs are encoded with |Q| = 2 major address bits, and
hence MA(O1) = 00, MA(O2) = 01, MA(O3) = 10
and MA(O4) = 11. The content of the control memory is
shown in Table 5.

Next, the transition table of the CMCU is prepa-
red. It contains transitions from output Oi (encoded using

Design of microprogrammed controllers to be implemented in FPGAs 409

Q ⊂ A bits) to input It
j (encoded using Z bits). Table 6

represents the transition table for the CMCU U3. From the
table of transitions, the following excitation function Z for
the function decoder is formed:

z3 = a4· a3·x1·x2,

z2 = a4· a3·x1·x2 + a4·x3,

z1 = a4· a3· (x1 + x1·x2).
(11)

In order to generate a proper excitation function for
the counter, a table of the function decoder has to be pre-
pared. Table 7 shows the content of the function decoder
for the CMCU U3.

The block FD may be implemented either using de-
dicated memories or with logic blocks of an FPGA. In the
case of LUT elements realisation, the minimised excita-

Table 5. Control memory content of the CMCU U3.

Vertex Address
Microinstruction

y0 y1 y2 y3 y4 y5 yK

b1 0000 0 1 1 0 0 0 0
b2 0001 1 0 0 1 1 0 0
b3 0010 0 0 1 1 0 0 0
b4 0011 0 1 0 0 1 0 0
b5 0100 0 0 0 0 0 1 0
b6 0101 0 1 0 1 0 0 0
b7 0110 1 0 1 1 0 1 1
b8 0111 0 1 1 0 0 0 0
b9 1000 1 1 0 1 0 1 0
b10 1011 0 0 0 1 1 0 0
b11 1100 1 1 0 1 0 0 0

Table 6. Table of transitions of the CMCU U3.

Og
MA(Og)

Xh It
j

E(It
j) Z h

a4 a3 z3 z2 z1

O1 0 0 x1 I1
2 0 0 1 z1 1

O1 0 0 x1·x2 I1
3 0 1 1 z2 z1 2

O1 0 0 x1·x2 I1
4 1 0 0 z3 3

O2 0 1 – – – – – – 4
O3 1 0 x3 I2

2 0 1 0 z2 5
O3 1 0 x3 I1

1 0 0 0 – 6
O4 1 1 x3 I2

2 0 1 0 z2 7
O4 1 1 x3 I1

1 0 0 0 – 8

Table 7. Table of the function decoder for the CMCU U3.

It
j

E(It
j) K(It

j) T m
z3 z2 z1 t4 t3 t2 t1

I1
1 0 0 0 0 0 0 0 – 1

I1
2 0 0 1 0 0 1 0 t2 2

I2
2 0 1 0 0 1 0 1 t3 t1 3

I1
3 0 1 1 0 1 1 1 t3 t2 t1 4

I1
4 1 0 0 1 0 0 1 t4 t1 5

tion function T is additionally formed:

t4 = z3· z2· z1,

t3 = z3· z2,

t2 = z3· z1,

t1 = z3· z2 + z3· z2· z1.

(12)

Finally, the controller may be designed with HDL
languages and implemented in a programmable device.
An implementation of the microprogrammed controller
U3 in an FPGA is schematically shown in Fig. 10. As
expected, the CMCU U3 requires the fewest logic blocks
of the device among all controllers previously presented.
The conjunction of OLC output identification and apply-
ing the function decoder resulted in a reduction in LUT
elements used to 10. This means that the amount of har-
dware required to implement the initial microprogrammed
controller with mutual memory was decreased by 26%.

6 LUTs
T

Reset

Clk

X

Y1 BRAM

Clr

Clk

A
4 LUTs 4 FDCs

Clr
Clk

y
0

Q

1 BRAM

Clr

Clk

Z

Fig. 10. Technological structure of the CMCU U3.

5. Results of evaluations and experiments

Experiments have been performed to prove the effective-
ness of the proposed methods. First, the tool for automa-
tic synthesis of CMCUs will be described. Such a system
is absolutely indispensable in designing bigger micropro-
grammed controllers. Next, formal verification of CMCUs
prepared with different methods will be reported. Finally,
experimental results and a detailed analysis of the obta-
ined values will be given.

5.1. CAD tool for automatic synthesis of CMCUs
(ATOMIC). To automate the design process of micro-
programmed controllers, a dedicated CAD tool was deve-
loped to perform AuTOMatic synthesIs of CMCUs (ATO-
MIC). Based on the description of a controller as a flow-
chart, ATOMIC produces code in a hardware description
language (Verilog). Such code is ready for logic synthesis
and subsequent implementation in an FPGA. The tool’s
main features are shown in this section. In the work of
Wiśniewski (2009), input and output data formats, as well
as switches and parameters are described in detail.

There are three major modules constituting ATOMIC
(Fig. 11). The first module (fc2olc) analyses the structure
of a given flow-chart and produces a set of operational

410 R. Wiśniewski et al.

Fig. 11. Structure of ATOMIC.

linear chains. This step is common for all implemented
methods. The second module (olc2mcu) is based on the
description of OLCs, and the chosen method performs the
structural decomposition process. All required data (exci-
tation functions, description of control memory, etc.) are
stored using an intermediate format. Such a format may be
the basis for various ways to describe a CMCU. For exam-
ple, Verilog or VHDL code may very easily be produced.
The last module of ATOMIC (mcu2verilog) generates di-
rect descriptions of CMCUs using Verilog HDL. These
descriptions are ready for logic synthesis and implemen-
tation.

ATOMIC was designed as a module-based tool in or-
der to provide a high performance. At each stage, the de-
scription of a controller prototyped may be changed. Fur-
thermore, once prepared, an OLC description may com-
monly be used as input for all three synthesis methods im-
plemented.

A very important feature is the possibility to use
external tools for further analysis. Each excitation func-
tion produced by the olc2mcu module may be decompo-
sed with appropriate other systems like SIS or DEMA-
IN (Łuba, 2005). Therefore, both structural and functio-
nal decompositions can be used in the prototyping flow
of a microprogrammed controller. A control unit is in-
itially decomposed with structural procedures, and then
excitation functions produced for internal blocks of the
microprogrammed controller are optimised by functional
decomposition. Such a solution preserves the structure of
the CMCU, which leads to the possibility of partially re-
configuring the controller (Wiśniewski, 2005).

5.2. Library of test modules. The presented design
methods for microprogrammed controllers were verified
with over 100 test modules (benchmarks). Each test mo-
dule was prepared in a text format containing a descrip-
tion of the tested CMCU as a flow-chart. The library of
test modules contains benchmarks taken from the works
of Barkalov and Titarenko (2009), as well as Wiśniewski
(2009). Most of them relate to real applications (e.g., traf-

fic light controller or arithmetic operations), whereas only
some comprise artificial test cases.

5.3. Verification of the prepared methods. The func-
tionality of designed the CMCUs was verified with a so-
ftware simulator (here, Active HDL of Aldec and Model-
Sim of Mentor Graphics). Simulations were performed for
each synthesis method. Each module was verified similar-
ly. First, Verilog code was generated for each synthesis
method using ATOMIC. Next, controllers were simulated
and their functionality was verified. Finally, the functio-
nality of control units designed with four different me-
thods (traditional Moore FSM, CMCU with mutual me-
mory, CMCU with identification of outputs, CMCU with a
function decoder and identification of outputs) were com-
pared. Verification of all controllers resulted in correct va-
lues, i.e., all CMCUs prepared with the proposed methods
provide proper functionality.

5.4. Results of experiments. As has already been
mentioned, all synthesis methods were verified by over
100 benchmarks. Additionally, for each test, an FSM mo-
del was prepared. These automata were created according
to the rules presented by Thomas and Moorby (2002), Bu-
kowiec (2009) as well as Barkalov, Titarenko and Chmie-
lewski (2007). All FSMs were prepared in such a way that
during FPGA implementation all microoperations were
realised with dedicated memory blocks.

The prototyping process for each benchmark was si-
milar. Based on its flow-chart description (.fc file), a con-
troller was structurally decomposed with all design me-
thods presented here. Additionally, an equivalent FSM
was produced. The generated Verilog codes were finally
synthesised and implemented with the Xilinx XST tool.

Table 8 presents average results of CMCU imple-
mentations designed with the particular synthesis method
in comparison with the Moore FSM and the CMCU with
mutual memory. As the target, the FPGA XC2VP30 of
the Xilinx Virtex-II Pro family was selected. The de-
vice contains 27392 flip-flops, 27392 LUTs (13696 sli-
ces) and 136 dedicated memory blocks (block RAMs).
Detailed results of performed experiments can be fo-
und at http://www.uz.zgora.pl/~rwisniew/
/badania/results_amcs_2010.html.

5.5. Analysis of experimental results. Detailed ana-
lysis of the results obtained proved the effectiveness of
the proposed methods. The designs CMCUOI with iden-
tification of outputs and CMCUOD with identification of
outputs and a function decoder require less logic blocks
than the controller with mutual memory. Moreover, both
methods permit even to reduce the number of slices and
LUTs in comparison with traditional FSMs by over 40%
(in the case of the CMCU OD). The investigations also

http://www.uz.zgora.pl/~rwisniew/
/badania/results_amcs_2010.html.

Design of microprogrammed controllers to be implemented in FPGAs 411

Table 8. Averaged experimental results.

FPGA resources
Design method

FSM MM OI OD

Comparison with the FSM

Slices 100% 91% 76% 60%
FF 100% 100% 102% 108%

LUTs 100% 91% 78% 60%
BRAMs 100% 100% 102% 126%

Slices 110% 100% 84% 68%
Comparison with the CMCU FF 100% 100% 102% 108%
with mutual memory LUTs 110% 100% 86% 68%

BRAMs 100% 100% 102% 126%
FSM: controller realised as the FSM, MM: controller realised as the CMCU with mutual memory,

OI: controller realised as the CMCU with identification of outputs,

OD: controller realised as the CMCU with identification of outputs and a function decoder.

show that the CMCU OD uses much less logic than the
CMCU OI. This means that applying a function decoder
drastically reduces the total number of required logic ele-
ments.

On the other hand, the number of flip-flops and dedi-
cated memory blocks required to realise a controller in the
form of a CMCU OI and especially CMCU OD is greater
than in the case of a CMCU MM and an FSM. As expec-
ted, applying a function decoder resulted in fewer logic
elements (LUTs and slices) but increased the number of
BRAMs. The above analysis may be summarised as fol-
lows:

• For systems not containing many elements that sho-
uld be implemented with dedicated memories, the
CMCU with identification of outputs and a function
decoder should be selected for controller implemen-
tation. Such realisations permit to reduce the num-
ber of logic blocks by over 40% in comparison with
CMCUs with mutual memory but require more (at
least one) dedicated memory blocks for implementa-
tion.

• For systems that may use wide areas of dedicated me-
mory blocks, the CMCU with identification of out-
puts appears to be the best solution. Although it con-
sumes more BRAMs than a controller with mutu-
al memory (the difference is about 2%), this appro-
ach reduces the total number of logic elements on
the average by about 24%. Moreover, such a realisa-
tion consumes much fewer BRAMs than a micropro-
grammed controller with function decoder does.

6. Conclusion

Methods to design microprogrammed controllers we-
re proposed and discussed. The method of designing
CMCUs with mutual memory was improved by modi-
fying the structure of the control units. In CMCUs with

identification of outputs, microinstruction addresses we-
re encoded in a special way, yielding a reduction in the
number of internal variables required to recognise the cur-
rent controller state. The method was further improved by
employing function decoders, which may be implemented
with dedicated memory blocks of the target FPGAs. The
presented methods aim at reducing the number of logic
elements required in programmable devices. The results
of experiments show that the best gain is achieved by im-
plementing controllers as CMCUs with function decoders.
However, such a realisation consumes more dedicated me-
mories than other CMCUs. Therefore, if other modules of
a system require many BRAM resources, microprogram-
med controllers with identification of outputs are the best
solution.

References
Adamski, M. and Barkalov, A. (2006). Architectural and Sequ-

ential Synthesis of Digital Devices, University of Zielona
Góra Press, Zielona Góra.

Baranov, S. I. (1994). Logic Synthesis for Control Automata,
Kluwer Academic Publishers, Boston, MA.

Barkalov, A. and Titarenko, L. (2009). Logic Synthesis for FSM-
Based Control Units, Springer-Verlag, Berlin.

Barkalov, A., Wȩgrzyn, M. and Wiśniewski, R. (2006). Optimi-
zation of LUT-elements amount in cotrol unit of system-
on-chip, Discrete-Event System Design, DESDes ’06: A
Proceedings Volume from the 3rd IFAC Workshop, Rydzy-
na, Poland, pp. 143–146.

Barkalov A., Titarenko L. andChmielewski S. (2007). Reduction
in the number of PAL macrocells in the circuit of a Moore
FSM, International Journal of Applied Mathematics and
Computer Science 17(4): 565–675, DOI: 10.2478/v10006-
007-0046-8.

Brown, S. and Vranesic, Z. (2000). Fundamentals of Digital
Logic with VHDL Design, McGraw Hill, New York, NY.

Bukowiec, A. (2009). Synthesis of Finite State Machines for
FPGA Devices Based on Architectural Decomposition,
University of Zielona Góra Press, Zielona Góra.

412 R. Wiśniewski et al.

De Micheli, G. (1994). Synthesis and Optimization of Digital
Circuits, McGraw-Hill, New York, NY.

Gajski, D. (1996). Principles of Digital Design, Prentice Hall,
Upper Saddle River, NJ.

Garcia-Vargas, I., Senhadji-Navarro, R., Jimenez-Moreno, G.,
Civit-Balcells, A. and Guerra-Gutierrez, P. (2007). ROM-
based finite state machine implementation in low cost
FPGAs, IEEE International Symposium on Industrial
Electronics (ISIE), Vigo, Spain, pp. 2342–2347.

Kania, D. (2004). The Logic Synthesis for the PAL-based Com-
plex Programmable Logic Devices, Lecture Notes of the
Silesian University of Technology, Gliwice, (in Polish).

Lee, J.M. (1999). VERILOG QuickStart: A Practical Guide to
Simulation and Synthesis in VERILOG, Kluwer Academic
Publishers, Norwell, MA.

Łuba, T. (2005). Synthesis of Logic Devices, Warsaw University
of Technology Press, Warsaw, (in Polish).

Łuba, T., Borowik, G. and Kraśniewski, A. (2009). Synthesis of
finite state machines for implementation with programma-
ble structures, Electronics and Telecommunications Quar-
terly 55(2): 183–200.

Maxfield, C. (2004). The Design Warrior’s Guide to FPGAs,
Academic Press, Inc., Orlando, FL.

Sentovich, E.M. (1993). Sequential Circuit Synthesis at the Ga-
te Level, Ph.D. thesis, University of California, Berkeley,
CA.

Thomas, D. and Moorby, P. (2002). The Verilog Hardware De-
scription Language, 5th Edn., Kluwer Academic Publi-
shers, Norwell, MA.

Wiśniewska, M., Wiśniewski, R. and Adamski, M. (2007). Usa-
ge of hypergraph theory in decomposition of concurrent
automata, Pomiary, Automatyka, Kontrola (7): 66–68.

Wiśniewski, R. (2005). Partial reconfigutration of micropro-
grammed controllers implemented in FPGAs, Proceedings
of the International Ph.D. Workshop OWD 2005, Wisła,
Poland, Vol. 21, pp. 239–242, (in Polish).

Wiśniewski, R. (2009). Synthesis of Compositional Micropro-
gram Control Units for Programmable Devices, University
of Zielona Góra Press, Zielona Góra.

Wiśniewski, R., Barkalov, A. and Titarenko, L. (2006). Optimi-
zation of address circuit of compositional microprogram
unit, Proceedings of the IEEE East-West Design & Test
Workshop, EWDTW ’06, Sochi, Russia, pp. 167–170.

Zwolinski, M. (2000). Digital System Design with VHDL,
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA.

Remigiusz Wiśniewski was born in Poznań in
1978. He received his Ph.D. degree in computer
science from the University of Zielona Góra in
2008. His general research interests include cryp-
tology, design and verification methods for digi-
tal circuits and application of programming lan-
guages to computer-aided design systems. Since
2003 he has been an assistant professor at the In-
stitute of Computer Engineering and Electronics
of the University of Zielona Góra.

Alexander Barkalov was born in Russia in
1954. Since 2003 he has been a professor of com-
puter engineering at the Institute of Computer
Engineering and Electronics, University of Zie-
lona Góra, Poland, and he is also a professor
at the Institute of Computers, Donetsk National
Technical University, Ukraine. His current rese-
arch interests include the theory of digital auto-
mata, especially methods for synthesis and opti-
mization of control units implemented with field-

programmable logic devices. He has taken part in a number of research
projects sponsored by different institutions of the former USSR. The-
se projects involved the development of computer-aided design tools to
implement control units. He has published more than 400 papers in in-
ternational journals and conference proceedings, and is the author of two
and a co-author of eight monographs.

Larisa Titarenko was born in Ukraine in 1971.
Since 2007 she has been a professor of telecom-
munications at the Institute of Computer Engine-
ering and Electronics, University of Zielona Gó-
ra, Poland, and she is also a professor at the In-
stitute of Telecommunications Systems, Kharkov
National University of Radioelectronics, Ukra-
ine. Her current research interests include tele-
communication systems, antennas and digital au-
tomata, and their of applications. She has taken

part in a number of research projects sponsored by the Ministry of Scien-
ce and Higher Education of Ukraine between 1993 and 2005. She has
published more than 120 papers in international journals and conference
proceedings, and is the author or a co-author of four monographs.

Wolfgang A. Halang was born in Essen, Ger-
many, in 1951. He received doctoral degrees in
mathematics and computer science from Bochum
and Dortmund Universities, respectively, worked
both in industry (Coca-Cola GmbH and Bayer
AG) and academia (University of Petroleum and
Minerals, Saudi Arabia, and University of Illino-
is at Urbana-Champaign, USA), before he was
appointed to the Chair of Applications-Oriented
Computing Science and the head of the Depart-

ment of Computing Science at the University of Groningen in the Ne-
therlands. Since 1992 he has been holding the Chair of Computer Engi-
neering at the Faculty of Electrical and Computer Engineering at Fernu-
niversität in Hagen, Germany. His research interests comprise hard real-
time computing with special emphasis on safety-related systems. He is
the founder and was the European editor-in-chief of the journal Real-
Time Systems, a member of the editorial boards of four other journals, a
co-director of the 1992 NATO Advanced Study Institute on Real-Time
Computing. He has authored 10 books and some 350 refereed book chap-
ters, journal publications and conference contributions, edited 16 books,
and holds 12 patents.

Received: 10 May 2010
Revised: 1 September 2010

	Introduction
	Microprogrammed controllers
	Main definitions
	Microprogrammed controller with mutual memory
	Example of synthesising a microprogrammed controller with mutual memory

	Microprogrammed controller withidentification of outputs
	Synthesis of the CMCU with output identification
	Example of synthesising the microprogrammed controller with identification of outputs

	Microprogrammed controller with identification of outputs and a function decoder
	Main idea of the method
	Synthesising the microprogrammed controller with identification of outputs and a function decoder
	Example of synthesising a CMCU with identification of outputs and a function decoder

	Results of evaluations and experiments
	CAD tool for automatic synthesis of CMCUs (ATOMIC)
	Library of test modules
	Verification of the prepared methods
	Results of experiments
	Analysis of experimental results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

