
Int. J. Appl. Math. Comput. Sci., 2011, Vol. 21, No. 3, 567–577
DOI: 10.2478/v10006-011-0045-7

ANALYSIS OF AQM QUEUES WITH QUEUE SIZE BASED PACKET DROPPING

ANDRZEJ CHYDZIŃSKI, ŁUKASZ CHRÓST

Institute of Informatics
Silesian University of Technology, Akademicka 16, 44–100 Gliwice, Poland

e-mail: andrzej.chydzinski@polsl.pl

Queueing systems in which an arriving job is blocked and lost with a probability that depends on the queue size are studied.
The study is motivated by the popularity of Active Queue Management (AQM) algorithms proposed for packet queueing
in Internet routers. AQM algorithms often exploit the idea of queue-size based packet dropping. The main results include
analytical solutions for queue size distribution, loss ratio and throughput. The analytical results are illustrated via numerical
examples that include some commonly used blocking probabilities (dropping functions).

Keywords: single-server queue, packet dropping, queue size distribution, active queue management.

1. Introduction

Active Queue Management (AQM) algorithms designed
for Internet routers have been studied widely since the
paper by Floyd and Jacobson (1993) was published (see,
e.g., Athuraliya et al., 2001; Fatta et al., 2003; Feng et
al., 2002; Floyd et al., 2001; Hollot et al., 2002; Kun-
niyur and Srikant, 2004; Lakshmikantha et al., 2005; Sun
and Zukerman, 2007, and the references given therein).
The idea of AQM is that the router can reject an inco-
ming packet even if it is capable of storing it in its buf-
fer. In other words, the classic drop-tail rejection disci-
pline, where packets are dropped only when the buffer
is overflown, is replaced by some advanced rejection di-
scipline. Typically, an arriving packet is blocked random-
ly with a probability that depends on the current or past
system state. In practice, this blocking probability often
depends on the queue size. It may also depend on other
characteristics, like packet loss history, the arrival process
parameters, the frequency of empty buffer and full buffer
events, and others. The main goal of AQM in Internet ro-
uters is preventing queues from growing too long, while
at the same time maintaining high link utilizations. There
are also other objectives of AQM, like stable, predictable
work (low variance of the queue size), desynchronization
of TCP sources, fair bandwidth division, and others (for
more details, see, for instance, Bohacek et al., 2004).

In this paper we carry out an analysis of the queueing
system in which an arriving packet is dropped with a pro-
bability that is a function of the queue size observed upon

arrival (this function will be called a dropping function).
In the AQM literature, several types of dropping func-
tions are used, for instance, the linear dropping function
(RED algorithm (Floyd and Jacobson, 1993)), the expo-
nential dropping function (REM algorithm (Athuraliya
et al., 2001)), the doubly linear dropping function (GRED
(Rosolen et al., 1999)), etc. We do not assume here a par-
ticular dropping function—it can be in any form.

The main contribution of this paper is to provide for-
mulas for the queue size distribution (at an arbitrary time)
and the overall loss ratio in the system with the dropping
function in a general form. In addition to that, the queue
size distribution at departure epochs and transition pro-
babilities for the imbedded Markov chain are obtained in
intermediate steps. The analysis is conducted assuming a
Poisson arrival process and the general type of the service
time distribution.

To the best of the authors’ knowledge, the results
presented here are new. Although the literature devoted
to AQM is wide (for surveys of the most popular AQM
algorithms, see, for instance, Bohacek et al., 2004; Cha-
tranon et al., 2004), there are very few papers in which a
classic approach, based on queueing theory, is used to ana-
lyze AQM mechanisms. In most of the papers, the simu-
lation results obtained by means of discrete-event simula-
tors (e.g., Network Simulator ns-2, 2011; Opnet, 2011) are
used for performance evaluation purposes. This is perfec-
tly understandable, as complex behaviour of the TCP pro-
tocol has to be simulated accurately if a real networking
application is considered. However, simulation-based eva-

568 A. Chydziński and Ł. Chróst

luation lacks some fundamental insight into the AQM me-
chanism.

Only two papers, that by Bonald et al. (2000) as well
as the one by Hao and Wei (2005), come close to our ap-
proach. In the former, a model of the RED queue with
batch Poisson arrivals is proposed and analyzed assuming
the exponential service time distribution. It is also assu-
med that the RED router uses the same dropping proba-
bility, dn, for every packet in an arriving batch, where n
is the queue size observed at the time the first packet in
the batch arrives at the router. The latter assumption does
not introduce a large error only if the dropping function
is very smooth (small Δdn). Therefore, many interesting
classes of dropping functions are in fact excluded from the
analysis. It is also not explained how the stationary distri-
bution, π, for the Markov chain can be derived—only a
note that it differs from the stationary distribution for the
drop-tail algorithm can be found.

The analysis presented in this paper is more compre-
hensive. We use a general form of the service time distri-
bution (a more realistic model of packet processing time
in an Internet router), a general form of the dropping func-
tion, and no approximations are used—all the results are
strict. As the service time is not memoryless herein, the
queue size process is not Markovian any more. This forced
application of different, more advanced analytical techni-
ques.

Hao and Wei (2005) study a queue-size based packet
dropping mechanism using an extension of the GIX/M/1
queue. A technique based on the thinning of the arrival
process is applied1. In the beginning, the whole space of
possible queue sizes is divided into m + 1 subintervals:
[0, L1), [L1, L2), . . . , [Lm, b]. In each interval [Li, Li+1),
the dropping probability is constant and equal to di. Then,
the thinned arrival process is introduced via interarrival
time densities Ai(t), where the index i means that the qu-
eue size is in the range [Li, Li+1). Finally, the classic me-
thodology for analysis of the GIX/M/1 queue is applied
(however, the details are not presented). There are two is-
sues with applicability of the results presented by Hao and
Wei (2005). In order to obtain numerical results, we ha-
ve to use the distributions Ai(t), which are computed ap-
proximately and for subexponential interarrival times on-
ly. Moreover, the classic methodology for analysis of the
GIX/M/1 queue exploits an assumption that the interar-
rival times are independent. In the thinned arrival process,
the interarrival times can be strongly dependent. Herein,
we use a different queueing model and different analytical
approach than those presented by Hao and Wei (2005).

We believe that the results presented in this paper are
of practical importance not only due to their AQM and
networking origins, but also because a queue-size based

1By “thinning” of the arrival process we mean extending the actual
interarrival times due to the drop events.

dropping policy can be used in many other applications.
This is due to the fact that manipulating the shape of the
dropping function allows us to control the average queue
size and the loss ratio in the system. These possibilities
will be demonstrated in numerical examples.

The paper is structured in the following way. First,
the model of the queueing system is formally described
(Section 2). Then, in Section 3, the queue length at depar-
ture epochs is studied using the embedded Markov chain
technique. The main result of this section is Theorem 1,
which gives the transition probabilities of the embedded
Markov chain. Furthermore, detailed calculations for the
RED dropping function are given. The major part of the
paper then follows, presenting a formula for queue size
distribution at an arbitrary time (Section 4) and a formu-
la for the overall loss ratio in the system (Section 5). In
Section 6, numerical examples are presented. In particu-
lar, four different dropping functions are used to obtain the
queue sizes and loss ratios in three congestion scenarios.
In addition to the numbers obtained by means of the analy-
tical formulas, some simulation results are shown. Finally,
remarks concluding the paper are gathered in Section 7.

2. Queueing model

In this article we deal with a single server queue fed by a
Poisson process with rate λ. The service time is distribu-
ted according to a distribution function F (·), which is not
further specified, and the standard independence assump-
tions are made. A job arriving at the system is blocked
and lost with probability dn, where n is the queue size
(including service position) at the arrival time of this job.
It is assumed that the buffer size is finite and the maxi-
mum number of jobs in the system is b. Equivalently, this
assumption can be rewritten as

dn = 1 for n ≥ b. (1)

We assume also that the time origin corresponds to a de-
parture epoch. The dropping function dn is not further
specified and can have any form.

We propose denoting this queueing system by
M/G/1/b(AQM), which comes from Kendall’s notation
for a classic finite-buffer queue, i.e., M/G/1/b.

The finite buffer is assumed for two reasons. Firstly,
this assumption reflects the fact that in network devices
the buffering space for packet storage is also limited. Se-
condly, a limited queue size guarantees the existence of
the steady-state distribution of the queue size.

Here and subsequently, P denotes the probability and
X(t) denotes the queue size at the moment t, including the
service position.

Analysis of AQM queues with queue size based packet dropping 569

3. Queue size at departure epochs

Let Xn, n = 1, 2, . . . , be the queue size left behind by the
n-th departing job. We always have Xn < b.

In this section, we are interested in finding the statio-
nary distribution of Xn, namely,

πk = lim
n→∞P(Xn = k), 0 ≤ k ≤ b − 1. (2)

As the sequence Xn is an ergodic Markov chain, we
can find πk by solving the following system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

πk =
b−1∑

j=0

πjpj,k, 0 ≤ k ≤ b − 1,

b−1∑

j=0

πj = 1,

(3)

where

pj,k = P(Xn+1 = k|Xn = j), 0 ≤ j, k ≤ b − 1, (4)

are the transition probabilities for chain Xn. Therefo-
re, the task is completed by finding probabilities pj,k.
To accomplish that, we introduce the following conven-
tion: Qn,k(u) denotes the probability that in time interval
(0, u] exactly k jobs are let into the system, assuming that
X(0) = n and the first departure time is after u.

Note that this is not a trivial thinning of the Poisson
process. The first arriving job is blocked with probability
dn, but the second one is blocked either with probability
dn+1 (if the previous one was accepted) or with probabi-
lity dn (if the previous one was blocked). This gets more
complicated with subsequent arrivals, according to the ac-
ceptance and rejection history.

If we denote by an,k the probability that k jobs are
let into the system during the service time, we have

an,k =
∫ ∞

0

Qn,k(u) dF (u), (5)

and the following representation for pj,k can be obtained:

pj,k=

⎧
⎪⎪⎨

⎪⎪⎩

a1,k if j = 0, 0 ≤ k ≤ b − 1,
aj,k−j+1 if 1 ≤ j ≤ b − 1,

j − 1 ≤ k ≤ b−1,
0 otherwise.

(6)
We can see now how the analysis of the

M/G/1/b(AQM) queue differs from that of the classic
M/G/1/b queue (see, for instance, Takagi, 1993, p. 200).
According to classic theory, the coefficients (5) depend
only on k and do not depend on the initial queue size.
What is more, here they have a much more complex form,
depending on Qn,k(u). In classic theory, Qn,k(u) reduces
to a simple Poisson formula.

If we can compute Qn,k(u), we shall be able to com-
pute probabilities pj,k. Therefore, the remaining part of
this section is devoted to finding Qn,k(u). Denoting by
qn,k(s) the Laplace transform of Qn,k(u), namely,

qn,k(s) =
∫ ∞

0

e−suQn,k(u) du, (7)

we will now prove the following theorem.

Theorem 1. In the M/G/1/b(AQM) system the following
holds true:

qn,k(s) =

k−1∏

i=0

cn+i

k∏

i=0

(s + cn+i)

, n ≥ 0, k ≥ 0, (8)

where
cn = λ(1 − dn). (9)

(In order to simplify the notation, we use a convention sta-
ting that

∏−1
i=0 = 1.)

Proof. Using the total probability formula with respect to
the first arrival time, we obtain the following system of
equations for n ≥ 0, k > 0:

Qn,k(u) =
∫ u

0

λe−λv
(
dnQn,k(u − v)

+ (1 − dn)Qn+1,k−1(u − v)
)
dv. (10)

The first summand under the integral corresponds to
the case where the first arriving job is dropped and the
queue size remains n. The second summand corresponds
to the case where the first arriving job is accepted and the
new queue size is n + 1.

Similarly, using the total probability formula with re-
spect to the first arrival time, for n ≥ 0, k = 0 we get

Qn,0(u) =
∫ u

0

λe−λvdnQn,0(u − v) dv + e−λu. (11)

The first summand corresponds to the situation where
the first arriving job is dropped and the queue size rema-
ins empty, while the second summand corresponds to the
situation where there are no arrivals by the time u.

Applying Laplace transforms to (10) and (11), we ob-
tain

qn,k(s) = dnqn,k(s)
λ

s + λ

+ (1 − dn)qn+1,k−1(s)
λ

s + λ
, n ≥ 0, k > 0,

(12)

570 A. Chydziński and Ł. Chróst

and

qn,0(s) = dnqn,0(s)
λ

s + λ
+

1
s + λ

, n ≥ 0. (13)

From (12) we obtain then

qn,k(s) =
cn

s + cn
qn+1,k−1(s), n ≥ 0, k > 0, (14)

and from (13)

qn,0(s) =
1

s + cn
, n ≥ 0. (15)

Proceeding by induction, it is easy to check that (14) and
(15) lead to (8), which completes the proof. �

Now we have to find Qn,k(u) by inverting transforms
qn,k(s). Due to the assumption (1), for n ≥ b the formula
(8) reduces to a simple form:

qn,k(s) = 0, k ≥ 1, (16)

and

qn,0(s) =
1
s
, (17)

which is equivalent to

Qn,k(s) = 0, k ≥ 1, (18)

and
Qn,0(s) = 1. (19)

Inverting qn,k(s) for n < b is not very difficult either
since (8) has a well-known inverse transform. Let us de-
note by Dn,k(s) the denominator in (8), namely,

Dn,k(s) =
k∏

i=0

(s + cn+i). (20)

First, we have to rewrite (8) in the following form:

Dn,k(s) =
L∏

j=1

(s + c∗j)
αj , (21)

where L is the number of different roots of Dn,k(s) and
−c∗j is a root of Dn,k(s) with multiplicity αj . Using this
notation we have

Qn,k(u) =
L∑

j=1

ress=−c∗j

[
Nn,k

Dn,k(s)
esu

]

, (22)

where ress=−c∗j denotes the residue at the point −c∗j and

Nn,k =
k−1∏

i=0

cn+i. (23)

The residue in (22) can be easily computed using the
following limit:

ress=−c∗j
Nn,k

Dn,k(s)
esu

=
1

(αj − 1)!
lim

s→−c∗j

dαj−1

dsαj−1

[
(s + c∗j)

αj Nn,k

Dn,k(s)
esu

]

.

(24)
If every −c∗j has multiplicity 1 (i.e., αj = 1 for every j),
then

ress=−c∗j
Nn,k

Dn,k(s)
esu =

Nn,k

D′
n,k(−c∗j)

e−c∗j u (25)

and

Qn,k(u) =
L∑

j=1

Nn,k

D′
n,k(−c∗j)

e−c∗j u

=
k∑

i=0

Nn,k

D′
n,k(−cn+i)

e−cn+iu. (26)

When applying the formulas (21)–(26), the main task
is to separate different roots of Dn,k(s) and find their
multiplicities. The tediousness of this work depends on
the form of the dropping function. Injective functions are
easiest while functions with several flat parts (steps) ma-
ke the work very tedious. The following example shows
results for a dropping function that has flat parts and an
injective part.

Example 1. (RED dropping function) The RED dropping
function (for its shape, see Fig. 1) is parameterized by two
numbers: a threshold b0, 0 ≤ b0 < b, and a probability p0,
0 < p0 ≤ 1, such that

db0 = 0, db−1 = p0. (27)

Using these two parameters, the RED dropping function
can be presented in the following form:

dn =

⎧
⎨

⎩

0 if 0 ≤ n ≤ b0,
vn + w if b0 < n < b,
1 if n ≥ b,

(28)

with

v =
p0

b − b0 − 1
, w = − p0b0

b − b0 − 1
. (29)

We want to compute Dn,k(s) for the dropping func-
tion (28), in the form of (21). To this end, we can first use
the formula (20), then count all the obtained distinct roots
of Dn,k(s) and their multiplicities.

As we can see, the dropping function (28) has two
flat parts: for n ≤ b0 and for n ≥ b. Both of these flat
parts cause root multiplications in (20). Moreover, we ha-
ve a shifted index in formula (20). Namely, instead of cn,

Analysis of AQM queues with queue size based packet dropping 571

we have cn+i in every factor of (20), with i depending on
k. Therefore, the number of distinct roots and their mul-
tiplicities depend on n, k and their position with relation
to b0 and b. All we have to do is consider all possibilities.
Having done this, we obtain

Dn,k(s)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s + c0)b0−n+1(s + cb)k−b+n+1

b−1∏

i=b0+1

(s + ci)

if k > b − n, n < b0,

(s + cb)k−b+n+1

b−1∏

i=n

(s + ci)

if k > b − n, n ≥ b0,

(s + c0)b0−n+1

n+k∏

i=b0+1

(s + ci)

if b0 − n ≤ k ≤ b − n, n < b0,
n+k∏

i=n

(s + ci)

if b0 − n ≤ k ≤ b − n, n ≥ b0,
(s + c0)k+1

if k ≤ b0 − n.
(30)

All roots that occur in this representation are different. For
instance, in the first line we have the following different
roots:

−c0, −cb, −cb0+1, . . . ,−cb−1, (31)

with the multiplicities

b0 − n + 1, k − b + n + 1, 1, . . . , 1, (32)

respectively.
Instead of implementing the formulas (21)–(26), we

can also use software for symbolic computations that has
a built-in function to compute the inversion of (8) automa-
tically (e.g., Mathematica, 2011). �

4. Queue size distribution at an arbitrary
time

In this section we will find the queue size distribution at
an arbitrary time, namely:

Pk = lim
t→∞P(X(t) = k), 0 ≤ k ≤ b, (33)

where X(t) denotes the queue size at the time t.

Denoting by
ρ = λmF , (34)

the offered load of the system, here

mF = the average service time =
∫ ∞

0

xdF (x), (35)

we can prove the following theorem.

Theorem 2. In the M/G/1/b(AQM) system the queue
length distribution at an arbitrary time has the form

Pk =
πk/(1 − dk)

π0/(1 − d0) + ρ
, 0 ≤ k ≤ b − 1, (36)

Pb = 1 −
∑b−1

i=0 πi/(1 − di)
π0/(1 − d0) + ρ

. (37)

Note that the distribution πk was computed in the
previous section. Therefore, the formulas (36), (37) can
be used immediately to obtain numerical results.

Proof. Let X ′
n denote the queue size observed upon ar-

rival of the n-th arriving job (accepted or not) and let P ′
k

denote its limiting distribution, namely,

P ′
k = lim

n→∞P(X ′
n = k), 0 ≤ k ≤ b. (38)

According to the PASTA property (Heyman and Sobel,
1982, p. 391), we know that

Pk = P ′
k, 0 ≤ k ≤ b. (39)

Therefore, our task is reduced to computing P ′
k for 0 ≤

k ≤ b.
Let X̂n denote the queue size observed upon arrival

of the n-th accepted job and let π̂k denote its limiting di-
stribution:

π̂k = lim
n→∞P(X̂n = k), 0 ≤ k ≤ b − 1. (40)

(Note that we always have X̂n < b.) According to Burke’s
theorem (Takagi, 1991, p. 7), we have

π̂k = πk, 0 ≤ k ≤ b − 1. (41)

Now, let P ∗
k denote the limiting distribution of the

queue size observed upon arrival of the n-th arriving job
(accepted or not), excluding queue sizes equal to b. There-
fore, distributions P ′

k and P ∗
k are proportional in the range

0 ≤ k ≤ b − 1, namely,

P ′
k = c P ∗

k , 0 ≤ k ≤ b − 1, (42)

for some constant c.
On the other hand, we have

P ∗
k =

π̂k

(1 − dk)h
, 0 ≤ k ≤ b − 1, (43)

where

h =
b−1∑

i=0

π̂i

1 − di
. (44)

Combining
b∑

k=0

P ′
k = 1 (45)

572 A. Chydziński and Ł. Chróst

with
b−1∑

k=0

P ∗
k = 1, (46)

and (42) yields
c + P ′

b = 1, (47)

and we have to find c now.
The probability that the system is empty is

P0 = P ′
0 = 1 − ρc, (48)

where ρc is the carried load of the system

ρc = ρ(1 − PB), (49)

and PB is the blocking probability

PB =
b∑

k=0

dkP ′
k. (50)

(Note that in our system the blocking probability is not
equal to the full-buffer probability, i.e., PB �= Pb.)

Rewriting (48), we obtain

PB = 1 − 1 − P ′
0

ρ
. (51)

Combining (51), (50), (42) and (47) yields

b−1∑

k=0

dkcP ∗
k + 1 − c = 1 − 1 − cP ∗

0

ρ
, (52)

and, as a consequence,

c =
1

P ∗
0 + ρ − ρ

∑b−1
k=0 dkP ∗

k

. (53)

Taking into account (42) we get

P ′
k =

P ∗
k

P ∗
0 + ρ − ρ

∑b−1
i=0 diP ∗

i

, 0 ≤ k ≤ b − 1, (54)

while using (47) we obtain

P ′
b = 1 − 1

P ∗
0 + ρ − ρ

∑b−1
i=0 diP ∗

i

. (55)

Then, using (43) we obtain

P ′
k =

π̂k/(1 − dk)

π̂0/(1 − d0) + ρh − ρ
∑b−1

i=0 diπ̂i/(1 − di)
,

0 ≤ k ≤ b − 1, (56)

P ′
b = 1 − h

π̂0/(1 − d0) + ρh − ρ
∑b−1

i=0 diπ̂i/(1 − di)
,

(57)
which, combined with (39) and (41), completes the proof.

�

5. Loss ratio and throughput

Besides the queue size distribution, there are two other
characteristics that are important from a practical point of
view (especially when dealing with AQM in Internet ro-
uters), namely, the loss ratio and system throughput.

The loss ratio is the long-run fraction of jobs (pac-
kets) that are dropped. As it is equivalent to the probabi-
lity that an arriving job is dropped, PB , it can be easily
calculated using the formula (51) with P ′

0 = P0 obtained
by means of Theorem 2.

The throughput of the system is the average rate of
the output traffic and is equal to

γ = λ(1 − PB). (58)

Therefore, it can also be computed by means of (51) and
Theorem 2.

RED

GRED

REM

NI

Fig. 1. Dropping functions used in numerical examples.

6. Numerical examples

In this section we demonstrate queue size distributions
and loss ratios for different system loads and dropping
functions. We assume that the service time, d, is constant
and equal to 1. Manipulating λ we can change the load
ρ = λd offered to the system. We consider three cases:

(a) ρ = 1 (critically loaded system),

(b) ρ = 2 (overloaded system),

(c) ρ = 0.5 (underloaded system),

obtained for λ = 1, λ = 2 and λ = 0.5, respectively. We
assume that b = 10 and use the following four dropping
functions:

(A) the RED dropping function:

dn =

⎧
⎨

⎩

0 if n ≤ 3,
0.11917n− 0.35752 if 3 < n < 10,
1 if n ≥ 10,

(59)

Analysis of AQM queues with queue size based packet dropping 573

(B) the gentle RED (GRED) dropping function:

dn =

⎧
⎪⎪⎨

⎪⎪⎩

0 if n ≤ 1,
0.04460n− 0.04460 if 1 < n < 7,
0.24414n− 1.44140 if 7 ≤ n < 10,
1 if n ≥ 10,

(60)

(C) the REM dropping function:

dn =

⎧
⎨

⎩

0 if n ≤ 4,
−0.54085e−n+4+ 0.54085 if 4 <n< 10,

1 if n ≥ 10,
(61)

(D) the non-increasing (NI) dropping function:

dn =

⎧
⎨

⎩

−0.08387n + 0.41936 if n ≤ 5,
0 if 5 < n < 10,
1 if n ≥ 10.

(62)

All these dropping functions are depicted in Fig. 1.
All the dropping functions (A)–(D) were carefully

parameterized in order to force the average queue size
equal to 3 when ρ = 1 (this will be further commented
on at the end of this section).

Now we can present the numerical results. In Table 1
and Fig. 2, results for ρ = 1 are shown. In particular, in
Table 1 the average queue size at an arbitrary time, the
standard deviation of the queue size, the loss ratio, the
full and empty buffer probability are presented, while in
Fig. 2, detailed distributions of the queue size at an ar-
bitrary time are depicted. We see that the loss ratio and
the queue size deviation may differ significantly, depen-
ding on the dropping function, even though the average
queue size is common. For instance, the loss ratio for the
NI function is about 25% while for the RED function it
is about 9%. Generally speaking, the more the dropping
function is concentrated around low queue sizes, the hi-
gher the loss ratio and the queue size deviation. Note also
that in this example the empty system probability and the
loss ratio are equal. This is connected with the fact that
ρ = 1 (see (51)).

In Table 3 and Fig. 3, results for ρ = 2 are presen-
ted. The loss ratio is now almost the same for all dropping
functions. This is connected with the fact that the system
is strongly overloaded, the idle periods are very rare (see
P0), and the loss ratio is close to the minimal possible va-
lue of 1/2. Therefore, in this example we obtain four sys-
tems with almost the same loss ratio but different average
queue sizes and different queue size deviations. Especial-
ly a low deviation in the queue size can be observed for
the NI dropping function. This observation indicates that
the dropping function can be used to design a system with
a predictable queue size (in terms of a low queue size va-
riance).

In Table 4 and Fig. 4, results for ρ = 0.5 are de-
picted. From the practical point of view, this is the least
interesting case, as for ρ � 1 the queue is stable and has
a low average length even without the dropping function.
However, even in this case, application of a specific drop-
ping function can be beneficial, depending on what we are
aiming at. For instance, the NI function gives a very low
queue size (at the cost of a high loss ratio).

To check the correctness of the numerical results ob-
tained by means of Theorems 1 and 2, we performed also a
number of simulations using the Omnet++ network simu-
lator (Omnet, 2011). Several different dropping functions
and system parameterizations were used, and simulation
results always agreed very well with analytical results. A
sample output for the RED dropping function and ρ = 1
is presented in Table 2. The queue size distribution was
observed empirically upon arrivals of 108 jobs (equivalent
to 10 mins of work by the simulator).

Table 2. Analytical vs. simulation results for the RED dropping
function and ρ = 1.

Characteristic Analytical Simulation
of interest results results

Average queue size 3.0000 2.9991
Std. dev. 1.8877 1.8873

Loss ratio 9.1281 × 10−2 9.1227 × 10−2

P0 9.1281 × 10−2 9.1312 × 10−2

P1 1.5684 × 10−1 1.5691 × 10−1

P2 1.7822 × 10−1 1.7832 × 10−1

P3 1.8217 × 10−1 1.8215 × 10−1

P4 1.6764 × 10−1 1.6760 × 10−1

P5 1.2088 × 10−1 1.2090 × 10−1

P6 6.6513 × 10−2 6.6455 × 10−2

P7 2.7031 × 10−2 2.6974 × 10−2

P8 7.7614 × 10−3 7.7407 × 10−3

P9 1.4733 × 10−3 1.4650 × 10−3

P10 1.4668 × 10−4 1.4577 × 10−4

As mentioned above, all the dropping functions in
this section were chosen so that the average queue size
is equal to 3 for ρ = 1. This is a good example that the
dropping function is a powerful tool. Instead of the avera-
ge queue size, we could achieve a common loss ratio. The
question arises what target queue sizes or loss ratios can
be achieved. The natural bounds are given by the finite-
buffer queue without the dropping function. For instance,
for ρ = 1 and b = 10, in the simple finite-buffer model the
average queue size is 5.0650 and the loss ratio is 0.05085.
Therefore, using dropping functions we can obtain a sys-
tem with any average queue size in the interval [0, 5.0650]
or a system with any loss ratio in the interval [0.05085, 1].

The potential of the presented results for improve-
ment of known algorithms (e.g., RED, GRED, REM) and
development of new algorithms is twofold.

574 A. Chydziński and Ł. Chróst

Table 1. Basic queueing characteristics for the dropping functions (a)–(d) and ρ = 1.
Average Standard Loss ratio or Empty system Full buffer

queue size deviation PB probab., P0 probab., Pb

RED 3.0000 1.8877 9.1281 × 10−2 9.1281 × 10−2 1.4669 × 10−4

GRED 3.0000 2.0517 9.9384 × 10−2 9.9384 × 10−2 3.8145 × 10−4

REM 3.0000 1.8329 8.9339 × 10−2 8.9339 × 10−2 2.3479 × 10−4

NI 3.0000 3.0283 2.4802 × 10−1 2.4802 × 10−1 2.5923 × 10−2

(a) (b)

(c) (d)

Fig. 2. Queue size probability distribution at an arbitrary time for ρ = 1 and different dropping functions: RED (a), GRED (b), REM
(c), NI (d).

First of all, we can use the analytical results to com-
pare several dropping functions with respect to the perfor-
mance characteristics of interest. For instance, for ρ = 1,
the best dropping function, among the four considered in
this section, is REM. As can be observed in Table 1, REM
gives the smallest loss ratio (and, as a consequence, the hi-
ghest throughput) and the most stable queue (the smallest
standard deviation of the queue size), while keeping the
same, as the other dropping functions, average queue size.
Naturally, this conclusion may not be valid for different
values of ρ. Also, it is likely that there are dropping func-
tions that produce better performance results than REM
defined in (61). Theorem 2 does not point out such drop-
ping functions directly. However, using Theorem 2 imple-
mented in some programming language, we can perform

quickly a number of experiments with shapes of dropping
functions and choose the most suitable one for our purpo-
ses.

Secondly, we have already demonstrated that we can
find several dropping functions that guarantee a requ-
ired average queue size. The same is true regarding other
characteristics—we can find dropping functions that will
keep the throughput, the loss ratio and the variance of the
queue size on a given level. In fact, dropping functions are
even more powerful than that. Using their variable sha-
pes, we may try to control all of the mentioned characte-
ristics at the same time (though in some limited ranges).
Moreover, we can find dropping functions that guarantee
different performance characteristics for different system
loads. For instance, it is possible to find a dropping func-

Analysis of AQM queues with queue size based packet dropping 575

Table 3. Basic queueing characteristics for the dropping functions (a)–(d) and ρ = 2.
Average Standard Loss ratio, Empty system Full buffer

queue size deviation PB probab., P0 probab., Pb

RED 7.1458 1.4367 0.50002 4.4488 × 10−5 3.4385 × 10−2

GRED 7.7890 1.2363 0.50001 2.2334 × 10−5 5.0057 × 10−2

REM 7.1327 1.6627 0.50003 5.2932 × 10−5 7.4634 × 10−2

NI 9.3721 0.7457 0.50000 3.0466 × 10−6 4.9997 × 10−1

(a) (b)

(c) (d)

Fig. 3. Queue size probability distribution at an arbitrary time for ρ = 2 and different dropping functions: RED (a), GRED (b), REM
(c), NI (d).

tion that gives the average queue size equal to 2.0000 for
ρ = 1 and equal to 3.0000 for ρ = 1.2, etc.

The analytical results presented herein have also so-
me limitations when used in performance evaluation of
AQM algorithms designed for Internet routers. This is ma-
inly due to the fact that fully functional AQM usually
exploits some other mechanisms, besides the pure packet
dropping based on the actual queue size. For instance, the
RED algorithm uses the EWMA (Exponentially Weighted
Moving Average) queue size, which depends on the pre-
sent and past queue size. Solving analytically the AQM
queue with packet dropping depending on the averaged
(instead of the actual) queue size seems to be out of reach
at the moment.

7. Conclusions and future work

We presented an analysis of a finite-buffer queue in which
an arriving job is dropped with a probability that depends
on the queue size observed upon arrival. In particular, so-
lutions for the queue size at departure epochs, the queue
size at an arbitrary time, the loss ratio and throughput were
shown.

It is worth emphasizing that the dropping discipline
considered herein is not only of use in active queue mana-
gement in Internet routers, but also has some deep univer-
sal sense. In a system in which the arrival and the service
rate cannot be manipulated, application of the dropping
function is the simplest way to control the average queue
size or loss ratio. Therefore, the potential applicability of
such queueing systems is wide and general.

576 A. Chydziński and Ł. Chróst

Table 4. Basic queueing characteristics for the dropping functions (a)–(d) and ρ = 0.5.
Average Standard Loss ratio, Empty system Full buffer

queue size deviation PB probab., P0 probab., Pb

RED 0.74083 0.92341 1.9870 × 10−3 5.0099 × 10−1 1.7082 × 10−8

GRED 0.72134 0.89813 1.0099 × 10−2 5.0504 × 10−1 3.7643 × 10−8

REM 0.74387 0.92902 1.1513 × 10−3 5.0057 × 10−1 2.5920 × 10−8

NI 0.39380 0.68022 3.8635 × 10−1 6.9317 × 10−1 7.9364 × 10−7

(a) (b)

(c) (d)

Fig. 4. Queue size probability distribution at an arbitrary time for ρ = 0.5 and different dropping functions: RED (a), GRED (b), REM
(c), NI (d).

As for future work, we believe that systems with a
dropping function and an infinite buffer (waiting room)
should be investigated in the next step. The first problem
in the analysis of such systems is which dropping func-
tions guarantee the system stability (i.e., the existence of
a limiting distribution of the queue size). We know that an
infinite-buffer queue without a dropping function is stable
if ρ < 1 and unstable if ρ ≥ 1. However, introduction of
the dropping function changes this situation. For instan-
ce, a system with ρ = 2 and a trivial dropping function
dn = 0.6 for every n is obviously stable. But when more
complicated dropping functions are involved, the problem
gets tougher.

On the other hand, it would be interesting to study the
queue with a dropping function and a more complex arri-
val process. For instance, the Internet traffic is known to

be bursty and self-similar. Therefore, batch arrivals (e.g.,
a batch Poisson process) and processes that are able to mi-
mic self-similar behaviour (e.g., a Markov-modulated Po-
isson process, a batch Markovian arrival process) should
be included in a future study. We believe that the presen-
ted methodology can be extended to all aforementioned
processes. However, such extensions are not trivial and re-
quire a lot of additional work.

Acknowledgment

This material is based upon work supported partially by
the Polish Ministry of Science and Higher Education un-
der Grant No. N N516 381134.

Analysis of AQM queues with queue size based packet dropping 577

References
Athuraliya, S., Low, S.H., Li, V.H. and Yin, Q. (2001). REM:

Active queue management, IEEE Network 15(3): 48–53.

Bohacek, S., Shah, K., Arce, G.R. and Davis, M. (2004). Signal
processing challenges in active queue management, IEEE
Signal Processing Magazine 21(5): 69–79.

Bonald, T., May, M. and Bolot, J.C. (2000). Analytic evaluation
of RED performance, Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies, Tel-
Aviv, Israel, pp. 1415–1424.

Chatranon, G., Labrador, M.A. and Banerjee, S. (2004). A su-
rvey of TCP-friendly router-based AQM schemes, Compu-
ter Communications 27(15): 1424–1440.

Fatta, G.D., Hoffmann, F., Re, G.L. and Urso, A. (2003). A
genetic algorithm for the design of a fuzzy controller for
active queue management, IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews
33(3): 313–324.

Feng, W., Shin, K.G., Kandlur, D.D. and Saha, D. (2002). The
BLUE active queue management algorithms, IEEE/ACM
Transactions on Networking 10(4): 513–528.

Floyd, S., Gummadi, R. and Shenker, S. (2001). Adaptive RED:
An algorithm for increasing the robustness of REDs active
queue management, Technical Report, ACIRI, http://
icir.org/floyd/papers/adaptiveRed.pdf.

Floyd, S. and Jacobson, V. (1993). Random early detection ga-
teways for congestion avoidance, IEEE/ACM Transactions
on Networking 1(4): 397–413.

Hao, W. and Wei, Y. (2005). An extended GIX/M/1/N queu-
eing model for evaluating the performance of AQM algo-
rithms with aggregate traffic, in X. Lu and W. Zhao (Eds.),
Networking and Mobile Computing, Lecture Notes in
Computer Science, Vol. 3619, Springer, Berlin/Heidelberg,
pp. 395–404.

Heyman, D.P. and Sobel, M.J. (1982). Stochastic Models of
Operations Research, Volume 1: Stochastic Processes and
Operating Characteristics, McGraw-Hill, New York, NY.

Hollot, C.V., Misra, V., Towsley, D. and Gong, W. (2002). Ana-
lysis and design of controllers for AQM routers suppor-
ting TCP flows, IEEE Transactions on Automatic Control
47(6): 945 –959.

Kunniyur, S.S. and Srikant, R. (2004). An adaptive virtual qu-
eue (AVQ) algorithm for active queue management, IE-
EE/ACM Transactions on Networking 12(2): 286 – 299.

Lakshmikantha, A., Beck, C.L. and Srikant, R. (2005). Robust-
ness of real and virtual queue-based active queue mana-
gement schemes, IEEE/ACM Transactions on Networking
13(1): 81–93.

Mathematica (2011). http://www.wolfram.com/.

Network Simulator ns-2 (2011). http://www.isi.edu/
nsnam/ns/.

Omnet (2011). http://www.omnetpp.org/.

Opnet (2011). http://www.opnet.com/.

Rosolen, V., Bonaventure, O. and Leduc, G. (1999). A RED
discard strategy for ATM networks and its performance
evaluation with TCP/IP traffic, ACM SIGCOMM Compu-
ter Communication Review 29(3): 23–43.

Sun, J. and Zukerman, M. (2007). An adaptive neuron AQM
for a stable internet, in I. Akyildiz, R. Sivakumar, E. Ekici,
J. Oliveira and J. McNair (Eds.), NETWORKING 2007. Ad
Hoc and Sensor Networks, Wireless Networks, Next Gene-
ration Internet, Lecture Notes in Computer Science, Vol.
4479, Springer, Berlin/Heidelberg, pp. 844–854.

Takagi, H. (1991). Queueing Analysis—Vacation and Priority
Systems, North-Holland, Amsterdam.

Takagi, H. (1993). Queueing Analysis—Finite Systems, North-
Holland, Amsterdam.

Andrzej Chydziński obtained his Ph.D. and
D.Sc. in computer science from the Silesian Uni-
versity of Technology in 2002 and 2008, respecti-
vely. He is currently a professor in the Institute of
Informatics of the same university. His academic
interests include performance evaluation of com-
puter networks, future Internet design and queue
management in Internet routers. He has authored
and co-authored three books as well as more than
sixty journal and conference papers.

Łukasz Chróst was born in 1982. He obtained
his M.Sc. in computer science in 2006 from the
Silesian University of Technology, Poland. Cur-
rently he is a research assistant at the Faculty
of Automatic Control, Electronics and Computer
Science of the same university. His research inte-
rests include queueing theory and its applications
in virtualization of computer systems as well as
the deterministic approach to active queue mana-
gement.

Received: 26 September 2010
Revised: 15 December 2010

	Introduction
	Queueing model
	Queue size at departure epochs
	Queue size distribution at an arbitrary time
	Loss ratio and throughput
	Numerical examples
	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

