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Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these prob-
lems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques.
However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arc-
consistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e.,
it must be ensured in both directions of the constraint (direct and inverse constraints). Two of the most well-known and
frequently used arc-consistency algorithms for filtering CSPs are AC3 and AC4. These algorithms repeatedly carry out
revisions and require support checks for identifying and deleting all unsupported values from the domains. Nevertheless,
many revisions are ineffective, i.e., they cannot delete any value and consume a lot of checks and time. In this paper,
we present AC4-OP, an optimized version of AC4 that manages the binary and non-normalized constraints in only one
direction, storing the inverse founded supports for their later evaluation. Thus, it reduces the propagation phase avoiding
unnecessary or ineffective checking. The use of AC4-OP reduces the number of constraint checks by 50% while pruning
the same search space as AC4. The evaluation section shows the improvement of AC4-OP over AC4, AC6 and AC7 in
random and non-normalized instances.
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1. Introduction

Over the last few years, many real problems have involved
constraints that the solution must satisfy (Królikowski
and Jerzy, 2001; Sikora, 2003). These problems come
from different areas of computer sciences such as plan-
ning (Barták et al., 2010), scheduling (Brdyś and Littler,
2002; Mesghouni et al., 2004), control (Deng et al., 2009),
etc. To this end, many algorithms and heuristic techniques
have been developed to manage these problems. Con-
straint programming is a software technology for descrip-
tion and effective solving of large and complex problems,
particularly combinatorial problems in many areas of real
life (Dechter, 2003; Barták, 1999).

The basic idea of a Constrained Satisfaction Prob-
lem (CSP) is to model the problem as a set of variables
with finite domains (the values for the variables) and a
set of constraints that impose a limitation on the values
that a variable, or a combination of variables, may be as-
signed. The task is to find an assignment of values to the
variables that satisfy all the constraints. In general, the

tasks posed in the CSP paradigm are computationally in-
tractable (NP-complete) so filtering techniques to simplify
the search space are still necessary.

The consistency-enforcing algorithm performs any
partial solution of a small sub-network that is extensible
to a surrounding network. The number of possible combi-
nations can be huge, while only very few may be consis-
tent. By eliminating redundant values from the problem
definition, the size of the solution space decreases. If any
domain becomes empty as a result of reduction, then it
is immediately known that the problem has no solution
(Ruttkay, 1998).

In this paper, we focus our attention on arc-
consistency. It is the basic propagation mechanism that
is probably used in all solvers (Bessiere, 2006). Arc-
consistency algorithms are based on the notion of a sup-
port. These algorithms ensure that each value in the do-
main of each variable is supported by some value in the
domain of each variable by which it is constrained. Arc-
consistency algorithms are a major component of many in-
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dustrial and academic CSP solvers. Sitting at the heart of
a CSP solver, arc-consistency algorithms consume a large
portion of the time that is required to solve the input CSP
(van Dongen et al., 2008).

Proposing efficient algorithms for enforcing arc-
consistency has always been considered a central ques-
tion in the constraint reasoning community. Thus, there
are many arc-consistency algorithms such as AC1, AC2,
and AC3 (Mackworth, 1977), AC4 (Mohr and Hender-
son, 1986), AC5 (Perlin, 1992; Hentenryck et al., 1992),
AC6 (Bessiere and Cordier, 1993; Bessiere, 1994), AC7
(Bessiere et al., 1999), AC8 (Chmeiss and Jegou, 1998),
AC2001 (Bessiere et al., 2005), AC2001-OP (Arangu
et al., 2010), and more. However, AC3 (Mackworth,
1977) and AC4 (Mohr and Henderson, 1986) are most
widely used (Barták, 2005).

Algorithms that perform arc-consistency have fo-
cused their improvements on time-complexity and space-
complexity. Main improvements have been achieved
by changing the way of propagation: from arcs to val-
ues (i.e., changing the granularity: coarse-grained to
fine-grained), appending new structures, performing bidi-
rectional searches (AC7), changing the support search:
searching for all supports (AC4) or searching for only
the necessary supports (AC6, AC7, AC2001), improving
the propagation (i.e., it performs propagation only when
necessary, AC7 and AC-2001), etc. However, main arc-
consistency techniques are focused on normalized CSPs,
that is, those where any pair of variables can be restricted
to no more than one constraint. Nevertheless, many real
problems are modeled with constraints that involve the
same set of variables (non-normalized CSPs), so it is nec-
essary to develop filtering techniques to manage these re-
sultant CSPs.

AC4 is the first fine-grained algorithm where the
propagation is value oriented. AC4 is the only algorithm
that confirms the existence of a support by not identify-
ing it throughout search (Mehta, 2008). To do this, AC4
stores lots of information about all the supports for each
value in the auxiliary data structures. The main reasons
for studying AC4 are the following:

1. It has optimal time-complexity (Bessiere, 2006;
Mohr and Henderson, 1986).

2. It is one of the most widely and frequently used
algorithms for maintaining arc-consistency (Barták,
2005).

Despite maintaining huge data structures during
search, we have detected inefficiencies when these data
structures are updated:

(a) It is not necessary to check each constraint in both
directions when the checking of the constraint in one
direction can store all the information.

(b) There are propagations of the pruned tuples that are
ineffective because the variables do not store any
variable support.

(c) In non-normalized problems the way that these struc-
tures are updated changes.

We propose an optimized version of AC4 by means
of the management of the constraints in only one direction
rather than in both directions. Furthermore, our algorithm
allows the processing of non-normalized CSPs. Thus, this
paper is organized as follows. In the next section, we pro-
vide the necessary definitions to understand the rest of the
paper. Then, we explain the AC4 algorithm in detail, and
we present our AC4-OP algorithm. In the experimental
results section, we evaluate AC4 and AC4-OP empirically
and, finally, we present our conclusions.

1.1. Definitions. By following the standard notation
and definitions in the literature (Bessiere, 2006; Barták,
2001; Dechter, 2003), we summarize the basic definitions
and notation used in this paper.

Definition 1. Constraint Satisfaction Problems (CSPs)
are mathematical problems defined as a set of objects
whose state must satisfy a number of constraints or lim-
itations. CSPs represent the entities in a problem as a
homogeneous collection of finite constraints over vari-
ables, which is solved by constraint satisfaction meth-
ods. Formally a CSP is a triple P = 〈X, D, R〉, where
X is a finite set of variables {X1, X2, . . . , Xn}, D is a
set of domains D = {D1, D2, . . . , Dn} such that, for
each variable Xi ∈ X , there is a finite set of values that
each variable can take, and R is a finite set of constraints
R = {R1, R2, . . . , Rm} which restrict the values that the
variables can simultaneously take.

Definition 2. Normalized CSP. A CSP is normalized
iff two different constraints in R do not involve exactly
the same variables. A CSP is non-normalized if different
constraints may involve exactly the same variables.

Definition 3. Binary CSP. A CSP is binary iff all con-
straints in R involve two variables.

In this paper, we limit our attention to binary and
non-normalized CSPs. Thus, we can represent the CSP
as a directed graph, where variables are represented as
nodes and binary constraints correspond to directed arcs
(see Fig. 1). To this end, we write

• Rij as the direct constraint defined over the variables
Xi and Xj (given by the user),

• R′ji as the same constraint in the inverse direction
over the variables Xi and Xj (inverse constraint)1.

1In the work of Bessiere (2006) the inverse constraint is named trans-
position.
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Fig. 1. Example of a binary and non-normalized CSP.

Figure 1 (left) shows a non-normalized and binary
CSP with three variables X0, X1 and X2, with domains
D0 = D1 = D2 = {0, 1, 2} and three direct constraints

R02 : X0 = X2,

R12−1 : X1 > X2,

R12−2 : X1 < X2 + 2.

It can be observed that there are two different con-
straints R12−1 and R12−2 between the variables X1 and
X2. Furthermore, it can be distinguished between R12−1 :
X1 > X2 as a direct constraint and R′21−1 : X2 < X1 as
the same constraint in the inverse direction (see Fig. 1,
right).

Definition 4. Instantiation is a pair 〈Xi, a〉 that repre-
sents an assignment of the value a to the variable Xi, and
a is in the domain of Xi.

Definition 5. Satisfying a constraint. A constraint Rij is
satisfied if the instantiation of 〈Xi, a〉 and 〈Xj , b〉 is legal
for this constraint (〈Xi, a〉, 〈Xj , b〉) ∈ Rij .

Definition 6. Arc-consistency. A value a ∈ Di is arc-
consistent with respect to a constraint Rij iff there exists
a value b ∈ Dj such that 〈Xi, a〉 and 〈Xj , b〉 satisfy the
constraint Rij . A variable Xi is arc-consistent relative to
Xj iff all values in Di are arc-consistent. A CSP is arc-
consistent iff all the variables are arc-consistent, e.g., all
the arcs Rij and R′ji are arc-consistent. (Note that here
we are talking about full arc-consistency.) A CSP is arc-
inconsistent if one (or more) of the variables is not arc-
consistent.

Definition 7. Support value with respect to a constraint
Rij . Given a ∈ Di and b ∈ Dj , if 〈Xi, a〉 and 〈Xj , b〉
satisfy the constraint Rij , then b supports a. Thus, if the
value b ∈ Dj supports a value a ∈ Di, then a supports b
as well (the symmetry of the constraint).

Definition 8. Number of constraint checkings. (checks)
is the number of times a given pair is checked with respect
to some constraint Rij ∈ R.

Definition 9. Number of propagations. (Np) is the num-
ber of times that a tuple 〈Xi, a〉 is added to a structure
(i.e., queue, stack, set, etc.) for its re-evaluation.

2. Algorithm AC4

The algorithm AC4 is one of the most widely used al-
gorithms for arc-consistency (see Algorithms 1 and 2 for
non-normalized CSPs).2 It was proposed to improve the
time complexity of AC3 (Mohr and Henderson, 1986).
It is the first algorithm in a category called fine-grained
algorithms because it performs propagations at the level
of values (Bessiere, 2006). AC4 stores the maximum
amount of information in a preprocessing step in order to
avoid having to redo the same constraint checking sev-
eral times during the propagation of deletions. Moreover,
AC4 has an optimal time complexity O(ed2), and it has
an O(ed2) space complexity, where e is the number of
binary constraints (edges) and d the domain size in the
problem. Also, AC4 has influenced other arc-consistency
algorithms like AC6 and AC7.

The procedure InitializeAC4 is very close to the orig-
inal procedure of AC4. The only difference is focused
on the matrix Counter , which must be increased with
the variable total (Counter = Counter + total instead
of Counter = total).

In order to perform only once the constraint checking
in R and to identify the relevant values that are needed to
be re-examined, AC4 stores the following data structures:

• S is a matrix S[Xj, b] that contains a list of pairs
〈Xi, a〉 that are supported by 〈Xj , b〉. The pair
〈Xi, a〉 may appear several times in the list kept in
matrix S.

• Counters is a matrix Counter [Xi, a, Xj] that con-
tains the number of supports for the value a ∈ Di in
the variable Xj .

2In order to remove ambiguity and improve efficiency, Algorithms 1
and 2 combine the encoding of Mohr and Henderson (1986), Tsang
(1995), Barták (2001), Dechter (2003), and Bessiere (2006).
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Algorithm 1: Procedure InitializeAC4.
Data: P = 〈X, D, R〉 /*R involves direct and inverse constraints*/
Result: initial =true and P ′, Q, S, M, Counter OR

initial =false and P ′ (which is arc-inconsistent).
begin

Q← {}1
S[Xj , b]← {} / ∗ ∀Xj ∈ X ∧ ∀b ∈ Dj ∗ /2
M [Xi, a] = 1 / ∗ ∀Xi ∈ X ∧ ∀a ∈ Di ∗ /3
Counter [Xi, a, Xj ] = 0 / ∗ ∀Xi, Xj ∈ X, i 
=4
j ∧ ∀a ∈ Di ∗ /
for every arc Rij ∈ R do5

for each a ∈ Di do6
total = 07
for each b ∈ Dj do8

if (〈Xi, a〉, 〈Xj , b〉) ∈ Rij then9
total = total + 110
Append(S[Xj , b], 〈Xi, a〉)11

if total = 0 then12
remove a from Di13
if Di = φ then14

return initial = false
Q← Q ∪ 〈Xi, a〉15
M [Xi, a] = 016

else17
Counter [Xi, a, Xj ] =
Counter [Xi, a, Xj ] + total

return initial = true and Q, M, S, Counter
end

• M is a matrix M [Xi, a] that stores 1 if a ∈ Di or
stores 0 if a /∈ Di (indicating that 〈Xi, a〉 has been
deleted).

• Q is a queue that stores pairs 〈Xi, a〉 (rejected values)
awaiting further processing.

The main algorithm AC4 (see Algorithm 2) has two
phases: initialization of the data structures (Step 1 calls to
Algorithm 1) and propagation (Steps 3–13). Algorithm 1
is committed to initializing the above structures. These
initializations are used to remember pairs of consistent
values of variables (matrix S), to count “supporting” val-
ues from the domain of the variable (matrix Counter ), to
remove those values that do not have any support and to
remember them (matrix M and queue Q).

The number of supporting values found, for each
value a ∈ Di, is initially stored in a local variable
called total. If there is no supporting value for a, (i.e.,
total = 0), then a is removed from Di and both matrix
M and queue Q are updated (see Algorithm 1, Steps 12–
16). Otherwise, the matrix Counter is increased with the
total value (see Algorithm 1, Step 17). In this step of the
algorithm, the matrix Counter stores the number of sup-
ports of each value for normalized and non-normalized
constraints.

Once Algorithm 1 has finished, Algorithm 2 begins
the propagation phase. This process propagates the conse-
quences of the removal of values. Thus, the pair 〈variable,
value〉 stored in Q is selected and revised until no change
occurs (Q is empty) or the domain of a variable remains
empty. In the first case, the algorithm ensures that all

Algorithm 2: Procedure AC4.
Data: A CSP P = 〈X, D, R〉
Result: true and P ′ (which is arc-consistent) or false and P ′ (which

is arc-inconsistent)
begin

InitilizeAC4(P)1
if initial = true then2

while Q 
= φ do3
select and delete 〈Xj , b〉 from queue Q4
for each 〈Xi, a〉 ∈ S[Xj , b] do5

Counter [Xi, a, Xj ] =6
Counter [Xi, a, Xj ]− 1
if7
Counter [Xi, a, Xj ] = 0 ∧M [Xi, a] = 1
then

remove a from Di8
if Di = φ then9

return false
Q← Q ∪ 〈Xi, a〉10
M [Xi, a] = 011

return true12

else13
return false

end

values in the domains are consistent with all constraints,
while, in the second case the algorithm returns that the
problem has no solution.

For the example presented in Fig. 1 (right), R stores
the constraints in both directions (direct constraints and
inverse constraints). Table 1 shows how the procedure
InitializeAC4 evaluates each constraint. The tu-
ples that must be re-evaluated (〈X1, 0〉 and 〈X2, 2〉) were
added to the queue Q (See Table 1, Loops 3 and 4).
The values for M , S and Counter (after the initializa-
tion phase) are shown in the column Ini of Table 3 (left),
Table 3 (right) and Table 4, respectively.

After InitilizationAC4, the propagation is
carried out with the tuples previously stored in Q. Table
2 shows this process. It can be observed that Loop 1 is an
inefficient propagation since 〈X1, 0〉 does not support any
variable because S[X1, 0] in Table 3 (right) has an empty
value in the column Ini .

In the previous example, AC4 performs 3 prunes of
domain values, carries out 41 constraint checkings (Cc)
with Algorithm 1, and carries out 3 propagations (Np) in
Q with Algorithm 2, to achieve arc-consistency.

3. Algorithm AC4-OP

As we have pointed out above, the following properties
can be observed:

(i) Whenever the procedure InitializationAC4
evaluates a constraint, it stores the information re-
garding the values of variables, in M and regarding
supports in S and Counter .

(ii) The direct constraint Rij and the inverse constraint
R′ji share the same set of variables (Xi and Xj).
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Table 3. Changes in matrix M (left) and matrix S (right) after both the initialize phase (Ini) and the propagation phase (Prop) by the
AC4 procedure for the example in Fig. 1.
M [var, val] Start Ini Prop S[Xj , b] Start Ini

M [X0, 0] 1 S[X0, 0] {} {〈X2, 0〉}
M [X0, 1] 1 S[X0, 1] {} {〈X2, 1〉}
M [X0, 2] 1 0 S[X0, 2] {} {〈X2, 2〉}
M [X1, 0] 1 0 S[X1, 0] {}
M [X1, 1] 1 S[X1, 1] {} {〈X2, 0〉, 〈X2, 0〉, 〈X2, 1〉}
M [X1, 2] 1 S[X1, 2] {} {〈X2, 0〉, 〈X2, 1〉, 〈X2, 1〉}
M [X2, 0] 1 S[X2, 0] {} {〈X0, 0〉, 〈X1, 1〉, 〈X1, 2〉, 〈X1, 1〉}
M [X2, 1] 1 S[X2, 1] {} {〈X0, 1〉, 〈X1, 2〉, 〈X1, 1〉, 〈X1, 2〉}
M [X2, 2] 1 0 S[X2, 2] {} {〈X0, 2〉}

Table 4. Changes in the matrix Counter after both the initialize phase (Ini) and the propagation phase (Prop) by the procedure AC4
for the example in Fig. 1.

Counter [Xi, a, Xj ] Start Ini Prop Counter [Xi, a, Xj ] Start Ini Prop
Counter [X0, 0, X2] 0 1 Counter [X1, 0, X2] 0 0
Counter [X0, 1, X2] 0 1 Counter [X1, 1, X2] 0 3
Counter [X0, 2, X2] 0 1 0 Counter [X1, 2, X2] 0 3
Counter [X0, 0, X1] 0 Counter [X2, 0, X0] 0 1
Counter [X0, 1, X1] 0 Counter [X2, 1, X0] 0 1
Counter [X0, 2, X1] 0 Counter [X2, 2, X0] 0 1 0
Counter [X1, 0, X0] 0 Counter [X2, 0, X1] 0 3
Counter [X1, 1, X0] 0 Counter [X2, 1, X1] 0 3
Counter [X1, 2, X0] 0 Counter [X2, 2, X1] 0 0

Table 1. Loops carried out by InitializeAC4 for the example
shown in Fig. 1.

Constraint val val var Prune Add
Loop Rij a b total Xi Q

1 R02 : X0 = X2

0
0 1
1 1
2 1

1
0 0
1 1
2 1

2
0 0
1 0
2 1

2 R′
20 : X2 = X0

0
0 1
1 1
2 1

1
0 0
1 1
2 1

2
0 0
1 0
2 1

3 R12 : X1 > X2

0
0 0
1 0
2 0 X1 = 0 〈X1, 0〉

1
0 1
1 1
2 1

2
0 1
1 2
2 2

4 R′
21 : X2 < X1

0
1 1
2 2

1
1 0
2 1

2
1 0
2 0 X2 = 2 〈X2, 2〉

5 R12 : X1 < X2 + 2
1

0 1
1 2

2
0 0
1 1

6 R′
21 : X2 + 2 > X1

0
1 1
2 1

1
1 1
2 2

Table 2. Loops carried out by AC4 (only propagation) for the
example in Fig. 1.

tuple Supports Counter Prune Add Q
Loop 〈Xj, b〉 S[Xj, b] [Xi, a, Xj ] Xi 〈Xi, a〉

1 〈X1, 0〉 {}
2 〈X2, 2〉 {〈X0, 2〉} 0 X0 = 2 {〈X0, 2〉}
3 〈X0, 2〉 {〈X2, 2〉} 0

〈X1, 2〉 1

(iii) By Definition 8 (the symmetry of the constraint), the
support is bidirectional.

Due to (i) and (ii), there is an inefficiency in the al-
gorithm AC4 because some values for M , S and Counter
might be updated for 〈Xj , b〉 when a direct constraint
is evaluated. At this point, only the values that might
be pruned in Xj (if any) are lost because the internal
loop is executed several times (e.g., once for each value
a ∈ Di, see Algorithm 1, Steps 8–11). Due to the sym-
metry of the constraint (Property (iii)), if there is no sup-
port (total = 0), then Steps 12–16 of Algorithm 1 are
performed. However, AC4 only upgrades variable Xi and
variable Xj is ignored.

AC4-OP uses the same structures that AC4, but it
adds a new array, named suppInv , to store the supports
of each value of a variable. Thus, the size of suppInv is
the maximum size of all domains (maxD).

Thus, once the revision of the values a ∈ Di is up-
dated (Counter) for Xj , all values b ∈ Dj for which
suppInv [b] = 0 can be pruned. Thus, it is not needed
to evaluate the inverse constraint R′ji.

Therefore, we propose AC4-OP (see Algorithms 3
and 4), an algorithm that takes into account these three
ideas to evaluates only direct constraints. Thus, in Al-
gorithm 3 (Steps 4 and 5), both Counter [Xj , b, Xi] and
suppInv [b] are initialized. The algorithm adds a new sup-
port for Counter [Xj , b, Xi] in Step 13 and it counts a new
support for suppInv [b] in Step 14. Finally, the algorithm
prunes inconsistent values of Dj in Steps 24–32.

Since the same pair of variables Xi, Xj may be
involved in more than one constraint Rij (in non-
normalized CSPs), the counters of supports may have pre-
viously stored values. Pruning is carried out according to
the counters in each constraint. The counter of supports
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of variable Xi (total ) is initialized to 0 for each value
a ∈ Di. However, the counter of supports of variable Xj

(inverse supports) must be split in two different counters:
Counter [Xj , b, Xi] and suppInv [b]. The array suppInv
stores the number of supports for each value of Xj . This
array is initialized to zero (see Algorithm 3, Step 5). If
value b ∈ Dj supports the value a ∈ Di, suppInv [b]
will be increased (see Algorithm 3, Step 14). During the
loop of Steps 9–15, this array is updated in order to be
analyzed later (in Step 25). Upon completion of process-
ing all values of Di, if a value b of Dj has no support
(suppInv [b] = 0), then this value is pruned from the do-
main Dj . However, if suppInv[b] > 0, then b is sup-
ported and it is initialized to 0 (see Algorithm 3, Step 32)
for further use of this array.

Furthermore, AC4-OP only propagates those tuples
that are supported by another one (see Steps 20, 30 of
Algorithm 3, and Step 12 of Algorithm 4). Thus, AC4-
OP avoids inefficient propagations of tuples for Q, and it
avoids inefficient constraint checking of those tuples.

AC4-OP is also valid for normalized CSPs, but
some code lines and structures are unnecessary. The ar-
ray suppInv can be removed and Steps 5, 14 and 32
of Algorithm 3 are not necessary. Thus, in Step 25
of Algorithm 3, suppInv [b] = 0 must be changed by
Counter [Xj , b, Xi] = 0.

Tables 5 and 6 show the initializations and propaga-
tions performed by AC4-OP for Example 1. The struc-
tures S, M , and Counter for AC4-OP are the same as
AC4, but AC4-OP only performs 19 constraint checks for
the same problem (47% less than AC4) and 3 propagations
(50% less than AC4) while the same pruning is obtained
(6 values for this problem).

3.1. Correctness of AC4-OP. The algorithm AC4-OP
is correct.

Proof. In order to obtain a contradiction, suppose
that a value a ∈ Di is removed for Xi but it has a
support with values of variables which Xi is restricted
with. The value a ∈ Di could have been removed in the
InitializeAC4OP phase of or in the procedure AC4-
OP (Step 8). Investigate the following cases:

• If the value a ∈ Di is removed in the Inizial-
izeAC4OP phase, then it is removed in Step 17 or
in Step 26 when each arc Rij ∈ R is analyzed.

If it is removed in Step 17 then a direct constraint is
being analyzed and total = 0 so that no value b ∈ Dj

is a support of a ∈ Di. #contradiction

If it is removed in Step 26, then an inverse constraint
is being analyzed, suppInv [b] = 0, so that b is not a
support of any value of a variable. #contradiction

• If the value a ∈ Di is removed in Step 8 of the
procedure AC4-OP, then this is due to the fact that

Algorithm 3: Procedure InitializeAC4OP.
Data: P = 〈X, D, R〉 /*R involves direct constraints*/
Result: initial=true and P ′, Q, S, M, Counter or initial=false

and P ′ (which is arc-inconsistent).
begin

Q← {}1
S[Xj , b]← {} / ∗ ∀Xj ∈ X ∧ ∀b ∈ Dj ∗ /2
M [Xi, a] = 1 / ∗ ∀Xi ∈ X ∧ ∀a ∈ Di ∗ /3
Counter [Xi, a, Xj ] = 0 /∗∀Xi, Xj ∈ X∧∀a ∈ Di ∗/4
suppInv [b] = 0 / ∗ ∀b ∈ [1, maxD] ∗ /5
for every arc Rij ∈ R do6

for each a ∈ Di do7
total = 08
for each b ∈ Dj do9

if (〈Xi, a〉, 〈Xj , b〉) ∈ Rij then10
total = total + 111
Append(S[Xj , b], 〈Xi, a〉)12
Counter [Xj , b, Xi] =13
Counter [Xj , b, Xi] + 1
suppInv [b] = suppInv [b] + 114
Append(S [Xi, a], 〈Xj , b〉)15

if total = 0 then16
remove a from Di17
if Di = φ then18

return initial = false
else19

if S[Xi, a] 
= {} then
Q← Q ∪ 〈Xi, a〉20

M [Xi, a] = 021

else22
Counter [Xi, a, Xj ] =23
Counter [Xi, a, Xj ] + total

for each b ∈ Dj do24
if suppInv [b] = 0 then25

remove b from Dj26
if Dj = φ then27

return initial = false28
else29

if S[Xj , b] 
= {} then
Q← Q ∪ 〈Xj , b〉30

M [Xj , b] = 031

else32
suppInv [b] = 0

return initial = true and Q, M, S, Counter33
end

Counter [Xi, a, Xj] = 0, so that 〈Xi = a〉 has no
supports for the variable Xj . #contradiction

�
Thus, every value a ∈ Di removed for Xi by AC4-OP
has no support with all values of variables which Xi is
restricted with, and therefore this value will not take part
in any solution.

4. Experimental results

In this section, we present some results to empirically
demonstrate the practical efficiency of AC4-OP. Further-
more, we have implemented the most efficient version of
AC4 with the improvement shown above in order to di-
rectly manage non-normalized CSPs.

Both algorithms AC4 and AC4-OP look for all the
supports of each value, while other algorithms (AC3,
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Table 5. Loops carried out by InitializeAC4-OP for the example in Fig. 1.
Loop 1. R02 : X0 = X2

D0 D2 suppInv Counter Prune Counter Prune Add
a b Total [j] [Xi, a, Xj ] Xi [Xj , b, Xi] Xj Q

0
0 1 1 1
1 1 0 0
2 1 0 1 0

1
0 0 1 1
1 1 1 1
2 1 0 1 0

2
0 0 1 1
1 0 1 1
2 1 1 1 1

0 0 1
1 0 1
2 0 1

Loop 2. R12 : X1 > X2

D0 D2 suppInv Counter Prune Counter Prune Add
a b Total [j] [Xi, a, Xj ] Xi [Xj , b, Xi] Xj Q

0
0 0 0 0
1 0 0 0
2 0 0 0 0 X1 = 0

1
0 1 1 1
1 1 0 0
2 1 0 1 0

2
0 1 2 2
1 2 1 1
2 2 0 2 0

0 0 2
1 0 1
2 0 0 X2 = 2 〈X2, 2〉

Loop 3. R12 : X1 < X2 + 2

D0 D2 suppInv Counter Prune Counter Prune Add
a b Total [j] [Xi, a, Xj ] Xi [Xj , b, Xi] Xj Q

1
0 1 1 3
1 2 1 3 2 X1 = 0

2
0 0 1 3
1 1 2 3 3

0 0 3
1 0 3

Table 6. Loops carried out by AC4-OP (only propagation) for the example in Fig. 1.
Tuple Supports Counter Prune Add Q

Loop 〈Xj , b〉 S[Xj , b] [Xi, a, Xj ] Xi 〈Xi, a〉
1 〈X2, 2〉 〈X0, 2〉 0 X0 = 2 〈X0, 2〉
2 〈X0, 2〉 〈X2, 2〉 0

AC2001/3.1, AC6, AC7, etc.) merely seek for just one
support. Although it is not appropriate to compare the
efficiencies of arc-consistency techniques which have dif-
ferent scopes, we compare the behavior of our proposed
algorithm AC4-OP with that of AC4, and both AC6 (Rossi
et al., 2008) and AC7 (Bessiere et al., 1999) algorithms
in non-normalized and random instances and benchmark
problems. We select the AC6 and AC7 algorithms be-
cause they are fine grained, they have the same phases
(initialization and propagation) and therefore AC7 adds
bidirectionality to AC6 (like AC4-OP does to AC4). All
algorithms were written in C. The experiments were con-
ducted on a PC Intel Core 2 Q9550 (2.83 GHz processor
and 3 GB RAM).

4.1. Random instances. A random CSP instance is
characterized by the quadruple 〈n, d, m, b〉, where n is

the number of variables, d the domain size, m the num-
ber of binary constraints and b the maximum number of
non-normalized constraints between two variables. The
constraints are in the form b ± Xi op c ± Xj , where
Xi, Xj ∈ X , op ∈ {<,≤, �=, >,≥} and b, c ∈ N. The
problems were randomly generated by modifying these
parameters. Since we are working on non-normalized in-
stances, we assume that any pair of variables is restricted
by at least two constraints.

We generated two classes of random and non-
normalized instances: consistent and inconsistent in-
stances. In both types of instances, all the variables main-
tained the same size domain. We evaluated 50 test cases
for each type of problem. Thus, we set two of the parame-
ters and varied the other in order to assess the algorithm’s
performance when this parameter was increased. Perfor-
mance was measured in terms of running time in millisec-
onds (time), the number of constraint checks (checks) and
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Table 7. Results of consistency techniques AC6, AC7, AC4 and AC4-OP on random, consistent and non-normalized instances:
〈n, 100, 700, 4〉.

Instance n AC6 AC7 AC4 AC4-OP

50

time [ms] 262 12566 3554 3234
checks 8.39× 105 1.40× 105 1.27× 107 6.37× 106

prunes 4.40× 101 0 4.40× 101 4.40× 101

supports 50 50 9.85× 106 9.85× 106

70

time [ms] 293 12660 3645 3757
checks 8.38× 105 1.40× 105 1.27× 107 6.37× 106

prunes 3.30× 101 0 3.30× 101 3.30× 101

supports 70 70 9.87× 106 9.87× 106

90

time [ms] 332 12765 4276 4284
checks 8.37× 105 1.40× 105 1.27× 107 6.37× 106

prunes 2.20× 101 0 2.20× 101 2.20× 101

supports 90 90 9.88× 106 9.88× 106

110

time [ms] 501 12352 3099 3009
checks 8.37× 105 1.40× 105 1.27× 107 6.37× 106

prunes 2.20× 101 0 2.20× 101 2.20× 101

supports 110 110 9.88× 106 9.88× 106

130

time [ms] 568 12725 3744 3503
checks 8.37× 105 1.40× 105 1.27× 107 6.37× 106

prunes 2.20× 101 0 2.20× 101 2.20× 101

supports 130 130 9.88× 106 9.88× 106

150

time [ms] 620 12930 4172 3764
checks 8.37× 105 1.40× 105 1.27× 107 6.37× 106

prunes 2.20× 101 0 2.20× 101 2.20× 101

supports 150 150 9.88× 106 9.88× 106

Algorithm 4: Procedure AC4-OP.
Data: A CSP, P = 〈X, D, R〉
Result: true and P ′ (which is arc-consistent) or false and P ′ (which

is arc-inconsistent)
begin

InitilizeAC4OP(P)1
if initial = true then2

while Q 
= φ do3
select and delete 〈Xj , b〉 from queue Q4
for each 〈Xi, a〉 ∈ S[Xj , b] do5

Counter [Xi, a, Xj ] =6
Counter [Xi, a, Xj ]− 1
if7
Counter [Xi, a, Xj ] = 0 ∧M [Xi, a] = 1
then

remove a from Di8
if Di = φ then9

return false
else10

if S[Xi, a] 
= {} then11
Q← Q ∪ 〈Xi, a〉12

M [Xi, a] = 013

return true14

else15
return false

end

the number of prunes (prunes). The running time include
both inizialization time and propagation time .

Table 7 shows the running time, the number of con-
straint checks and the amount of prunes and supports in
consistent instances, where the number of variables was
increased from 50 to 150 and the domain size was set at
100, the number of constraints was set at 700 and the max-
imum number of non-normalized constraints between two

variables was set at 4: 〈n, 100, 700, 4〉. The average tight-
ness of the instances was 27%. The results show that

• The number of constraint checks and running time
were lower in AC4-OP than in AC4 in all cases with
an average of 50% and 6%, respectively.

• The average of prune values was of 2.48 × 107 for
AC6, AC4 and AC4-OP and 0 for AC7.

• The running time was lower in AC6 than in the rest of
the algorithms (AC7, AC4 and AC4-OP) in all cases.
This is due to the following:

1. The low tightness of the instances make each
prune value perform propagations (it is an ad-
vantage from AC6 over AC7, AC4 and AC4-OP
by its light structures).

2. AC4 and AC4-OP looked for all supports and
AC6 looked for only one support.

• The number of constraint checks was lower in AC7
than in the rest of the algorithms (AC6, AC4 and
AC4-OP in all cases), but AC7 performs no pruning.

• AC7 had a worse runtime than AC4, AC4-OP and
AC6.

Thus, AC6 is a good choice for non-normalized, con-
sistent and underconstrained problems.

Table 8 shows the running time, the number of con-
straint checks and the amount of prunes in inconsistent
instances, where the number of variables was increased
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Table 8. Results of consistency techniques AC6, AC7, AC4 and AC4-OP on random, inconsistent and non-normalized instances:
〈n, 100, 700, 4〉.

Instance n AC6 AC7 AC4 AC4-OP

90

time [ms] 8890 1197 2263 1907
checks 3.75× 106 5.61 × 105 1.10× 107 5.52× 106

prunes 6.84× 103 3.92 × 103 7.26× 103 7.26× 103

110

time [ms] 11422 1812 1921 1549
checks 3.91× 106 7.14 × 105 1.16× 107 5.81× 106

prunes 7.51× 103 4.97 × 103 8.61× 103 8.61× 103

130

time [ms] 18990 2996 2164 1720
checks 4.20× 106 8.40 × 105 1.21× 107 6.05× 106

prunes 8.39× 103 5.96 × 103 9.22× 103 9.22× 103

150

time [ms] 15638 3858 2212 1756
checks 4.20× 106 9.80 × 105 1.24× 107 6.21× 106

prunes 9.31× 103 8.23 × 103 1.07× 104 1.07× 104

170

time [ms] 18766 7905 2350 1850
checks 4.38× 106 1.17 × 106 1.24× 107 6.35× 106

prunes 1.04× 104 1.06 × 104 1.09× 104 1.09× 104

190

time [ms] 20808 9639 2506 1905
checks 4.410× 106 1.30 × 106 1.28× 107 6.43× 106

prunes 1.15× 104 9.62 × 103 1.26× 104 1.26× 104

Table 9. Results of consistency techniques AC6, AC7, AC4 and AC4-OP on random, inconsistent and non-normalized instances:
〈100, 100, m, 4〉.

Instance m AC6 AC7 AC4 AC4-OP

200

time [ms] 6414 1365 607 500
checks 1.59× 106 6.17× 105 3.9× 106 1.95× 106

prunes 6.65× 103 5.22× 103 6.02× 103 6.02× 103

400

time [ms] 5808 416 1165 956
checks 2.52× 106 5.75× 105 7.31× 106 3.66× 106

prunes 5.92× 103 3.11× 103 6.82× 103 6.82× 103

600

time [ms] 6873 1930 1779 1328
checks 3.38× 106 6.51× 105 1.01× 107 5.07× 106

prunes 6.33× 103 4.49× 103 7.44× 103 7.44× 103

800

time [ms] 7197 2139 2225 1798
checks 4.12× 106 6.58× 105 1.24× 107 6.22× 106

prunes 7.08× 103 463 × 103 8.05× 103 8.05× 103

from 90 to 190, the domain size was set to 100, the num-
ber of constraints was set at 700 and the maximum number
of non-normalized constraints between two variables was
set at 4, i.e., 〈n, 100, 700, 4〉. The average tightness of the
problems was 60%. The results show that AC4-OP had a
lower running time than the rest of the algorithms (AC6,
AC7 and AC4) in almost all cases, because AC4-OP em-
ploys bidirectionality and searches all supports. Thus
AC4-OP is a good choice for this type of problem. Fur-
thermore, both AC4-OP and AC4 performed more prunes
than both AC6 and AC7. Again, AC7 performed fewer
checks than AC6, AC4 and AC4-OP, but the behavior was
worse as the number of variables increased. AC6 had poor
results regarding these instances, i.e., with n = 190, AC6
spent 20808 milliseconds whereas AC7 spent 9639 mil-
liseconds (the bidirectionally of AC7 was a good choice),
and AC4-OP spent 1905 milliseconds whereas AC4 spent
2506 milliseconds (the bidirectionally of AC4-OP was the
best choice). AC4-OP performed fewer checks and prop-
agations than AC4.

Table 9 shows the running time, the number of con-

straint checks and the amount of prunes in inconsistent
instances, where the number of constraints was increased
from 200 to 800, the number of variables was set to 100,
the domain size was set to 100 and the maximum num-
ber of non-normalized constraints between two variables
was set at 4: 〈100, 100, m, 4〉. The average tightness of
the problems was 60%. As in the above table, the re-
sults were similar. They show that AC4-OP had a bet-
ter behavior time than the rest of the algorithms (AC4-OP
was faster than AC6 (21%), AC7 (80%) and AC4 (24%)).
Moreover, AC4-OP performed fewer checks than AC4. In
this case, the number of constraint checks increased as
the number of constraints increased since the random in-
stances maintained the same number of variables but the
number of constraints increased. Thus, the random in-
stances remained tightest.

Table 10 shows the running time, the number of con-
straint checks and the amount of prunes in inconsistent
instances, where the domain size was increased from 50
to 300, the number of variables was set to 200, the num-
ber of constraints was set to 500 and the maximum num-
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Table 10. Results of consistency techniques AC6, AC7, AC4 and AC4-OP on random, inconsistent and non-normalized instances:
〈200, d, 500, 4〉.

Instance d AC6 AC7 AC4 AC4-OP

50

time [ms] 1996 2131 426 350
checks 8.17× 105 3.33× 105 2.28× 106 1.14× 106

prunes 5.69× 103 5.34× 103 5.98× 103 5.98× 103

100

time [ms] 3357 8578 1683 1214
checks 3.11× 106 1.35× 106 9.55× 106 4.78× 106

prunes 1.10× 104 1.15× 104 1.20× 104 1.20× 104

150

time [ms] 48538 14713 3884 2789
checks 8.05× 106 2.91× 106 2.18× 107 1.09× 107

prunes 1.71× 104 1.51× 104 1.73× 104 1.73× 104

200

time [ms] 137219 38297 6145 5118
checks 1.56× 107 5.47× 106 3.91× 107 1.95× 107

prunes 2.16× 104 2.21× 104 1.99× 104 1.99× 104

300

time [ms] 369632 31779 14818 13142
checks 3.78× 107 1.05× 107 8.87× 107 4.43× 107

prunes 3.51× 104 1.91× 104 3.75× 104 3.75× 104

(a) (b)

Fig. 2. Behavior of AC6, AC7, AC4 and AC4-OP on different instances of the pigeon problem: runtime [ms] (a), number of constraint
checks (b).

ber of non-normalized constraints between two variables
was set at 4: 〈200, d, 500, 4〉. In all instances the domain
values were randomly generated and the average tightness
of the instances was 60%. The results show that AC4-
OP maintained a lower running time than the rest of the
algorithms (AC4-OP was faster than AC4 (14%) , AC6
(95%) and AC7 (75%)). Improvements of both AC4 and
AC4-OP are observed compared with AC6 and AC7 since
AC6 and AC7 had to perform a domain ordering before
the consistency process. An ascending order of domains
is mandatory for both AC6 and AC7 but not for both AC4
or AC4-OP. The domain ordering was carried out by using
the quicksort algorithm. It adds O(nd log d) complexity
to AC6 and AC7, where n is the number of variables and
d is the domain size of the problem.

4.2. Benchmarks: The pigeon problem. The pigeon
problem3 is a well-known insolvable example. The prob-
lem is to put n pigeons into n − 1 holes. However, each

3Some pigeon problem benchmarks are available at
http://www.cril.univ-artois.fr/CPAI08/.

Table 11. Instances of the pigeon problem.

Instance Variables Domains Constraints

10 10 1..9 90
20 20 1..19 380
30 30 1..29 870
40 40 1..39 1560
50 50 1..49 2450

hole admits only a single pigeon. The problem can be for-
mulated as a CSP with n variables corresponding to the n
pigeons, and each variable has n − 1 values correspond-
ing to the holes. Each variable is constrained with the rest
of variables in the problem. Thus, all constraints are bi-
nary and all variables have the same domain size. There
are two types of pigeon problems: normalized and non-
normalized, and we choose the latter. The original non-
normalized instances of these benchmarks have two con-
straints between each pair of variables: ∀i < j : Xi ≤ Xj

and Xi �= Xj .

http://www.cril.univ-artois.fr/CPAI08/


A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems 743

Figure 2 shows the behavior of AC6, AC7, AC4
and AC4-OP on different instances of the pigeon prob-
lem. The combinations of variables, domains and con-
straints are shown in Table 11. The results show that all
instances are arc-consistent, although the problem is not
solved. However, this issue is not detected by any arc-
consistency algorithm. In this problem AC4-OP was faster
than AC7, and AC4-OP, meanwhile, AC6 had better be-
havior (see Fig. 2 (a)). The runtime between AC4 and
AC4-OP was similar because the tightness of the prob-
lems is low. Figure 2 (b) shows the number of constraint
checks carried out by the algorithms. AC4-OP performs
fewer constraints checks than AC4.

5. Conclusions

Constraint programming is a powerful technology for
solving many real-life problems modeled as constraint sat-
isfaction problems. Since solving a CSP is NP-complete,
filtering techniques are widely used to prune the search
space of CSPs. AC4 is one of the most well-known arc-
consistency algorithms. In this paper, we present a refor-
mulated version of AC4, called AC4-OP, for binary and
non-normalized CSPs. This algorithm improves the ef-
ficiency of previous versions by reducing the number of
constraint checks. This algorithm prunes the same search
space as AC4, but its efficiency is provided by both the
initialization strategy and the propagation strategy. AC4-
OP checks the binary constraints in only one direction and
it only propagates when it is necessary. Thus, it avoids
unnecessary checking. In the evaluation section, it can be
observed that AC4-OP is competitive in random instances.
It had better behavior than AC6, AC7 and AC4 in non-
consistent instances. In consistent instances, AC4-OP was
competitive and stored all supports so that they could be
used during the search process.
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