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The paper gives an account of research results concerning a project on creating a fully autonomous robotic decision-
making system, able to interact with its environment and based on a mathematical model of human cognitive-behavioural
psychology, with some key elements of personality psychology included. The principal idea of the paper is focused on the
concept of needs, with a certain instrumental role of emotions.

Keywords: autonomous robots, artificial intelligence, decision making systems, psychological processes.

1. Introduction

Creating devices which can freely move in an environ-
ment unapproachable for human beings (for instance, in
the lack of oxygen) has long been a principal subject of
robotics. Using a remote control module is the basic so-
lution to such problems. Still, there are several important
factors limiting this approach like visibility, communica-
tion distance, delay, etc. An alternative is to use autono-
mous modules, which can take over control at the request
of a system operator, or are completely autonomous enti-
ties (Kowalczuk and Czubenko, 2009).

Their biggest disadvantage lies in a generally weak
adaptation to a changing environment. There are various
autonomous units, which are able to operate on foreign
planets, deserts, cities, or swampy grounds, and so forth.
The design problems are not only in their physical con-
struction, but also in their algorithms of behaviour. In par-
ticular, instead of specializing the autonomous entities to
a precisely known terrain, it can be advisable to increase
their adaptation to a given varying environment.

Adaptation can be based on various ideas taken from
nature (like genetic algorithms, learning neural networks,
etc.). The concept of this work consists in utilizing models
of psychology of living creatures (humans, in particular)
to cope with the issue of adaptation to the environment of
autonomous robots (Kowalczuk and Czubenko, 2010b).

From the current viewpoint of technical sciences,
and, in particular, from the automatic control and robotics
perspectives, it can be observed that the history of science
(and, in particular, the development of cybernetics and ar-

tificial intelligence) can be considered an instrumental ‘re-
action’ to the lack of precise mathematical solutions. As
a result, scientists have been directed to research and ob-
servation of the nature, including human beings and their
cognition. Note that psychological exploration of human
cognition is practically performed by experimenting with
mammals, like dolphins, rats, rabbits, squirrels, etc. In ef-
fect, it has been proved that mammals have emotions! Ho-
wever, human beings represent the highest form of life,
and have the most well developed auto-adaptation system.
Therefore, our models and solutions for robotic develop-
ment have been built on the basis of human psychology
and its relevant terminology. A ‘simple’ application of this
methodology can be found in the attractive idea of a per-
fect soldier performing autonomously a certain task.

Accordingly, many scientific projects concern the
modelling of human psychology. They focus on various
aspects of it, like computational models of emotion (FLA-
ME, EMA, ParleE, Greta, GALAAD, etc.), behaviour-
based robotics, agents systems, and many others (El-Nasr
et al., 2000; Gratch and Marsella, 2004; Bui et al., 2002;
Poggi et al., 2005; Levine, 2007; Bonarini et al., 2006).
Still, there is a lack of projects which result in applica-
ble models of human motivation psychology, and most of
the available results are generally not suitable for our pur-
poses. For instance, the ideas behind the acronyms EMA
and FLAME are concerned with a computational model of
emotions interpreted as a closed motivation-and-decision
system.

It is clear that emotions are an important part of hu-
man motivation. Following this line, we propose a concept
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(Kowalczuk and Czubenko, 2010c), further built up in this
work, in which system-developed emotions play the role
of decision-making modifiers.

An interesting approach to implementing human
emotions can be found in the work of Leite et al. (2008),
where a robot expresses some emotions (apparently, ro-
bots with emotions appear even more fascinating!). Simi-
lar concepts are developed for web applications, looking
for intelligent chatter-bots with emotions (Kowalczuk and
Czubenko, 2010a).

Most publications on mobile robots with built-in
emotions are about a direct interaction between a man and
a robot, whereas we are concerned about the interaction
between a robot and its environment (humans can be a
part of the environment, too), which is a principal source
of handling the needs.

Systems of motivation (considering needs and emo-
tions) can be found in general psychology, and in a num-
ber of its branches. Nevertheless, in this paper we instru-
mentally consider the motivation system only in the con-
text of personality psychology. It is crucial for our con-
cept of building autonomous robots, in which we consider
that motivation theory is solely a personality problem. Per-
sonality psychology dynamically investigates (discovers)
differences and similarities in human behaviour. Clearly,
the results and similarities obtained in this way can certa-
inly be treated as generalizations (next) belonging to ge-
neral psychology. One way or another, what we seek and
what we would like to explore are needs and emotions
common for human beings.

Consequently, we model human psychology for the
purpose of robotic autonomous control and decision-
making systems, by using achievements from personality
psychology (motivation factors) and cognitive psycholo-
gy (a framework for information processing). Our concept
is based on a concrete state of emotion (crisp and fuzzy)
which influences the system of needs. From a systemic
point of view, emotion is treated as a dynamical state of
attention, and needs along with emotions make a princi-
pal basis for inference.

2. Basic psychology model

Psychology is a scientific area dealing with mechanisms
related to human behaviour. Among many fields of psy-
chology, we should list a great number of basic branches
of psychology: applied, behavioural, cognitive, evolutio-
nary, gestalt, linguistic, neuro, organizational, personality,
school, sensory, or social among others.

A model based on ‘entire’ human psychology wo-
uld be too complex and incomprehensible. Therefore, in
the following we shall focus our attention solely on the
cognitive and personality branches of psychology. In par-
ticular, it is the theory of cognitivity which is a special
basis for artificial intelligence. Important are thus the re-

sults of cognitive psychology, which deals with all kinds
of information processing, and relationships between me-
mory and stimuli. It recognises how we think, and even
what happens during sleep. On the other hand, personality
psychology deals with the motivation to act, and with dif-
ferences and similarities between individuals. Motivatio-
nal factors, namely, emotions and needs, are key notions
in modelling human behaviour. All this allows us to model
human behaviour and ways in which human brain affects
both emotions and reasons.

2.1. Cognitive psychology. In general, the cognitive
approach to decision-making processes postulates that the
knowledge being a basis for decisions is not simply cre-
ated by passive accumulation and storage of data. Instead,
active processing of data takes place. This means that the
structures of human cognitive processes constitute a solid
basis for modelling the decision process of thinking enti-
ties (Lindsay and Norman, 1984).

Cognitive processes can be categorized as elementa-
ry or complex, with the following elementary processes:

• sensory perception,

• discovery perception,

• unconscious attention (unintentional, or Top-Down
Attention, (TDA)),

• conscious attention (intentional, or Bottom-Up At-
tention, (BUA)),

• memory,

and complex processes:

• thinking,

• language processes.

At this stage of the project, we do not consider any
language aspects, as they actually deserve a separate ma-
thematical/modelling treatment. Besides, in our opinion,
prospective autonomous robots need a model of mind ve-
ry much, whereas their language abilities can be easily
constrained to a system of audio-visual messages.

Starting with stimuli appearing in receptors, informa-
tion passes through perception (Nęcka et al., 2006). Next,
it is filtered and processed by attention, and then analysed
by thinking. Taking this into account, the resulting origi-
nal and simplified model of relationships amongst cogni-
tive processes is represented in Fig. 1.

2.1.1. Memory. Natural memory has double functio-
nality: it exists as a process and as a collection of in-
formation. The memory process consists in strengthe-
ning memory paths, which must be done, since infor-
mation, once memorized, weakens when not being used.
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Fig. 1. Basic model of cognitive processes (along with a reaction mechanism).

On the other hand, based on the classical understanding
(Maruszewski, 2001) of memory as a collection of infor-
mation, we consider it a hierarchical data storage:

• sensory memory (USTM: Ultra-Short-Time Memo-
ry), used for latching and keeping stimuli (rough data
or raw information);

• Short-Time Memory (STM), which is a kind of a li-
mited container of data (abstract items needing im-
mediate attention) that can be divided into

– low-level STM (Low-STM) keeping noticed
impressions,

– high-level STM (High-STM) containing identi-
fied discoveries (objects);

• Long-Time Memory (LTM), being in line with the
common sense of an abstract memory, and storing a
wider set of objects and system reactions.

Note that an identified object need not to be (yet) re-
cognised. On the other hand, some of the abstract objects
of LTM convey the idea of needs, which should be re-
cognised along with a specific impression referred to as
satisfaction (level).

2.1.2. Perception. The perception system is archety-
pally divided into sensory and classical discovery percep-
tion. The first is in charge of rough processing of sti-

muli, whereas the second one codes and recodes infor-
mation, and technically is partitioned in accordance with
the applied hierarchical structure of information and STM
shown above, resulting in impression (low-level) and di-
scovery (high-level) perception.

Sensory perception is responsible for the physical
means of writing down raw information into raw/sensory
memory (USTM). Such memory can be implemented as
a simple unit built of flip-flops. At the moments of appe-
arance of new stimuli, old information is overwritten.

Impression perception, being a preliminary stage of
sensory data processing, searches and recognises simple
features (like shape, color, texture, stretch, sounds, smells,
touches, or other details) associated with a certain set of
points in an abstract stimuli space represented by USTM.
Such features are written down into impression memory
(Low-STM) as impressions.

Discovery perception is a consecutive stage of sen-
sor data processing. It consists in compiling impressions
into discoveries (in a bottom-up process), which is perfor-
med allowing for space correlation (w.r.t. a locus in a me-
ant environment). A single unnamed discovery (finding)
is a group of impressions concerning a single object. Such
discoveries are compared (in a top-down process) with di-
scoveries known from discovery memory, another STM
(High-STM), supplied and written down there by uncon-
scious attention.1

1Note that discovery perception needs a bilateral communication
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Unrecognised discoveries make the perception send
an FNO control signal (Fetch New Object) to unconscio-
us attention. If this does not help (i.e., a given impression
still does not match), a CNO control signal (Create New
Object), is generated to communicate with conscious at-
tention.

It is generally recognised (Broadbent, 1958) that, du-
ring the process of recoding impressions, perception may
as well detect some dangerous features, which, consequ-
ently, can lead the entity to a specific state associated with
some unconscious reactions (for example, encountering a
‘mouse’ can generate a sub-emotion referred to as panic).

In our interpretations of this mechanism, objects (di-
scoveries) can have associated sub-emotions and subcon-
scious reactions, which are part of the modelled mind pro-
cess, too. They are treated here as specific impressions
composing discoveries.

2.1.3. Attention. As can be seen from the developed
structure (Fig. 1), attention is a core process for the whole
cognition system. In general, attention has access to the
short-time and long-time memories (High-STM and LTM)
with discoveries (binding impressions into single objects).

Unconscious attention (TDA), based on certain con-
trol signals, updates needs, emotions, and mood. It go-
verns memory processes (STM and LTM) and supports
cognitive processes.2 In particular, it transfers memorized
discoveries from LTM into High-STM. Usually, unimpor-
tant objects in STM are replaced/substituted by new ones
(possibly usable). The transfer is performed upon the FNO
control signal sent from discovery perception when it is
unable to match impressions to any of the current objects
kept in STM.

Conscious attention (BUA) is necessary to make
new findings, that is, to create new objects/discoveries for
sets of impressions newly identified and recognised as me-
aningful. This process is initiated by the CNO control si-
gnal generated by discovery perception (when all LTM so-
lutions/objects recognised in the past have been explored
and rejected). The new finding is performed (fixed) via
unconscious attention by transferring a new isolated set of
impressions along with its label (invented by thinking) as
a new discovery to LTM. Clearly, thinking, placed at the
highest level of cognition as shown in Fig. 1, is invoked
by conscious attention.

Note that information always crosses the unintentio-
nal attention while being exchanged between LTM and
STM. The TDA attention also filters information sent
(through BUA) to the thinking process. Due to the hie-
rarchical organization applied, only most essential pie-
ces of information are admitted (authorized) to thinking
(Maruszewski, 2001).

with its memory (High-STM).
2The next subsection on personality psychology discusses the con-

cepts of need, emotion, and mood.

Reactions often repeated (in some period of time)
eventually create subconscious actions (like those applied
in driving cars or typing), allowing the subject to react ‘wi-
thout thinking’, in a faster way as compared to conscious
reactions. Thus, upon recognizing known memory tracks,
TDA is capable of immediately generating subconscious
reactions (Kahneman, 1973).

Conscious attention is also able to intentionally con-
trol both reflexes and certain cognitive processes, directly
or indirectly (some results of BUA can be partly uncon-
scious). For example, a subject can fix its attention on so-
me impressions connected with a certain object, which im-
proves (hones) its attention process. A known example of
such a BUA feature is the so-called ‘cocktail party’ effect
which concerns the ability of focusing attention on a sole
talker in an environment full of conversations and back-
ground noise, which otherwise reflects a brain ability to
strongly filter out superfluous information (Arons, 1992).

2.1.4. Thinking. Thinking is generally the most com-
plex and developed process. It contains decision making,
logical reasoning, creating plans for the future, forming
concepts, and solving problems. In general, thinking can
be of two categories:

• autistic thinking (also called unmeant thinking),
responsible for all kinds of imaginary processes,
dreams, brain-in-resting, and excrescent thoughts
(Dewey, 1997);

• realistic thinking, solving problems by (simple, step-
by-step) logic operations relevant to the theories of
sets and models, as well as to constructive mathema-
tics and other fields of logic (Monsell, 1996).

2.1.5. Language3. Language processes are responsi-
ble for making articulated sounds, forming sentences, etc.
A vivid dispute between behaviourists and their oppo-
nents in the beginning of the history of cognitive psy-
chology concerned the language processes. Today, it is
generally accepted that the processes are strongly asso-
ciated with memory, as well as that certain rules are
coded by a respective strand of nucleotides (DNA and
RNA) (Maruszewski, 2001).

2.1.6. Model of cognitive psychology. As has been
presented in Fig. 1, cognitive processes can be arranged
in a hierarchy. Indeed, this is an extremely simplified mo-
del, as a high-fidelity one would need a complex neu-
ral network of an enormous size. It is estimated that hu-
man brain contains 1011 neural cells, and every neural
cell has about 7000 neural connections. Apparently, even
after eliminating the challenging uncertainty existing in

3In this work the language aspects are considered to be integrated
within functions of thinking, and will not be discussed separately.
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our knowledge about the (human) brain, there are no com-
puters which could practically handle such a kind of web
(Drachman, 2005).

Clearly, there are some control signals necessary for
directly coupling particular cognitive processes. In such
a way, a thinking entity is able, for instance, to pay its
attention to one of the discoveries made by the perception
process. It means that the attention process can ordain a
deeper analysis of an object under consideration.

2.2. Modelling motivation factors. Psychology which
takes care of individual differences is referred to as perso-
nality psychology. This psychology is, in particular, re-
sponsible for both creating a coherent model of a person
and tracking individual human differences. Moreover, it
studies human nature, motivations and emotions. The key
element, from the viewpoint of autonomy of robots, is the
nature of motivations and emotions.

Consider thus the two kinds of motivation factors:
needs and emotions, which are the most important quan-
tities for our analysis. Needs are principal elements of hu-
man motivation. It is only in exceptional cases, when a
thinking entity has to react immediately, that its system
of reaction (motivation/needs) does not directly engage its
reason. In such moments, reaction simply corresponds to
emotions. As will be shown below, emotions are also input
(controlling) data for the system of needs.

2.2.1. Modelling personality psychology by needs.
Generally, a need is an abstract state of an entity experien-
cing a sense of dissatisfaction (Maslow, 1968). The stron-
ger the sense, the harder it should be eliminated (or, at
least, reduced). There are a huge number of needs, which
can be divided into several classes shown in Fig. 2, along
with some sample items (needs).

Physiological:
food, breathing, drinking, dreaming. . .

Safety:
personal security, health, well-being. . .

Social:
friendship, intimacy. . .

Esteem:
fame, freedom. . .

Self-actualization:
creativity. . .

Fig. 2. Maslow pyramid of needs.

Children have about 26 needs, spread within all the
Maslow classes. In human lifetime a number of new ne-
eds are hammered out. The number of needs has no special
significance for our development (it is only an implemen-
tation issue). Needs can be defined by the designer, an can

be self-created, according to the emergence of new tasks
to be performed by the agent, for instance.

The perspective of building autonomous robots im-
plies the existence of certain extra ‘needs’ connected with
their subordinate tasks (within an assumed hierarchy), as
compared to the entities created based solely on the human
prototype system of needs. Soldiers obeying duty orders
constitute a practical archetype at this point. Such orders
can be directly related to the safety needs and (to some
extend) to the ‘social/belonging’ needs. Nevertheless, for
the sake of simplicity, we assume that such external subor-
dinate tasks are existential, and thus adhere to the category
of safety.

2.2.2. Emotional process. Emotional processes can
have different forms (Biddle et al., 2000):

• sub-emotions, represented by rapid passing through
feelings related to a recognised object;

• classical emotions, denoting changeable affective
states, with a strong color and explicit valuation;

• a mood, having a weaker color and longer duration
time (Blechman, 1990).

Leaving aside various deliberations or speculations
on creating emotions (mainly due to their involved and
equivocal nature), we claim that emotional processes with
respect to an object can vary between strong negative and
positive feelings connected to both sensed stimuli and
changing extends of fulfilments of needs.

Emotional processes fulfil four functions: informa-
tion oriented, activating, meta-cognitive, and modulating.
Their main utility in the developed psychology model
is modulation, which is responsible for extending or re-
stricting the sense of fulfilment of needs. The informati-
ve function simply deepens (adds more) information abo-
ut a perceived object, and thus facilitates its qualifica-
tion, while the other two functions of emotion help get-
ting more information about this object (Ekman and Da-
vidson, 1999) by a direct influence on the current pro-
cess of cognition (the meta-cognitive function switches
the method of cognition/creation, and activation finds a
new viewpoint/discovery in LTM).

From a linguistic standpoint, one can distinguish over
thirty emotions. Most of them, however, are strictly rela-
ted (linearly dependent), thus they will not be quoted here
(Plutchik, 2001).

The employed simplified interrelations between ne-
eds and emotions depicted in Fig. 3 represent our inter-
pretation of the natural idea of emotions. The division of
emotions commonly used in psychology (Biddle, 2000)
concerns emotions and moods, as well as affects. Our
sub-emotions should be associated with affects, which re-
ly on certain memorized objects. As the classical emo-
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tions are influenced by sub-emotions, they are also (indi-
rectly) connected to agent system memory: As different
attributes can be associated to any recognised object (di-
scovery) kept in memory, among them, there can be me-
mories of experienced emotions (impressions) associated
with such a memorized object. In view of the above, our
sub-emotion means simply a kind of signal, which comes
from system memory.

Consequently, needs are verified by unconscious at-
tention (TDA) according to the recognised discoveries, as
some of them represent the robot’s needs. The instrumen-
tal satisfaction level of a need is thus (also) modelled as
a specific impression held in a respective discovery. Fur-
thermore, TDA is responsible for transforming the actual
states of all agent needs into a scalar image of the classi-
cal emotions, which can be modulated by sub-emotions,
too. Mood is generated according to the evolution of this
emotion image (Figs. 5 and 6).

The general idea of the implemented mechanism of
mood explained in Fig. 6 refers to the system’s dynamics
(associated with the changeable classical emotion), along
with the employed restricted range of states of emotion.
Note that mood is going down to its lowest value (‘−1’)
in the case of negative emotions (exactly the negative va-
lues of the classical emotion), according to a slanted hy-
steresis shown in Fig. 6. Actually, the emotion mechanism
also depends on time (this effect4 is now only partially
and indirectly taken into account, for instance, in a tran-
sient/temporary influence of sub-emotions). Note that ‘an-
ger’ is in our case only a label of a ‘lowest’ emotion. For
example, after getting a sentence, the mood of a wrong-
doer is going down according to (a change of) his negati-
ve emotions (especially, for a certain period of time), and
such an extremely negative state of emotion (for the judge
and the whole world) is marked as ‘anger’.

The mood influences the system of needs. A general
concept of changing the satisfaction limits is based on the
system of self-awarding applied. When the agent’s beha-
viour is profitable and well rated, it is prized. We apply a
specific award in the form of ‘relaxation’, which consists
in broadening the satisfaction limits (consequently, such
relaxation can be interpreted as being ‘free’ from anxiety,
and thus ‘easy going’).

3. IDS: Intelligent decision-making system
and its integral model

The basic model of our Intelligent Decision-making Sys-
tem (IDS) shown in Fig. 1 needs further refinements and
definitions, especially with respect to the ways of using
the needs. According to the literature (Nęcka et al., 2006)
the needs take shape right after a preliminary selection of
perceptions, de facto in the time moments determined by

4It certainly calls for further studies.
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Fig. 3. Modelling personality psychology as a relation between
sub-emotions (κ), classical emotion (ξ), mood (Ξ) and
needs (H).

attention. The needs, in turn, exert their influence on the
decision process and, consequently, on the system reac-
tion.

3.1. Modelling the importance of needs. A static im-
portance of the needs can be partly determined according
to the pyramid of Fig. 2. Obviously, physiological needs
are more important than those of safety, which, in turn, are
prior to the socially belonging needs, etc.

This is, however, not all, especially from the problem
sorting/weighing point of view. Clearly, needs should also
be dynamically differentiated in terms of their importance
within each class (on one pyramid level). The dynamic
importance of the needs can be related to a concrete degree
of their fulfilment.

Fuzzy set methodology will be used here for this pur-
pose, as well as for modelling and processing reasons. Let
us first assume that each need can be quantified in terms of
fulfilment based on three fuzzy sets attributed to it. The-
ir membership functions are determined by certain rudi-
mentary parameters describing this need. Consequently, it
results that each need can be in a state of satisfaction (ap-
peasement), pre-alarm, or alarm. It is clear that the latter
absolutely requires some reaction.

Thus, taking into account such an alarming property,
the following weighting function is proposed5:

ω (ηi; c) =
1

1 + exp (−fsc (c) (|ηi| − c))
, (1)

where ηi represents an actual value of the degree of fulfil-
ment of a given i-th need, and the coefficient c is a mean
value of the membership parameters describing the fuzzy
sets of satisfaction and alarms. For a proper representation
of the weighting (thresholding) function and its inflection
point, the scaling function has been selected to have the
following form:

fsc (c) = 0.1 + 0.00025 (c − 50)2 . (2)

5A sigmoidal function.
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Fig. 4. Sample fuzzy membership of an i-th need and its estima-
tes. The bold dashed line denotes the weighting function
(ω (ηi)), the sparsely hatched-backslashed area descri-
bes the satisfaction set (μs (ηi)), the densely hatched-
crossed area portrays the alarm set (μa (ηi)), and the
densely hatched-slashed area means the pre-alarm set
(μp (ηi)). The thick vertical line marks an actual value
of the fulfilment degree (ηi).

A sample fuzzy classification of a need is shown in
Fig. 4. According to this figure, it is clear that in its mo-
ments of satisfaction the need is not important, whereas in
the alarm cases the need gets its highest ranks (weights).

3.2. Modelling the emotions. The emotions are some
states of mind, which modify the system of needs and
reactions. They deliver a simple mechanism of protec-
tion from danger, and give rise for awarding the agent.
For example, when the emotion of fear is invoked, an
intelligent robot can be programmed to immediately run
away from danger, instead of continuing with its basic du-
ty/tasks (like weeding a garden).

Sub-emotions can be interpreted as ‘impressions’
connected with some objects (like a pink blanket from
childhood, or a beloved woman, for instance). In our con-
cept, sub-emotions are additional qualifications of disco-
veries, other than the sensory impressions founding them.

Let us consider, for simplicity, that the classical emo-
tion is reduced to a single variable, and that sub-emotions
are trivalent negative, neutral, positive. In such a way, a
current sub-emotion (of a recognised object) can incre-
mentally modulate the classical emotion (see Fig. 3).

A normalized domain of the classical emotion is de-
composed into seven fuzzy sets. Each of the sets represent
a single fuzzy emotion. In such a way we can linguistical-
ly differentiate between fear, anger, sadness, indifference,
happiness, curiosity and joy. A complete set of all respec-
tive membership functions is depicted in Fig. 5. The se-
lected set of fuzzy emotions can be considered a certa-
in confinement of Plutchik’s theory (Plutchik, 2001). The
employed mechanism of emotions (again a modification

of Plutchik) makes allowances for a convenient optimiza-
tion/selection of reactions to be taken.
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Fig. 5. Fuzzy model of classical emotions (ξ). Instantaneous va-
lues of the emotion are on the X-axis (ξ), the member-
ship functions represent (from the left to the right) re-
spectively rage, anger, fear, boredom, hope, happiness,
and joy.

The third occurrence of the emotional processes is
the mood (Fig. 6). Its variable is formed according to the
evolution of the classical emotion submitted to the slan-
ted hysteresis operation applied. The mood moderates the
fuzzy membership parameters of the needs.
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Fig. 6. Dependence between the mood and the classical emotion
states.

3.3. Integral IDS model. An integral model of cogni-
tive processes, shown in Fig. 7, has been built by assi-
milating the developed personality psychology elements
model into the basic cognitive model. Parts of personality
have arisen from the discussed models of conscious and
unconscious attentions. Note that in this figure the senso-
ry perception are merged with the other perceptions and
two levels of memory (USTM and Low-STM).

Abstract and reaction memories have been isolated
within LTM. The abstract memory contains all known di-
scoveries categorized and systematized in groups of more
generalized discoveries (for example, chair, sofa, coach,
stool, seat, and pouf, can be generalized as seat-places).
The reaction memory, on the other hand, contains all po-
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Fig. 7. Integral IDS model of cognitive processes from the viewpoint of personality psychology.

ssible reactions (with their parameters) that can be utilized
by the system/agent.

3.4. IDS model vs. decision theory. There exists a
specific field of science, called decision theory, that con-
cerns the problems of forming and solving decision tasks
(Hansson, 1994). One of most sophisticated classical mo-
dels of decision making, referred to as the Mintzberg mo-
del, is shown in Fig. 8.

The studies of Mintzberg et al. (1976) prove that the
most time-consuming element of the model is identifica-
tion. Note that in our concept this function is automatical-
ly performed by the whole system centred around needs.

Clearly, finding a known solution appears to be the
simplest and fastest method. In this respect, the Mintzberg
paradigm is answered by our integral model (which other-
wise involves an explicit ‘thinking’ process). With a great
degree of similarity, in both cases we can distinguish the
same phases: perception (getting information), attention
(identification of a problem), and thinking (resolving the
problem).

3.5. IDS thinking process. The principal element of
cognitive processes is thinking, which can be divided into
autistic and realistic. Autistic thinking is subconscious; in
our model there are thus some artifacts of it. Realistic thin-
king completes three basic functions (Nęcka et al., 2006):

• creative: improves known reactions and creates new
reactions (in a genetic way, for instance);

• re-constructive: chooses a currently most well-fitting
reaction;

• estimation: creates an estimation for reactions ap-
plied, as well as classifies them into unconscious and
subconscious reactions.

Needs and emotions are signals that influence both
creative and re-constructive thinking as shown in Fig. 9.
They make a principal basis for undertaking proper re-
actions. In a creative-thinking process of the IDS, a new
reaction is originated that should ‘satisfy’ its system of
needs to a possibly greatest extent. As an effect, resul-
ting amendments (increments) of the employed satisfac-
tion measures of all the needs obtained by this (being
experienced) reaction are memorized, along with the con-
text of current emotions (namely, one or two; see Fig. 5).
As will be shown in the next subsection, in re-constructive
thinking the IDS can consider most fitted reactions in ano-
ther current context of emotion.

Consequently, emotions modify the pool of accessi-
ble reactions. For instance, a reaction in a form of ‘fight’
should be applied only in case of danger. When environ-
ment is malevolent, the emotion system generates and ad-
apts signals of negative sub-emotion (connected with so-
me recognised objects of an unfriendly environment). In
a next step, attention (associated with the personality sub-
system depicted in Figs. 3 and 7) modifies/decrements the
classical/system emotion, leading to its negative crisp va-
lue (see Fig. 5) and the negative fuzzy emotions (fear, an-
ger, or rage). This, in turn, lets the agent react violently
(e.g., by employing power or fighting).
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3.6. Decision making mechanism: Motivations. Wi-
thin the frameworks of thinking, one straightforward so-
lution implemented at this stage of our study takes into
account only a re-constructive model, where all possible
reactions are assumed to be known and the only task is
to select a suitable reaction according to a current state of
needs and emotions. Even such an apparently simple task
can get easily complicated6 when a part of knowledge is
‘crisp’ and one has to consider several criteria or needs.

To give some rationale for the proposed solution, let
us analyse the issue of complexity. As has been mentio-
ned, an average infant has about n = 26 different needs,
and about r = 20 complex reactions (mostly moves and
sounds). Let us think about building a simple version of
a robotic system inspired by the employed anthropoidal
model that fulfils these assumptions.

Let us thus approximately compare two sample di-
stinct approaches to the decision making problem: CDM,

6Giving rise to another encounter of the ‘curse of dimensionality.’

optional Crisp with Data Mining (associating a fixed de-
cision for each condition), and FNN, Fuzzy with Neu-
ral Network (referred to as a fuzzy-neural network esti-
mating/weighing/considering a possible effect of applying
each of available reactions, and presented in the next sub-
section).

Assuming 8-bit representation of the state of needs
and the set of 26 needs, the crisp approach (in view of
the choice of a single reaction) yields the number of ne-
cessary decisions equal to the number of possible varia-
tions: 25626 ∼= 4.1e62. When we have only 7 needs (as in
the robot experiment described in Section 5), the database
would have about 7.2e16 records, whereas in the case of
FNN we have only 3nr data to be input to the decision ne-
twork, which is 1260 for the infant case (and 105 for the
robot case).

Certainly, the proposed FNN solution has its own
complexity, resulting from the structure of neurons ‘AND’
(3), (5), ‘OR’ (4), (6), and ‘NOT’ (7), applied later on. As
a consequence, we can estimate the FNN complexity in
terms of 3300 additions and 1660 multiplications (and, for
the robotic experiment, 255 additions and 130 multiplica-
tions).

Thus, considering the above indicated great number
of possibilities, the decision optimization problem can be
simplified and conveniently solved by FNN simulating the
effect of reaction, instead of keeping a huge set of cir-
cumstances and reactions in extenso in the agent memory
(CDM). Additional advantage of the FNN approach can
be found in its adaptivity to possibly changing decision-
making conditions.

3.7. Selecting reactions with the use of a fuzzy-neural
network. The decision on the reaction to be underta-
ken is made by optimizing a combined weighted criterion
composed of a (maximized) satisfaction level and (mini-
mized) a distress level, with respect to the alarm and pre-
alarm fuzzy thresholds.

Therefore, based on a priori information about in-
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Fig. 10. Fuzzy-neural network estimating the suitability of re-
actions based on the actual state of needs and the simu-
lated effects of reactions.

cremental effects of the reactions on the needs, for each
reaction, a ‘simulation run’ is performed in order to esti-
mate its influence on the system of needs. The obtained
new fulfilment degrees and the importance weights of all
the simulated needs are then taken into account as the in-
put information applied to the neural network of Fig. 10.

The first (lower) neuron reflects fuzzy operations be-
tween the membership of the needs to the fuzzy satisfac-
tion set and the respective weights of the needs. The se-
cond neuron considers the fuzzy pre-alarm set, and the
third neuron computes the fuzzy alarm set (similarly, both
use the fuzzy membership and the weightings).

The employed neuron of type ‘AND’ can be descri-
bed by the following function:

y = fand (u) =
N⊗

i=1

(wi ◦ ui) , (3)

where
⊗

denotes an N -argument T-norm, and ◦ represent
a two-argument S-norm.

The neuron of type ‘OR’ is computed as follows:

y = for (u) = ©N
i=1 (wi ⊗ ui) , (4)

where © denotes an N -argument S-norm, and ⊗ is a two-
argument T-norm.

Both the T-norm and the S-norm are assumed to be
in the form of the following Einstein norms (Łęski, 2008):

⊗E (x, y) =
xy

2− (x + y − xy)
, (5)

©E (x, y) =
x + y

(1 + xy)
. (6)

The symbol ¬ represents negation in the Yager sense:

N (x; s) = (1− xs)
1
s . (7)

In the proposed fuzzy-neural network, estimating the
effect of reactions, the negation parameter s = 2 is taken
on as a simple optional choice.

The network generates its estimates as real values
from the interval [0, 1], which results in a convenient orde-
ring of reactions. The best reaction is forwarded for exe-
cution, with the expectation that the system states of needs
will be improved.

The FNN input data are fuzzy images of the fulfil-
ment, where fuzziness concerns alarming, pre-alarming,
and satisfaction sets, according to Fig. 4.

The first layer of the fuzzy-neural network repre-
sents a data collecting operation. The satisfaction neuron
(‘AND’) assumes that each need should be satisfied; the
output of this neuron is an estimate of global satisfaction
(a low value of the estimate shows that more needs remain
unsatisfied). The ‘OR’ neurons for pre-alarms and alarms
take care of keeping all the needs away from being (pre)-
alarmed.

The second layer of FNN computes co-estimates: a
Satisfaction Pre-alarm co-Estimate (SPcE) and an Alarm-
Pre-alarm co-Estimate (APcE). The SPcE can be interpre-
ted as follows: ‘Every need should be satisfied and none
of them should be pre-alarmed’. On the other hand, AP-
cE shows an estimation of dissatisfaction. The last layer
creates a single evaluation of the state of system needs.

In conclusion, the result of each reaction is simply
computed by performing a simulated estimation (called
‘simulation’) of the effects of its application. This estima-
tion is performed by the FNN and based on data repre-
senting the state of fulfilment of the (n) needs considered.
The respective vector of the need fulfilment states is vi-
tal to the IDS. Note that, actually, the ‘needs’ shown in
Fig. 7 are technically implemented as a bus of lines, each
of which represents the current (crisp) state of fulfilment
of an ascribed need.

Known reactions are memorized in LTM along with
their learned incremental influences (amendments) on par-
ticular needs. Thus, in view of the above, the inferencing
machine is able to foresee the ‘environmental response’
(distributed over the whole set of needs), and, in effect, to
estimate the effect of any agent reaction, and to select the
best one (that is, to optimize the decision).

4. Fuzzy-neural network experiments

Let us assume that the IDS recognises the following ne-
eds, which are accordingly associated with the respective
Maslow classes (levels):

• En: Energy (Physiological),

• Re: Rest (Physiological),

• Se: Security (Safety),

• Ta: Tasks (Safety),

• So: Society (Social),
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• Cu: Curiosity (Esteem),

• De: Development (Self-actualization).

All the needs have their specific fuzzy parameters
defined, which precisely describe their membership func-
tions. Moreover, it is assumed that this IDS has five pre-
designed reactions:

• Searching (area),

• Charging,

• Resting,

• Working,

• Escaping.

An FNN module of a Java-based framework, rely-
ing on JAMA and FuzzyJ Toolkit libraries, was created
and used in simulation. The effects of the IDS decision-
making tests performed with the aid of the FNN module
are described and discussed below. The influence of par-
ticular reactions on the state (degree) of fulfilment of the
assumed needs is known and estimated as described in Ta-
ble 1.

Computational experiments, based on the above de-
scribed fuzzy-neural network, were conducted with the
purpose of searching for the best-fitted reactions in three
sample scenarios, called experiments E1–E3. Table 2 pre-
sents the resulting estimated transitions (see the rows) in
the states of fulfilment of the needs (initially described in
the first aggregate column), and in terms of the prospective
crisp (FD) and fuzzy (LS: (s) satisfaction, (p) pre-alarm,
and (a) alarm) states of the needs, gained by the five reac-
tions considered (the other double columns).

As can be seen, initially, there is only one need in the
alarm state in the scenario E1. Consequently, we look for
a reaction that most optimally influences this need. The
obtained values of the estimated suitability are given in
Table 3. Clearly, in the case E1, with the entity feeling
insecure, escaping appears to be most optimal.

The second experiment (E2) shows what happens
when there are two unsatisfied needs (Energy and Task).
As Table 3 shows, the IDS advises a reaction ensuring its
survival, i.e., it prefers to gain energy (charging) instead
of performing the assigned task (this specific need will
stay alarmed, as Table 2 prompts), programmed as wor-
king (e.g., painting).

There are four alarms in the last scenario (E3). In
such situations it is especially helpful that the estimated
suitability depends on the fuzzy parameters of the needs.
The IDS has always a chance to choose a reaction which
is most suitable.

The presented simulation proves that the FNN sys-
tem is able to choose a single reaction capable of han-
dling the system of needs. The employed scalar function

of the FNN allows on-line solving of a difficult multi-
optimization problem appearing here (note that fulfilling
each need represents a different criterion).

5. Robotic implementation and experiments

As has been mentioned, the principal idea of this paper
is focused on the concept of needs (with an auxiliary and
instrumental role of emotions). At this stage of study, we
can also present results of a simplified experiment based
solely on the implemented concept of needs (which, cer-
tainly, is partial when taking into account a complete IDS
viewpoint).

The resulting simplified version of the IDS was im-
plemented on a laboratory mobile platform Qfix, which
has four distance sensors, four diodes and two electric mo-
tors. The reactivity of the robot was quite limited, since it
could only move in two dimensions, sense objects in its
closest environment, and change the states of four diodes.

5.1. Robots needs. Due to the above mentioned limi-
tations, we assume that the robot has four needs:

• eating (intent to have high energy in its battery),

• resting (desire to stay at a current location),

• safety (aim to find a shelter),

• curiosity (desire to move to new places).

The eating and resting needs are in the physiological
class, and the safety and curiosity needs are in the safety
class of the Maslow pyramid (no emotions and mood were
considered in this simplified experiment).

5.2. Implementation report. Let us assume that one
reaction positively influences (corresponds to) each need.
Thus, there are the following reactions:

1. ‘charge’ (charging the battery is indicated by a blin-
king diode),

2. ‘hide’ makes the robot go to a nearest corner,

3. ‘sleep’ results in resting,

4. ‘explore’ lets the robot go beyond known positions
(marked on its map).

All performed movements (reactions) result in loosing
energy and changing the states of satisfaction of other ne-
eds (which are also decreasing in time).

To facilitate observations, the robot needs and states
were indicated by diodes mounted on the platform. In ge-
neral, the robot acted as a ‘baby’, according to the above
given description of the implemented ‘program’ of satis-
fying the robot needs: by running to a corner, charging,
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Table 1. Examined reactions and their simulated effect on the state of fulfilment of particular needs.

Reaction Energy Rest Security Tasks Society Curiosity Development

Searching -20 -20 -15 – – +30 +25
Charging +40 +10 -25 -5 +5 -10 –
Resting +10 +30 -5 – – – +5
Working -30 – – +30 – – –
Escaping – -20 +30 – -10 – –

Table 2. Sample estimation of reactions gained by the fuzzy-neural network in terms of the obtained fulfilment of the needs, where LS
means the linguistic state (s: satisfaction, p: pre-alarm, a: alarm), FD is the degree of fulfilment.

ID Needs Searching Charging Resting Working Escaping

E1

Need LS FD
En s 0.0
Re s 0.0
Se a -75.70
Ta s 0.0
So s 0.0
Cu s 0.0
De s 0.0

LS FD
s -20.0
s -20.0
a -90.70
s 0.0
s 0.0
p 30.0
s 25.0

LS FD
p 40.0
s 10.0
a -100.0
s -5.0
s 5.0
s -10.0
s 0.0

LS FD
s 10.0
s 30.0
a -80.70
s 0.0
s 0.0
s 0.0
s 5.0

LS FD
s -30.0
s 0.0
a -75.70
p 30.0
s 0.0
s 0.0
s 0.0

LS FD
s 0.0
s -20.0
p -45.70
s 0.0
s -10.0
s 0.0
s 0.0

E2

Need LS FD
En a -76.55
Re s 0.0
Se s 0.0
Ta p -83.40
So s 0.0
Cu s 0.0
De s 0.0

LS FD
a -96.55
s -20.0
s -15.0
p -83.40
s 0.0
p 30.0
p 25.0

LS FD
p -36.55
s 10.0
s -25.0
a -88.40
s 5.0
s -10.0
s 0.0

LS FD
p -66.55
p 30.0
s -5.0
p -83.40
s 0.0
s 0.0
s 5.0

LS FD
a -100.0
s 0.0
s 0.0
p -53.40
s 0.0
s 0.0

0.0

LS FD
a -76.55
s -20.0
p 30.0
p -83.40
s -10.0
s 0.0
s 0.0

E3

Need LS FD
En a -72.35
Re a -81.07
Se a -75.32
Ta a -81.11
So s 0.0
Cu s 0.0
De s 0.0

LS FD
a -92.35
a -100.0
a -90.32
p -81.11
s 0.0
p 30.0
p 25.0

LS FD
s -32.35
p -71.07
a -100.0
a -86.11
s 5.0
s -10.0
s 0.0

LS FD
p -62.35
s -51.07
a -80.32
p -81.11
s 0.0
s 0.0
s 5.0

LS FD
a -100.0
p -81.07
p -75.32
p -51.11
s 0.0
s 0.0
s 0.0

LS FD
a -72.35
a -100.0
p -45.32
p -81.11
s -10.0
s 0.0
s 0.0

resting, etc., thus ‘existing’ for its own purposes. The next
intended step is to construct an extended implementation
of the developed anthropoidal model of psychology.

Table 3. Reactions and their Estimated Suitability (ES) in the
three experiments.

Reaction ESE1 ESE2 ESE3

Searching 0.357 0.668 0.695
Charging 0.356 0.850 0.800
Resting 0.364 0.676 0.798
Working 0.410 0.727 0.744
Escaping 0.973 0.668 0.769

6. Conclusions

In this paper we have contemplated the idea of creating
a fully autonomous robotic decision-making system, able

to interact with its environment. The concept has been es-
tablished on a developed mathematical model of human
cognitive-behavioural and personality psychologies.

In the presented IDS governing process, emotions
play an auxiliary, though important, role of a modifier
influencing the basic decision system, which is founded
on an analysis of the state of the fulfilment of the sys-
tem/robot needs. In brief, our emotion system is compo-
sed of three elements:

• (linear/fuzzy, classical) emotion,

• (associative/linguistic) sub-emotions,

• mood (a derivative of emotion).

The proposed approach has the following distingu-
ishing features:

1. External signals (stimuli) are preprocessed and defi-
nite objects are identified.
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2. Those objects and their characteristics influence at-
tention and, in particular, emotions, mood, and ne-
eds.

3. A fuzzy reasoning framework is a piece of the thin-
king module.

The developed concept of an intelligent decision-
making system is ready for complete implementation,
which could govern mobile and stationary robots. Clearly,
in order to get a fully autonomous system able to adapt to
changing environmental conditions, any practical imple-
mentation on a mobile robot platform has to be equipped
with a number of suitable sensors, an adequate processor
and a sufficient amount of memory. Then it can perform its
mission intelligently, and be capable of ‘knowing’ when it
has to change battery, how to take care about itself, and
under which circumstances it should execute the assigned
tasks.

Further studies are intended to improve the system
and its effectiveness, and, in particular, to extend its adap-
tivity (by solving the problem of including certain mood
features, and generating new reactions, for instance). Cle-
arly, a great challenge lies in implementation of the IDS
on standard mobile robots.

Some preliminary results of a working simplified im-
plementation of the IDS on a laboratory robot platform
have also been presented. In particular, experiments con-
cerning three scenarios of need satisfaction (illustrating
the effects of the decision making system), along with the
corresponding results (given in Tables 1–3), and the added
piece of results of experimenting with a primitive labora-
tory mobile robot, having the curiosity, safety, rest, and
energy needs (placed on Maslow’s pyramid, from the top
to the bottom levels), appear to be adequate (approxima-
tely, from a technical point of view, the robot behaved li-
ke an infant). Certainly, the primary IDS design presented
here though shall be followed by further development and
possibly full-blown implementation ready for vast testing
conditions.

Certainly, there are a great number of works on fuz-
zy reasoning used for the purpose of choosing suitable
behaviour. For instance, in the FLAME model (El-Nasr
et al., 2000), the authors utilize the idea of fuzzy emotions;
they are however directly associated to certain external
events (signals), to make up the decision (the authors also
solves the problem of conflicting emotions, and add some
learning to incorporate some adaptation facilities). Such
approaches are generally based on direct signal interpre-
tation and filtering. Our proposition for the reasoning mo-
dule can be treated as a sample/illustrative solution. It can
also be founded on any of the different algorithms develo-
ped in the literature (e.g., Bui et al., 2002; Bonarini et al.,
2006).

An intelligent decision-making system able to imita-
te human motivation could be found functional in many

circumstances, from security guards, smart devices, hu-
man artificial limbs, to personal companions. A security
guard can be implemented in the form of a smart dog sno-
oping around and looking for a thread to the integrity of a
given sphere. A group of such guard-bots can co-operate
and obey the orders of their supervisor. In general, the per-
spectives of using personal companions or servants appear
to be limitless.

Another sample application can be found in hand
bio-manipulators, which for several reasons still look
quite artificial. Note that their aesthetic and functional
aspects, apart from being managed by the disabled, can
perhaps be mastered by adding certain natural-like spon-
taneous movements being controlled by a motivation sys-
tem during idleness.
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and Robotics (MMAR), Międzyzdroje, Poland, pp. 31–36.
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