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Recently, a new type of neural networks called Least Squares Support Vector Machines (LS-SVMs) has been receiving
increasing attention in nonlinear system identification and control due to its generalization performance. This paper de-
velops a stable adaptive control scheme using the LS-SVM network. The developed control scheme includes two parts:
the identification part that uses a modified structure of LS-SVM neural networks called the multi-resolution wavelet least
squares support vector machine network (MRWLS-SVM) as a predictor model, and the controller part that is developed
to track a reference trajectory. By means of the Lyapunov stability criterion, stability analysis for the tracking errors is
performed. Finally, simulation studies are performed to demonstrate the capability of the developed approach in controlling
a pH process.
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1. Introduction

In the last decades, neural networks have proved to be a
powerful scheme in control strategies (Robert and Jean-
Jacques, 1992; Parisini and Zoppoli, 1994; Ge and Wang,
2004; Ge et al., 2008). Despite all the these successes,
they suffer from many local minima solutions and the is-
sue of the selection of an optimum structure. At this point,
considerable progress has been achieved by means of a
new class of neural networks called Support Vector Ma-
chines (SVMs), introduced by Vapnik (1998).

SVMs are constructed based on statistical learning
and structural risk minimization, which can give attention
to both the expectation risk and the generalization per-
formance. The structure and parameter learning of SVM
networks are characterized by solving a convex optimi-
zation problem. The notion of network complexity (e.g.,
the number of hidden units) is primarily related to solving
this convex optimization problem. Fundamentally, this ne-
twork uses a kernel to map the data in the input space to
a high dimensional feature space in which the problem
becomes linearly separable (Vapnik, 1998; Suykens and
Vandewalle, 1999; Suykens et al., 2002). There are many
kinds of kernel that can be used, such as the Radial Basis
Function (RBF) and polynomial kernels. Motivated by the

effective characteristics of the wavelet for each of the non-
stationary signal approximation and classifications, some
studies using the wavelet kernel for the SVM have been
presented (Zhang et al., 2004; 2005).

In fact, the solution of the convex optimization pro-
blem of SVM networks is a computational intensive and
memory consuming method, especially if a large tra-
ining set of high-dimensional data is used. This is a se-
rious drawback. Least Squares Support Vector Machine
(LS-SVM) networks are developed as an improvement of
SVM networks (Saunders et al., 1998; Suykens, 2001).
In this scheme, the objective function of the optimization
problem includes an additional sum squared error term.
Hence, it reduces the computation time of the convex opti-
mization problem. Motivated by this characteristic, many
efforts have been conducted using the LS-SVM network
for modeling and control purposes (Suykens, 2001; Suy-
kens et al., 2001; Li et al., 2006; Li-Juan et al., 2007;
Zhang and Wang, 2008; Wang and Yuan, 2008).

In the work of Mahmoud (2010), a modified struc-
ture of LS-SVM networks using the wavelet kernel na-
med the Multi-Resolution Wavelet Least Squares Support
Vector Machine (MRWLS-SVM) network is developed.
The network emerges between the multi-resolution pro-
perty of the wavelet transform and the LS-SVM learning
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algorithm. It develops the strategy of forming a nonli-
near system to be modeled with a set of Wavelet Least
Squares Support Vector Machine (WLS-SVM) networks.
Each sub-WLS-SVM network consists of a wavelets ker-
nel with a specified resolution. The outputs of these sub-
WLS-SVM networks are weighted and aggregated via a
set of weights to produce the final output. One of the main
features of the MRWLS-SVM network is a dynamic ne-
twork that is inherited from the MRWLS-SVM network
output fed back to the input via a set of tapped delays.

This study develops a stable adaptive control sche-
me based on the MRWLS-SVM network. The MRWLS-
SVM has been employed as a model predictor in the con-
trol scheme. The parameters of the controller are trained
using the gradient descent method. The convergence of
this controller is proved using Lyapunov stability theory.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the basic concept of the LS-SVM ne-
twork. Section 3 reviews the basic structure and the le-
arning phases of the MRWLS-SVM network. Section 4
presents the proposed control scheme. Section 5 tests the
soundness of the proposed control scheme via controlling
a pH neutralization process. Section 6 concludes the pro-
posed scheme.

2. LS-SVM neural network

The basic concept of the LS-SVM network can be discus-
sed as follows: Given a training data (xi; yi)N

i=1, where N
is the number of training data pairs, xi ∈ R

m is the input
vector and yi ∈ R is the output. According to SVM the-
ory, the input space R

m is mapped into a higher dimension
feature space using a nonlinear function Φ(xi). In the fe-
ature space, the following function is used to estimate the
unknown function:

yi(xi) = wT Φ(xi) + b, (1)

where w and b are the estimated parameters. The optimi-
zation problem of the LS-SVM network is defined as

min
w,b,e

J(w, e) =
1
2
wT w +

γ

2

N∑

i=1

e2
i , (2)

subject to the equality constraints

yi = wT Φ(xi) + b + ei, (3)

where ei is the error between the actual and the estimated
outputs of the i-th datum. The Lagrange function to solve
this optimization problem is defined as

L(w, b, e, α)

= J(w, e) −
N∑

i=1

αi(wT Φ(xi) + b + ei − yi), (4)

where α = (αi)N
i=1 is the set of Lagrange multipliers.

Hence, the set optimality conditions are given by

∂L

∂w
= 0 → w =

N∑

i=1

αiΦ(xi), (5)

∂L

∂b
= 0 →

N∑

i=1

αi = 0, (6)

∂L

∂ei
= 0 → αi = γei, (7)

∂L

∂αi
= 0 → wT Φ(xi) + b + ei − yi = 0,

∀i = 1, 2, . . . , N. (8)

Defining

Y = [y1, y2, . . . , yN ]T ,

1 = [1, 1, . . . , 1]T ,

α = [α1, α2, . . . , αN ]T ,

Ω is a square matrix in which the element located in
the i-th row is Ωil = Φ(xi)Φ(xl) = K(xi, xl), ∀i, l =
1, 2, . . . , N . Eliminating w, e, the following set of linear
equations is obtained:

[
0 1T

1 Ω + γ−1I

] [
b
α

]
=

[
0
Y

]
. (9)

Choosing γ > 0 ensures that the matrix
[

0 1T

1 Ω + γ−1I

]

is invertible. Then the analytical solution for b and α is
given by

[
b
α

]
=

[
0 1T

1 Ω + γ−1I

]−1 [
0
Y

]
. (10)

Substituting the obtained b and α into Eqns. (5–7)
yields

y(x) =
N∑

i=1

αiK(x, xi) + b, (11)

where K(x, xi) is the kernel function, which can be
any symmetric function satisfying the Mercer condition
(Vapnik, 1998). Several choices for the kernel K(x, xi)
are possible:

• linear kernel: K(x, xi) = (xT
i x);

• polynomial kernel of degree r:

K(x, xi) = (xT
i x + 1)r;

• RBF kernel: K(x, xi) = exp(−‖x − x
i
‖2
2 /δ2).
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Owing to the effective characteristic of wavelets for
non-stationary signal approximation and classification,
the wavelet kernel has been investigated (Zhang et al.,
2004; 2005; Huicheng and Taiyi, 2008). It is given by

K(x, xi) =
m∏

j=1

h
(xj − xj

i

a

)
, (12)

where h(x) is a mother wavelet and a denotes the dilation
(i.e., resolution) parameter.

3. MRWLS-SVM neural network

Mahmoud (2010) developed a modified structure of LS-
SVM networks named the multi-resolution wavelet LS-
SVM network. The architecture of the this network com-
prises a set of sub-LS-SVM networks based on the wave-
let kernel named the WLS-SVM network with a specified
resolution. The outputs of these sub-WLS-SVM networks
are weighted and aggregated via a set of adaptable weights
to produce the final output of the proposed network. This
section reviews in brief the structure of the MRWLS-SVM
network.

With no loss of generality, suppose that the proposed
network has m inputs and one output. The structure of
the network in the sense of the layer description can be
described as follows

1. Layer 1 is an input layer. This layer accepts the input
variables and directly transmits the accepted inputs
to the next layer. The input vector x of the network
can be given by

x = [x1, x2, . . . , xm]T

= [u(t), u(t − 1), . . . , u(t − s),

yN(t − r), . . . , yN(t − 1)]T ,

where u is the external input variable of the system
to be modeled, yN (t−i), i = 1, 2, . . . , r are the past
values of the network output, s is the number of the
past values of the input variable, and r is the number
of the past values of the network output.

2. Layer 2 is a set of sub-WLS-SVM networks. The out-
put of each WLS-SVM network is given by

yl
w(x) =

c∑

i=1

αilKl(x, xi) + bl, l = 1, . . . , d,

(13)
where αil is the weight of the i-th Lagrange multi-
plier associated with the support vectors xi for the
l-th WLS-SVM network, bl is the bias term for the
l-th WLS-SVM network, and d is the number of the
sub-WLS-SVM networks. Kl(x; xi) is the wavelet
kernel for the l-th WLS-SVM network and can be

calculated by the tensor product of m single wave-
let basis functions that is generated by dilating and
translating the mother wavelet, i.e.,

Kl(x, xi) =
m∏

j=1

h
(xj − xj

i

al

)
, i = 1, . . . , c,

(14)
where h(x) is a mother wavelet, a denotes the dila-
tion (i.e., resolution) parameter, and c is the number
of the support vectors.

3. Layer 3 is an output layer. At this layer, the outputs
of the sub-WLS-SVM networks are weighted and ag-
gregated to find the final output of the network. The-
refore, the output of the proposed network can be gi-
ven as follows:

yN(x) =
d∑

l=1

wly
l
w(x), (15)

where wl is the l-th network weight and yl
w(x) is

the output of the l-th WLS-SVM network defined in
(13), which has the same structure of the LS-SVM
network using the wavelet kernel. By substituting
(13) in (15), the final output of the MRWLS-SVM
network can be reformulated as

yN (x) =
d∑

l=1

wl

( c∑

i=1

αilKl(x, xi) + bl

)
. (16)

The learning of the network consists of two phases:
structure learning and parameter learning. The structure
learning phase is the corner stone to develop an optimal
structure of the MRWLS-SVM network. It should deter-
mine the following seeds:

• the number of the support vectors c for each WLS-
SVM network,

• the Lagrange multiplier weights αil associated with
each support vectors xi and the bias term bl for each
l-th WLS-SVM network.

A hybrid technique including the fuzzy C-mean clu-
stering algorithm (Bezdek, 1981) and the LS-SVM algori-
thm was developed to learn the structure of the MRWLS-
SVM network. Thus, the fuzzy c-mean clustering method
was provided to construct the structure of each WLS-SVM
network. It partitions the training data into a group of clu-
sters and then uses these clusters to train each WLS-SVM
network. This means that each WLS-SVM network incor-
porates only clusters in its structure instead of incorpora-
ting all training data. More details of this algorithm can be
found in the work of Mahmoud (2010).

After setting up the structure of each sub-WLS-SVM
network, an approach using the Back-Propagation (BP)
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algorithm with an adaptive learning rate is developed to
train the contribution weights wl of the sub-WLS-SVM
networks. The main objective of this training phase is to
minimize the following cost function:

E =
1
2
(yr(t) − yN (t))2 =

1
2
e(t)2, (17)

where yr(t) is the current desired output of the network,
yN (t) is the current network output and e(t) is the error in
the learning phase. The gradient of the error with respect
to the network weight vector W = [w1, w2, . . . , wd]T is
given by

∂E

∂W (t)
= −e(t)

∂yN(t)
∂W (t)

. (18)

Hence, the update rule of the weight W can be given by

W (t + 1) = W (t) + η
(
− ∂E

∂W (t)

)

= W (t) + ηe(t)
∂yN (t)
∂W (t)

,

(19)

where η is the learning rate for the weights. The stability
of the MRWLS-SVM network has been investigated with
the aid of Lyapunov theory according to the following the-
orem.

Theorem 1. Let η be the learning rate for the weights
of the MRWLS-SVM network and Dmax be defined as
Dmax = maxt ‖Yw(t)‖2, where Yw is the vector conta-
ining the outputs of the sub-WLS-SVM networks, and ‖·‖
is the Euclidean norm in R

d. Then the convergence of the
proposed network is guaranteed if η is chosen as

0 < η <
2

Dmax
. (20)

The details of the proof of the above theorem can be
found in the work of Mahmoud (2010).

Theorem 1 can make the update rule of the weight W
with an adaptable learning rule as follows:

W (t + 1) = W (t) + η(t)e(t)
∂yN (t)
∂W (t)

, (21)

where η(t) can be adopted at any instant t as

η(t) = η(0)
2

Dmax(t)
, (22)

with η(0) being a positive constant number less than 1 and
Dmax(t) given as

Dmax(t) = max(Dmax(t − 1), ‖Yw(t)‖2), (23)

Passing reference to the nonlinear modeling results
and the dynamic features of the MRWLS-SVM described
by Mahmoud (2010), the following sections develop an
adaptive control scheme based on this network.

4. Proposed adaptive control scheme based
on the MRWLS-SVM network

This section describes the overall structure and the stabi-
lity analysis of the proposed control scheme.
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Fig. 1. Structure of the adaptive control scheme.

4.1. Structure of the proposed adaptive control sche-
me. The overall structure of the MRWLS-SVM network
based adaptive control scheme is depicted in Fig. 1. It inc-
ludes three main parts: the actual plant, the process model
based on the MRWLS-SVM network and the controller.
In this scheme, the MRWLS-SVM network is introduced
as a tool to predict the future outputs of the plant. That is
given by the nonlinear approximation g:

yN (t + j) = g(θ, u(t), yN (t + j − 1)), (24)

where yN(t+ j) is the prediction output of the plant at the
prediction horizon j using the MRWLS-SVM network, θ
denotes the network parameters, and u(t) is the controller
output at instant t that can be assumed as

u(t) = f(ec(t), Δec(t), u(t − 1)), (25)

where f(·) is a linear or a nonlinear function, ec(t) =
R(t) − y(t) is the controller error at the sample instant
t, R(t) is the reference trajectory, Δec(t) is the rate of
change in the controller error, and u(t−1) is the controller
output at the sample instant t − 1. For simplicity, a linear
form of the controller function is assumed as

u(t) = u(t − 1) + b1ec(t) + b2Δec(t), (26)

where b1,2 are the controller gains.
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The aim of the adaptive scheme is that the future out-
puts on the horizon considered should follow a predeter-
mined reference trajectory. Accordingly, the cost function
considered is given by

Jp = 0.5(ET
m(t + 1)Em(t + 1)), (27)

where Em(t + 1) is the prediction error defined by

Em(t + 1) = [ep(t + 1), ep(t + 2), . . . , ep(t + Np)]
T

,
(28)

with

ep(t + j) = R(t + j) − yN(t + j) (29)

being the prediction error at instant j, j = 1, 2, . . . , Np, R
the desired trajectory, yN the output of the MRWLS-SVM
network predictor, and Np the maximum output horizon.

In order to minimize Jp, the controller gain vector
B = [b1, b2]T is recursively adapted using the following
update scheme:

B(t + 1) = B(t) + ηc

(
− ∂Jp

∂B(t)

)
, (30)

where ηc is the learning rate for the controller gains. Dif-
ferentiating the cost function Jp with respect to the con-
troller gain vector can be implemented using the back-
propagation algorithm as a gradient descent algorithm via
the MRWLS-SVM network predictor. Those are obtained
by

∂Jp

∂B(t)
= −

[
∂YN (t + 1)

∂B(t)

]
Em(t + 1)

= Xc

[
∂YN (t + 1)

∂u(t)

]
Em(t + 1),

(31)

where YN (t + 1) = [yN (t + 1), yN(t + 2), . . . , yN (t +
Np)]T is the vector of the future values of the network
predictor output and Xc = [ec(t), Δec(t)]T is the in-
put vector of the controller. The computing procedure for
[∂YN (t + 1)/∂u(t)] is presented in Appendix.

4.2. Stability analysis for the proposed control sche-
me. To investigate the stability of the controller the fol-
lowing discrete Lyapunov function is considered:

Vm(t) =
1
2
(ET

m(t + 1)Em(t + 1)), (32)

where Em(t + 1) is the prediction error defined in (28).
The change in the Lyapunov function is obtained by

ΔVm(t) =
1
2
(ET

m(t+2)Em(t+2)−ET
m(t+1)Em(t+1)).

(33)

The prediction error difference can be adopted as (Ku
et al., 1995; Yoo et al., 2005)

ΔEm(t + 1) ≈
[
∂Em(t + 1)

∂B(t)

]
ΔB(t)

≈
[
∂YN (t + 1)

∂u(t)

]
XT

c ΔB(t),
(34)

where ΔB(t) is the change in the controller gain. Using
(30) and (31), ΔB(t) can be obtained by

ΔB(t) = −ηcXc

[
∂YN (t + 1)

∂u(t)

]T

Em(t + 1). (35)

Then ΔEm(t + 1) in (34) can be rewritten as

ΔEm(t + 1) = −ηc ‖Xc‖2
GEm(t + 1), (36)

where GNp×Np is a square matrix given by

G =
[
∂YN (t + 1)

∂u(t)

] [
∂YN (t + 1)

∂u(t)

]T

. (37)

Lemma 1. Let a positive matrix MN×N be defined as
M = βI−A where AN×N is a positive symmetric matrix
and β is a real number, and I is the identity matrix. Then
the eigenvalues of M can be represented as follows:

eig(M) = eig(βI) − eig(A),

where

eig(M) = [λM,1, λM,2, . . . , λM,N ]T ,

eig(A) = [λA,1, λA,2, . . . , λA,N ]T ,

eig(βI) = [β, β, . . . , β]T .

Theorem 2. Let ηc be the learning rate for the controller
gains. Then the stability of the controller is guaranteed if
ηc is chosen to satisfy

0 < ηc <
2

gmaxλmax
, (38)

where λmax is the maximum eigenvalue of the matrix G
defined in (37), and gmax = maxt ‖Xc(t)‖2.

Proof. Using (36), the change in the Lyapunov function
defined in (33) can be expressed as

ΔVm(t) = ΔET
m(t + 1)(Em(t + 1) +

1
2
ΔEm(t + 1))

= −ET
m(t + 1)ηc ‖Xc(t)‖2

GT

= Em(t + 1) − 1
2
‖Xc(t)‖2 GEm(t + 1)

= −ET
m(t + 1)ΓPEm(t + 1),

(39)
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where

Γ = ηc ‖Xc(t)‖2
GT ,

P = I − 1
2
ηc ‖Xc(t)‖2 G.

�
If Γ and P are positive definite matrices, then

ΔVm(t) < 0. This means that Lyapunov stability is gu-
aranteed. To get Γ > 0 and P > 0, all eigenvalues in each
of them must be positive. The condition Γ > 0 is satisfied
if ηc > 0, and

P = I − 1
2
ηc ‖Xc(t)‖2

G =
2

ηc ‖Xc(t)‖2 I − G > 0.

Here, according to Lemma 1, ηc < 2/gmaxλmax is ob-
tained such that λmax is the maximum eigenvalue of the
matrix G defined in (37), and gmax = maxt ‖Xc(t)‖2.
Therefore, the stability of the controller is guaranteed if
ηc is chosen as

0 < ηc <
2

gmaxλmax
.

According to Theorem 2, the adaptation of the con-
troller parameters defined in (30) can be expressed as

B(t + 1) = B(t) + ηc(t)
(
− ∂Jp

∂B(t)

)
, (40)

where ηc(t) is determined at any instant t as follows:

ηc(t) = ηc(0)
2

gmax(t)λmax(t)
, (41)

with ηc(0) being a small positive number < 1,

gmax(t) = max(gmax(t − 1), ‖Xc(t)‖2),
λmax(t) = max(λmax(t − 1), eig(G)).

(42)

5. Simulation results

In this section, the proposed adaptive control algorithm is
investigated via controlling the pH neutralization process.
In fact, the problem of controlling the pH process can be
included in a variety of practical areas such as waste water
treatment, biotechnology processing, and chemical pro-
cessing (Henson and Seborg, 1994; Wang et al., 2002; Fa-
anes and Skogestad, 2004). The difficulty in controlling
the pH process arises mainly from its heavy nonlinearity
and uncertainty. Therefore, the control of the pH process
is used here as a good example to investigate the proposed
adaptive control scheme.

5.1. pH neutralization process description. The pH
neutralization process is a dynamic system with strong
nonlinearity. In this process, acetic acid (weak acid) is
neutralized by a strong base NaOH in water. The physi-
cal model of a pH process in a Continuously Stirred Tank
Reactor (CSTR) consists of two parts; a linear dynamical
part followed by a nonlinear static part (Nie et al., 1996).
The dynamic part is given by

V
∂wa

∂t
= Faca − (Fa + Fb)wa,

V
∂wb

∂t
= Fbcb − (Fa + Fb)wb,

(43)

Fa and Fb denote the inlet flow rate of the acid and base
[cm3/min], respectively, Ca and Cb are the inlet concen-
tration of acid and base [mol/L], V is the volume of the
content in the reactor (cm3), and wa and wb are the con-
centration of acid and base after the neutralization process
[mol/L]. Simultaneously, wa and wb are the inputs of the
static part. That is given by

wb + 10−pH − 10pH−14 − wa

10pKa−pH
= 0, (44)

where ka = 1.76 × 10−5 is the dissociation constant of
the acetic acid and pKa = −log(Ka). The nominal para-
meters of this physical model are given in Table 1. During
the simulation, the acid inlet flow rate Fa is fixed at its
nominal value given in Table 1. This means that the pro-
cess is regarded as a single variable system with the base
inlet flow rate Fb and the pH value being the input and the
output, respectively.

The first step for the proposed control scheme is to
design a predictor model of the pH neutralization process
using the MRWLS-SVM network. Hence, the following
subsection will describe the MRWLS-SVM model of the
pH process.

5.2. MRWLS-SVM model of the pH neutralization
process. While building an MRWLS-SVM model for
the pH process, the base inlet flow rate Fb was set as the
sum of its nominal value given in Table 1 plus a uniform-
ly distributed signal ranging in the interval [−51.5, 51.5],
as depicted in Fig. 2, to generate a 1000 training da-
ta set {x(t), pH(t)}1000

t=1 . This training data set is parti-
tioned into 20 clusters to construct the structure of sub-
WLS-SVM networks for the MRWLS-SVM network, and
5 WLS-SVM networks are constructed. This means that
100 wavelet kernels were used in the MRWLS-SVM ne-
twork structure for the pH neutralization process. During
the structure learning phase, the input vector is assumed
as x(t) = [Fb(t − 1), pH(t − 1]T , and then it is shifted to
x(t) = [Fb(t−1), yN(t−1]T , where yN(t) is the network
output during the learning parameter phase to achieve the
dynamic properties of the constructed model for the pH
neutralization process.
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Table 1. Nominal parameters for the pH neutralization process.
Parameters Nominal values

Fa 81 cm3/min
Fb(0) 515 cm3/min

ca 0.32 mol/L
cb 0.05 mol/L
V 1000 cm3

wa(0) 0.0435 mol/L
wb(0) 0.0432 mol/L

sample period 0.5 min

0 200 400 600 800 1000
470

480

490

500

510

520

530

540

550

560

570

samples

F
b

Fig. 2. Base inlet flow rate training signal.

After the MRWLS-SVM network model of the pH
process is constructed, it is tested using a 1000 test da-
ta set {x(t), pH(t)}1000

t=1 generated by the following test
function:

Fb(t) = Fb(0) + 51.5 sin(2πt/100). (45)

Figure 3 depicts the base inlet flow rate Fb used in the
test phase of the MRWLS-SVM model for the pH process.
The model output and the pH response during the test pha-
se are shown in Fig. 4. This figure shows the fast conver-
gence of the MRWLS-SVM network and the efficiency
of the network to effectively handle the strong nonlineari-
ty of the pH process. However, it is clear that the output
errors are high for minimum but not for maximum points.
This can be improved by increasing the number of training
epochs as shown in Fig. 5.

For comparison, an RBF kernel based LS-SVM ne-
twork was designed to model the pH neutralization pro-
cess. In this comparison, the set of input-output data is
generated using the base flow rate given by

Fb(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fb(0) + 51.5 sin(2πt/25) if t ≤ 150,

Fb(0) + 25.75 sin(2πt/25)

+ 25.75 sin(2πt/10) if t > 150.
(46)
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Fig. 3. Base inlet flow rate signal during the test phase.
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Fig. 4. pH value and the output of the MRWLS-SVM model du-
ring the test phase.

Figures 6 and 7 show the results of the MRWLS-
SVM and RBF kernel based LS-SVM models, respective-
ly. It is shown that the modeling accuracy of the MRWLS-
SVM network for the pH process is sound compared with
that of the RBF kernel based LS-SVM network.

In addition, using the input-output training data set
constructed using (46), the performance of the MRWLS-
SVM model for the pH process and other algorithms such
as the fuzzy neural networks algorithms developed by Nie
et al. (1996) was compared in terms of the Mean Square
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Fig. 5. pH value and the output of the MRWLS-SVM model du-
ring the test phase with more training epochs.
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Fig. 6. pH value and the output of the MRWLS-SVM model due
to the base flow rate defined in (46).
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Fig. 7. pH value and the output of the RBF kernel based LS-
SVM network model due to the base flow rate defined in
(46).

Error (MSE) given as

MSE =
1
N

N∑

t=1

(ym − ypH)2, (47)

where ym and ypH are the model and pH process outputs,

respectively, and N is the number of training data ele-
ments. Table 2 shows the obtained MSEs for the MRWLS-
SVM network and the other algorithms. The obtained re-
sults show that the efficiency of the MRWLS-SVM model
of the pH process is higher compared with those of the LS-
SVM algorithm and unsupervised self-organized counter-
propagation (Nie et al., 1996). At the same time, both the
MRWLS-SVM and the supervised self-organized counter-
propagation network have almost the same performance.

5.3. Proposed adaptive control scheme of the pH neu-
tralization process. During control application, the fol-
lowing parameters are considered:

(i) The desired reference trajectory R(t) was given
by the step response of a first order system with
gain = 1, and a time constant is 5 samples.

(ii) The acid inlet flow rate Fa is fixed at its nominal va-
lue given in Table 1.

(iii) The maximum output horizon is set to Np = 2.

(iv) The controller gains are set to small values (0.25).

Three control simulation tasks are performed to inve-
stigate the performance of the developed adaptive control
scheme. These are as follows:

• Test the controller performance with constant set-
point, i.e., the input set point (S(t)) is set to 8.

• Test the controller performance with the set-point
changes, i.e., the set-pint changes are set to

S(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

8 if t < 50,
9 if 50 < t < 100,
10 if 100 < t < 150,
9.5 if 150 < t < 200,
8 if t > 200.

(48)

• Test the controller performance with the pH neuteri-
lization process disturbed by noise. In this task, the
output of the system is corrupted by a random noise
with unity variance and zero mean and the set point
is set as in the first task.

For the first simulation task, the changes in the ba-
se flow rate Fb and the response of the pH value during
the control action are shown in Figs. 8 and 9, respective-
ly. Moreover, the adaptation of the controller gains is de-
picted in Fig. 10. The obtained response of the proposed
control scheme provides good tracking and very reasona-
ble control moves. This results from the effectiveness of
the adaptive control strategy and the modeling efficiency
of the MRWLS-SVM network.

When the second control simulation task (i.e., the set-
point changes) is performed, the response for both the ba-
se flow rate Fb and the pH value are obtained as in Figs. 11
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Table 2. Comparison between the MRWLS-SVM model of the pH neutralization process and other algorithms.
Algorithm MSE

MRWLS-SVM network 0.042
RBF kernel based LS-SVM network 0.2078

Unsupervised self-organized counter-propagation network (Nie et al., 1996) 0.230
Supervised self-organized counter-propagation network (Nie et al., 1996) 0.012

50 100 150 200 250
516.5

517

517.5

518

518.5

519

samples

F
b

Fig. 8. Change of the base flow rate during the constant set-
point task.
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Fig. 9. Response of the pH process using the proposed control
scheme during the constant set-point task.

and 12, respectively. The adaptation of the controller ga-
ins for this task is depicted in Fig. 13. It can be observed
that the controller algorithm can track the set-point rapi-
dly, stably and accurately with a very small steady state
error. However, the obtained control action is not smooth,
especially when the set-point decreases from 9.5 to 8. This
can be controlled by carrying out the simulation task with
other small initial controller gains, e.g., set to 0.05. Figu-
res 14 and 15 depict the achieved results with these initial
gain parameters. It is observed that the controller action is
smoother and the output response can still track the set-
point rapidly, stably and accurately with a very small ste-
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Fig. 10. Adaptation of the controller gains during the constant
set-point task.

ady state error.
During the third control simulation task (i.e., the pH

process is disturbed by noise), the response of the system
output (i.e., the pH value) and the base flow rate Fb are
depicted in Figs. 16 and 17, respectively. The obtained re-
sult shows that the proposed controller can still track the
set-point with very small steady state error and acceptable
smooth control action even when the system is disturbed
by noise.

Finally, for comparison, the three control tasks men-
tioned above were carried out with the same parameters
but the proposed control scheme was constructed using
the RBF kernel based LS-SVM network. The two sche-
mes were compared in terms of the Root Mean Squared
Error (RMSE) defined as

RMSE =

√√√√ 1
N

N∑

t=1

(S(t) − pH(t))2, (49)

where S(t) and pH(t) are the desired and pH process out-
puts, respectively.

The obtained errors are listed in Table 3. Here it can
be observed that the proposed control scheme based on
the MRWLS-SVM network can yield control performan-
ce superior to the control scheme based on the LS-SVM
using the RBF kernel. This is inherited from the genera-
lization and the modeling accuracy of the MRWLS-SVM
model for the pH process.
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Table 3. Comparison between the proposed control algorithm based on both the MRWLS-SVM and LS-SVM networks.
Algorithm Task 1 Task 2 Task 3

Proposed control scheme based on the MRWLS-SVM network 0.1339 0.1433 0.1308
Proposed control scheme based on the LS-SVM network 0.1933 0.2172 0.1910
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Fig. 11. Change of the base flow rate with the set-point changes.
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Fig. 12. Response of the pH process using the proposed control
scheme with the set-point changes.
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Fig. 13. Adaptation of the controller gains with the set-point
changes.

6. Conclusion

Based on the generalization performance of the LS-SVM
network, an adaptive control scheme for nonlinear sys-
tems was developed. Basically, the proposed scheme used
a modified structure of LS-SVM, named the MRWLS-
SVM network, as a model for the controlled process. Sin-
ce the MRWLS-SVM network is a type of dynamic neural
networks, it can be used as the model predictor in the pro-
posed control scheme. In the sense of the prediction error,
the control scheme uses the gradient descent with an adap-
table learning rate to adapt the controller parameters. The
adaptation of the learning rule is deduced using the Ly-
apunov stability approach. The control simulation results
via controlling the pH neutralization process showed that
the stable adaptive control scheme based on the MRWLS-
SVM network can be employed effectively to control this
strongly nonlinear system. Two issues have to be discus-
sed in the future based on this study. The first one is the
control performance in the presence of variations in sys-
tem parameter time. The second is testing how the control
algorithm can control MIMO systems.
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Appendix A

Observe that

∂YN (t + 1)
∂u(t)

=
[
∂yN (t + 1)

∂u(t)
, . . . ,

∂yN(t + Np)
∂u(t)

]T

,

(50)
where

∂yN(t + k)
∂u(t)

, k = 1, 2, . . . , NP (51)

can be obtained as follows: At the k-th prediction step, the
input of the MRWLS-SVM network predictor is given by

x(t + k)

=
[
u(t), . . . , u(t − s), yN (t + k − 1),

. . . , yN(t + k − 1)
]T

, (52)

where s is the number of the past values of the input va-
riable, r is the number of the past values of the network
output, and t is the sampling instant.

According to (15), the output of the MRWLS-SVM
network predictor can be obtained by

yN (t + k) = WT Yw(x(t + k)), (53)

where Yw and W are the vectors that contain the outputs
of the sub WLS-SVM networks and their associated we-
ights, respectively. Those are

Yw(x(t + k)) =
[
y1

w(x(t + k)), . . . , yd
w(x(t + k))

]T

W = [w1, w2, . . . , wd]
T

.

(54)

Accordingly,

∂yN(t + k)
∂u(t)

= WT

[
∂Yw(x(t + k))

∂u(t)

]
, (55)

where

∂Yw(x(t + k))
∂u(t)

=
[
∂y1

w(x(t + k))
∂u(t)

, . . . ,
∂yd

w(x(t + k))
∂u(t)

]T

=

[
c∑

i=1

αi1
∂K1(x(t + k), x̆i)

∂u(t)
, . . . ,

c∑

i=1

αid
∂Kd(x(t + k), x̆i)

∂u(t)

]T

, (56)

with Kl being the wavelet kernel function of the l-th
WLS-SVM network, xj the j-th element of the input vec-
tor x(t + k), and x̆ij the j-th element of the i-th support
vector. Define

ς l
ij =

xj − x̆ij

al
, (57)

where al is the dilation parameter of the l-th WLS-SVM
network.

Accordingly, the output of each kernel node for the
l-th WLS-SVM network is given by

Kl(x, x̆i) =
m∏

j=1

h(ς l
ij), (58)

where m is the dimension of the input vector of the
MRWLS-SVM network. Then

∂Kl(x(t + k), x̆i)
∂u(t)

=
1
al

∂h(ς l
1j)

∂ς l
1j

m∏

j=2

h(ς l
ij). (59)
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