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In this paper, a Fault Tolerant Control (FTC) strategy for Linear Parameter Varying (LPV) systems that can be used in
the case of actuator faults is proposed. The idea of this FTC method is to adapt the faulty plant instead of adapting the
controller to the faulty plant. This approach can be seen as a kind of virtual actuator. An integrated FTC design procedure
for the fault identification and fault-tolerant control schemes using LPV techniques is provided as well. Fault identification
is based on the use of an Unknown Input Observer (UIO). The FTC controller is implemented as a state feedback controller
and designed using polytopic LPV techniques and Linear Matrix Inequality (LMI) regions in such a way as to guarantee
the closed-loop behavior in terms of several LMI constraints. To assess the performance of the proposed approach, a two
degree of freedom helicopter is used.
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1. Introduction

Fault Tolerant Control (FTC) is one of the lines of research
that have received a lot of interest in the last decades. Ac-
cording to Blanke et al. (1997), FTC allows maintaining
the current performance close to desirable one and pre-
serve stability conditions in the presence of component
and/or instrument faults. The accommodation capability
of a control system depends on many factors such as the
severity of the fault, the robustness of the nominal sys-
tem and mechanisms that introduce redundancy in sensors
and/or actuators. A bibliographical review on the FTC ap-
proach can be found in the works of Patton (1997) as well
as Zhang and Jiang (2008).

From the point of view of FTC strategies, the litera-
ture considers two main groups of techniques: active and
passive ones. Passive FTC techniques are control laws
that take into account fault appearance as a system per-
turbation. Thus, within certain margins, the control law
has inherent fault tolerant capabilities, allowing the sys-
tem to cope with the fault presence. Chen et al. (1998),

Liang et al. (2000) and Qu et al. (2003), among many oth-
ers, provide complete descriptions of passive FTC tech-
niques. On the other hand, active FTC techniques consist
in adapting the control law using the information given
by the FDI (Fault Detection and Isolation) block (Blanke
et al., 2006). With this information, some automatic ad-
justments are done trying to reach the control objectives.
(See the works of Zhang and Jiang (2008) and Blanke
et al. (2006) for a recent review of active FTC.) The whole
active FTC scheme can be expressed using the three-layer
architecture for FTC systems proposed by Blanke et al.
(2006), where the first layer corresponds to the control
loop, the second layer corresponds to the fault diagnosis
and accommodation modules, while the third layer is the
supervision system.

Active FTC strategies make it possible to handle big-
ger faults than passive ones can. Some research works fol-
lowing this approach include those by Maki et al. (2004),
Rodrigues et al. (2005) or Zhang et al. (2005). Ac-
tive FTC is characterized by the use of an on-line FDI
scheme (Rodrigues et al., 2008) and an automatic control
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reconfiguration mechanism. On the other hand, fault ac-
commodation has been addressed by Patton (1997). Re-
cently, virtual sensors and actuators have been proposed
as a fault accommodation approach for linear systems
(Lunze, 2006; Richter et al., 2007; Blanke et al., 2006).

For non-linear systems, the design of FTC mech-
anisms is rather complicated. The use of multiple lin-
ear models represents an attractive solution for dealing
with the control of nonlinear systems (Leith and Leit-
head, 1999; Banerjee et al., 1995). A similar idea is based
on the use of Tagaki–Sugeno fuzzy models (Murray-
Smith and Johansen, 1997). Witczak et al. (2007) propose
an integrated FTC design procedure of fault identification
and fault-tolerant control for Takagi–Sugeno fuzzy sys-
tems using Lyapunov theory and LMIs. An alternative at-
tractive solution is to represent the non-linear system as an
LPV one. The main advantage of LPV models is that they
allow applying powerful linear design tools to complex
non-linear models (Hallouzi et al., 2005). Various can-
didate LPV system modeling techniques in the fault-free
case are presented by Henrion et al. (2005) as well as Wan
and Kothare (2003). LPV theory has been mainly used for
designing controllers for non-faulty systems, but only re-
cently for active FTC. Rodrigues et al. (2007) developed
a solution to handle FTC and polytopic LPV systems with
an Static Output Feedback (SOF) design.

In this paper, an FTC strategy based on a kind of
virtual actuator approach for non-linear systems that can
be approximated by LPV models is proposed. This strat-
egy is inspired by the results presented by Witczak et al.
(2007) that address the same problem but for Takagi–
Sugeno systems. However, Witczak et al. (2007) do not
take into account the control design that guarantee, the
desired closed-loop behavior. This paper deals with an in-
tegrated FTC design procedure of fault identification, the
virtual actuator and the state feedback controller. Fault
identification is based on the use of a UIO. This approach
allows detecting, isolating and estimating additive actua-
tor faults. Once the fault has been identified, the FTC con-
troller is implemented as a state feedback control. The
idea of this FTC method is to adapt the faulty plant, in-
stead of adapting the controller to the faulty plant. That is,
the faulty plant together with the virtual actuator, mimics
the fault-free plant. Finally, this strategy is designed using
polytopic LPV techniques and LMI regions (Chilali and
Gahinet, 1996). This approach based on approximating
the LPV system in a polytopic way guarantees the desired
specifications defining a set of LMI constraints. To as-
sess the validity of the proposed approach, a two degree
of freedom helicopter is used (Fee, 1998).

The paper is organized as follows. Section 2 presents
details regarding the proposed FTC Strategy. Section 3
describes the polytopic LPV model. In Section 4, an inte-
grated design procedure for an observer and a state feed-
back controller is developed. Finally, Section 5 describes

the two degree of freedom helicopter which illustrates the
performance of the proposed approach.

2. LPV fault tolerant control strategy

2.1. Problem set-up. Let us consider a discrete-time
LPV system in the state-space form for the fault-free case:

x(k+1) = A(ϑk)x(k) + B(ϑk)u(k), (1)

y(k) = C(ϑk)x(k), (2)

where x(k) ∈ R
nx , y(k) ∈ R

ny and u(k) ∈ R
nu repre-

sent the state vector, the output vector and the control in-
put vector, respectively. The matrices have the dimensions
A(ϑk)∈R

nx×nx , B(ϑk)∈R
nx×nu and C(ϑk)∈R

ny×nx .
ϑk is the system vector of time-varying parameters of di-
mension nϑ that varies within a polytope Θ. ϑk changes
with the operating point scheduled by some measured sys-
tem variables pk (pk := p(k)) that can be estimated using
some known function ϑk =f(pk), known as a scheduling
function.

The LPV system (1)–(2) describes a set of linear
systems parameterized by a scheduling variable denoted
by pk that can be seen as the linear approximation of a
non-linear system at a parameterized set of equilibrium
points (Apkarian et al., 1995). Equations (1)–(2) should
be perceived as a reference model, and hence it is assumed
that its state is available while the strategy for determining
the control law u(k) will be provided in the subsequent
part of the paper.

Now, let us consider the LPV system (1)–(2) includ-
ing additive actuator faults:

xf (k+1) = A(ϑk)xf (k) + B(ϑk)uf (k)
+ L(ϑk)f(k), (3)

yf (k) = C(ϑk)xf (k), (4)

where xf (k) ∈ R
nx , yf(k) ∈ R

ny , uf (k) ∈ R
nu and

f(k) ∈ R
ns represent the state vector, the output vec-

tor, the control input vector and the fault vector, respec-
tively. L(ϑk) stands for the actuator fault distribution ma-
trix which is assumed to be known. It should be clearly
pointed out that Eqns. (3) and (4) describe the behaviour
of the real plant.

The main objective of this paper is to develop an
FTC control strategy based on a kind of virtual actuator
approach which can be used for determining the system
input uf (k) such that xf (k+1) converges asymptotically
to x(k+1) independently of the presence of the fault f(k).
The idea of the virtual actuator1 is to adapt the faulty
plant instead of adapting the controller to the faulty plant
as shown in Fig.1. In this way, the faulty plant, together
with the virtual actuator block, allows the controller to see
the same plant as before the fault.

1Virtual actuators were originally proposed by Lunze (2006), Richter
et al. (2007) and Blanke et al. (2006).
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Fig. 1. Virtual actuator scheme.

In the proposed virtual actuator approach, the crucial
idea is to determine the system input uf (k) as follows:

uf (k) = −Sf̂(k) + K1(ϑk)(x(k) − x̂f (k)) + u(k),
(5)

where f̂(k) is the fault estimate. The purpose of the first
factor Sf̂(k) is to compensate the fault while the aim of
the term K1(ϑk)(x̂(k)− x̂f(k)) is to eliminate the control
error. The term u(k) is the control input provided by the
controller. Since it is assumed that xf (k) is not available,
x̂f (k) need to be estimated.

2.2. Fault identification. Additive actuator faults in
(3) can be identified by considering them to be an un-
known input. This makes it possible to use the exist-
ing results on UIO theory (Hui and Żak, 2005; Witczak
et al., 2007) to identify the faults. The application of these
results requires the following rank condition to be satisfied
for all ϑk ∈ Θ 2:

rank(C(ϑk)L(ϑk)) = rank(L(ϑk)) = s. (6)

This implies that it is possible to calculate the matrix
H(ϑk) as follows:

H(ϑk) = (C(ϑk)L(ϑk))+

=
[
(C(ϑk)L(ϑk))T C(ϑk)L(ϑk)

]−1

× (C(ϑk)L(ϑk))T . (7)

Then, multiplying (4) by H(ϑk) and substituting (3),
the fault estimate can be expressed as

f(k) = H(ϑk)(yf (k+1) − C(ϑk)A(ϑk)xf (k)
− C(ϑk)B(ϑk)uf (k)). (8)

2This condition is not easy to guarantee unless matrices C and L are
time invariant. However, in real life cases, checking if the rank condition
is satisfied for a sparse grid of values of ϑk ∈ Θ is usually sufficient.

Thus, if x̂f (k) is used instead of xf (k), then the fault
estimate is given as follows:

f̂(k) = H(ϑk)(yf (k+1) − C(ϑk)A(ϑk)x̂f (k)
− C(ϑk)B(ϑk)uf(k)), (9)

and the associated fault estimation error is

f(k) − f̂(k) = −H(ϑk)C(ϑk)A(ϑk)(xf (k) − x̂f (k)).
(10)

Unfortunately, the crucial problem with practical im-
plementation of (9) is that it requires yf(k+1) and uf(k)
to calculate x̂f (k), and hence it cannot be directly used
to obtain (5). To address this problem, it is assumed
that there exists a diagonal matrix βk such that f̂(k) =
βkf̂(k−1) and hence the practical form of (5) boils down
to 3

uf (k) = −Sβkf̂(k−1)+K1(ϑk) (x(k) − x̂f (k))+u(k),
(11)

where S satisfies B(ϑk)S = L(ϑk).

2.3. Stabilization problem of a virtual actuator. By
substituting (5) into (3), it can be shown that

xf (k+1) = A(ϑk)xf (k) − B(ϑk)Sf̂(k)
+ B(ϑk)K1(ϑk)(e(k) + ef (k))
+ B(ϑk)uk + L(ϑk)f(k), (12)

where e(k) = x(k) − xf (k) stands for the tracking error
while ef(k) = xf (k)− x̂f (k) denotes the state estimation
error.

Thus

xf (k+1) = A(ϑk)xf (k) + L(ϑk)(f(k) − f̂(k))
+ B(ϑk)K1(ϑk)(e(k) + ef(k))
+ B(ϑk)u(k). (13)

Finally, substituting (10) into (13) yields

e(k+1) = (A(ϑk) − B(ϑk)K1(ϑk)) e(k)
+ (L(ϑk)H(ϑk)C(ϑk)A(ϑk)
− B(ϑk)K1(ϑk))ef (k). (14)

3In most cases the matrix βk should be equivalent to an identity ma-
trix, i.e., it would simply mean a one time-step delay, which should have
negligible effect on the outcome. In cases where the fault behaviour an
linear one, it is possible to design the matrix βk based on the previous
changes of faults. In cases where a fault changes in a nonlinear fashion
and one time-step delay is unacceptable, one could try to predict the na-
ture of the faults by using, e.g., neural networks. In the work of Dziekan
(2011) a similar problem was considered and it was found that a one
time-step delay and a dynamic neural network trained for the fault tra-
jectory gave a similar performance but with a substantial computational
overhead. The best results were obtained for a “linear” predictor, but its
performance was highly dependent on the selected parameters.
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2.4. LPV observer. As already mentioned, the fault
estimate (9) is obtained based on the state estimate x̂f (k).
This raises the necessity for an observer design. Conse-
quently, by substituting (8) into (3), it is possible to show
that

xf (k + 1) = Ā(ϑk)xf (k) + B̄(ϑk)uf(k)
+ L̄(ϑk)yf (k + 1), (15)

where

Ā(ϑk) = (I − L(ϑk))H(ϑk)C(ϑk))A(ϑk),

B̄(ϑk) = (I − L(ϑk))H(ϑk)C(ϑk))B(ϑk)

and
L̄(ϑk) = L(ϑk)H(ϑk).

Thus, the observer structure, which can be per-
ceived as an unknown input observer (see, e.g., Hui and
Żak, 2005; Witczak et al., 2007) is given by

x̂f (k+1)
= Ā(ϑk)x̂f (k) + B̄(ϑk)uf (k) + L̄(ϑk)yf (k+1)

+ K2(ϑk)(yf (k) − C(ϑk)x̂f (k)). (16)

Finally, the state estimation error can be written as

ef(k+1) =
(
Ā(ϑk) − K2(ϑk)C(ϑk)

)
ef (k). (17)

2.5. LPV controller. The LPV system (3)–(4) is con-
trolled by a state feedback control with tracking reference
input as proposed by Franklin et al. (1997). The feedback
control law is based on the classical state feedback:

u(k) = K3(ϑk)(x(k) − xr(k)), (18)

while an input reference gain Nx(ϑk) is added to the state
feedback control law (18). The basic idea in determining
the gain Nx(ϑk) is that it should transform the reference
input r(k) to a state reference xr(k) that corresponds to
an equilibrium point for this r(k):

Nx(ϑk)r(k) = xr(k). (19)

Additionally, in order to remove the steady state er-
ror, a feed-forward control that is proportional to the ref-
erence input is added:

uss(k) = Nu(ϑk)r(k). (20)

Finally, taking into account the classical feedback
control (18) and the gains Nx(ϑk) in (19) and Nu(ϑk)
in (20), the control law can be expressed as follows:

u(k) = uss(k) − K3(ϑk) (x(k) − xr(k)) , (21)

= Nu(ϑk)r(k) − K3(ϑk) (x(k) − Nx(ϑk)r(k)) ,

where Nx(ϑk) and Nu(ϑk) can be designed extending the
theory of Franklin et al. (1997) to LPV systems as

[
Nx(ϑk)
Nu(ϑk)

]
=

[
A(ϑk) − I B(ϑk)

C(ϑk) 0

]+ [
0
I

]
,

(22)
assuming that the following rank condition is satisfied:
rank(C(ϑk)B(ϑk)) = rank(B(ϑk)) = nu. Thus, by sub-
stituting (21) into (1), it is possible to show that

x(k + 1) = (A(ϑk) − B(ϑk)K3(ϑk))x(k)
+ B(ϑk)uss(k) + B(ϑk)K3(ϑk)xr(k).

(23)

2.6. Reconfiguration analysis. To analyze the recon-
figured system, the reconfiguration model is considered.
This augmented model includes the reference model (1),
the tracking error (14) and the state estimation error (17)
as follows4:
⎡

⎢
⎣

x(k+1)
e(k+1)
ef (k+1)

⎤

⎥
⎦

=

⎡

⎢
⎣

A 0 0
0 A − BK1 LHCA − BK1

0 0 Ā − K2C

⎤

⎥
⎦

⎡

⎢
⎣

x(k)
e(k)
ef (k)

⎤

⎥
⎦

+

⎡

⎢
⎣

B

0
0

⎤

⎥
⎦u(k). (24)

By introducing the control law (21), the model of the
reconfigured closed-loop behavior of the system (24) can
be expressed as

⎡

⎢
⎣

x(k+1)
e(k+1)
ef (k+1)

⎤

⎥
⎦

=

⎡

⎢
⎣

A − BK3 0 0
0 A − BK1 LHCA − BK1

0 0 Ā − K2C

⎤

⎥
⎦

×

⎡

⎢
⎣

x(k)
e(k)
ef (k)

⎤

⎥
⎦ +

⎡

⎢
⎣

BK3

0
0

⎤

⎥
⎦xr(k)

+

⎡

⎢
⎣

B

0
0

⎤

⎥
⎦uss(k). (25)

It can be easily observed from (25) that the sep-
aration principle can be applied following Ghersin and

4To simplify the equations, we assume that A = A(ϑk), B =
B(ϑk), and so on.
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Sanchez-Pena (2002), which suggests that an LPV system
can be represented by a set of “frozen” LTI systems in
the parameter variation set. Then, the set σ of eigenval-
ues of the closed-loop system (25) for each “frozen” LTI
system consists of the set of eigenvalues of the nominal
closed-loop system plus the tracking error and the state
estimation error:

σ = σ {A − BK3} ∪ σ {A − BK1}
∪ σ {A − K2C} . (26)

Thus, the closed loop LPV controller, the LPV vir-
tual sensor and the state LPV observer can be designed
independently. Notice that

• the matrix K3(ϑk) influences the behavior of x(k)
through A(ϑk) − B(ϑk)K3(ϑk) (LPV controller);

• the matrix K1(ϑk) affects the behavior of the track-
ing error e(k) through A(ϑk) − B(ϑk)K1(ϑk);

• the state estimation error ef (k) is affected by the
matrix K2(ϑk) through A(ϑk) − K2(ϑk)C(ϑk) (the
state LPV observer).

3. Polytopic approximation of an LPV
system

3.1. Polytopic approximation. According to Apkar-
ian et al. (1995), if the LPV system (1)–(2) can be ap-
proximated by a polytopic system, i.e., by a system whose
state-space matrices range in a polytope of matrices, more
computationally efficient results can be derived. The poly-
tope of matrices is defined as the convex hull of a finite
number of matrices N . Each polytope vertex corresponds
to a particular value of the scheduling variable ϑk. In other
words,

(
A(ϑk) B(ϑk)
C(ϑk) 0

)
(27)

∈ Co
{(

Aj Bj

Cj 0

)
, j = 1, . . . , N

}

: =
N∑

j=1

αj
k(pk)

(
Aj Bj

Cj 0

)
,

where αj
k(pk), j = 1, . . . , N are scheduling func-

tions satisfying the constraints (a convex sum property)
αj

k(pk) ≥ 0 and
∑N

j=1 αj
k(pk) = 1.

3.2. Polytopic LPV system. The polytopic approxi-
mation of (1)–(2) can be expressed as follows

x(k+1) =
N∑

j=1

αj
k(pk) [Ajx(k) + Bju(k)] , (28)

y(k) =
N∑

j=1

αj
k(pk)Cjx(k), (29)

where x(k) ∈ R
nx , u(k) ∈ R

nu and y(k) ∈ R
ny rep-

resent the system state vector, the system control input
and the output vector, respectively. Here Aj ∈ R

nx×nx ,
Bj ∈ R

nx×nu and Cj ∈ R
ny×nx are time-invariant ma-

trices defined for the j-th model. The polytopic system
is scheduled through functions designed as αj

k(pk), ∀j ∈
[1, . . . , N ], which lie in a convex set

Ω =
{
αj

k(pk) ∈ R
N ,

αk(pk) =
[
α1

k(pk), . . . , αN
k (pk)

]T
,

αj
k(pk) ≥ 0, ∀j,

N∑

j=1

αj
k(pk) = 1

}
. (30)

There are several ways of implementing (27) depend-
ing on how the functions αj(pk) are defined. Here, the
function αj(pk) is defined via a barycentric combination
of vertexes as suggested by Biannic (1996).

In the case of actuator faults, the polytopic LPV sys-
tem (3)–(4) can be expressed as follows

xf (k+1) =
N∑

j=1

αj
k(pk)

[
Ajxf (k) + Bjuf(k)

+ Ljf(k)
]
, (31)

yf (k) =
N∑

j=1

αj
k(pk)Cjxf (k), (32)

where xf (k) ∈ R
nx , uf (k) ∈ R

nu , yf(k) ∈ R
ny and

f(k) ∈ R
nu represent the system state vector, the sys-

tem control input, the output vector and the actuator fault,
respectively.

According to Apkarian et al. (1995), to design a state
feedback control for the polytopic LPV system (31)–(32),
matrices B, L and C should be constant. However, if
this is not the case, this difficulty could be overcome by
including pre-filtering and post-filtering in the polytopic
LPV system (31)–(32) 5, which removes the parameter
dependency of matrices B, L and C as follows:

x̃f (k+1) =
N∑

j=1

αj
k(pk)

[
Ãj x̃f (k) + B̃ũf(k) + L̃f̃(k)

]
,

(34)

ỹf (k) = C̃x̃f (k), (35)

5Specifically, a new control input ũ, a new fault f̃ and a new mea-
sured output ỹ are defined as follows:

xu(k+1) = Auxu(k) + Buũ(k),

u(k) = Cuxu(k),

xl(k+1) = Alxl(k) + Blf̃(k),

f(k) = Clxl(k),

xy(k+1) = Ayxy(k) + Byy(k),

ỹ(k) = Cy(k)xy(k),

where Au, Al and Ay are stable. The resulting LPV plant is described
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where x̃f (k) = [xf (k) xu(k) xl(k) xy(k)]T , ũf(k),ỹf (k)
and f̃(k) represent the augmented system state vector, the
system control input, the output vector and the actuator
fault, respectively.

Using the polytopic approximation of the LPV sys-
tem (31)–(32) after the pre/post filtering, the fault estima-
tion (9) can be expressed taking into account the polytopic
approximation (27) as follows:

ˆ̃f(k) =
N∑

j=1

αj
kH̃j(ỹf (k + 1) − C̃Ãj

ˆ̃xf (k)

− C̃B̃ũf (k)), (36)

where H̃ = (C̃L̃)+.
To obtain the polytopic LPV controller, the control

law (21) is substituted in the control strategy (11)

ũf(k) =
N∑

j=1

αk(pk)
[
ũss(k) + K̃3,j(x̃f (k) − x̃r(k))

−S̃β̃k
ˆ̃
f(k − 1) + K̃1,j(x̃(k) − ˆ̃xf (k))

]
, (37)

where the matrices S̃ are defined satisfying the equality
B̃S̃ = L̃ (see Eqn. (11)).

Analogously, the LPV observer (16) used to estimate
ˆ̃x(t) can be implemented as follows:

ˆ̃xf (k + 1)

=
N∑

j=1

αj
k

[
¯̃Aj

ˆ̃xf (k) + ¯̃Bũf(k)

+ ¯̃Lỹf(k+1) + K̃2,j(ỹf (k) − C̃ ˆ̃xf (k))
]
, (38)

where the matrix K̃2,j is the state observer gain for the
j-th model j = 1, . . . , N .

4. Fault tolerant control design for LPV
systems

This section presents a design procedure for the proposed
FTC strategy using the polytopic LPV system (31)–(32)

by

x̃(k+1) =

⎡

⎢
⎢
⎣

A(θk) B(θk)Cu L(θk)Cl 0
0 Au 0 0
0 0 Al 0

ByC(θk) 0 0 Ay

⎤

⎥
⎥
⎦ x̃(k)

+

⎡

⎢
⎢
⎣

0
Bu

0
0

⎤

⎥
⎥
⎦ ũ(k) +

⎡

⎢
⎢
⎣

0
0
Bl

0

⎤

⎥
⎥
⎦ f̃(k),

ỹ(k) =
[

0 0 0 Cy
]

⎡

⎢
⎢
⎣

x(k)
xu(k)
xl(k)
xy(k)

⎤

⎥
⎥
⎦ ,

x̃(k) =
[

x(k) xu(k) xl(k) xy(k)
]T

. (33)

and the LMI pole placement technique, which allows lo-
cating the poles inside the unit circle using an LMI re-
gion (Chilali and Gahinet, 1996). This design implies se-
lecting

• matrices K̃1,j and K̃3,j of (37) in order to guarantee
closed-loop stability of the system,

• matrices K̃2,j (see (38)) in order to correctly estimate
the faulty system state by using the LPV state ob-
server.

Additionally, the following assumptions are required to
apply existing results on LPV systems (see Apkarian
et al., 1995)

• for K̃1,j and K̃3,j of (37) to exist, the pair
(Ã(ϑk), B̃) should be stabilizable for all ϑk ∈ Θ;

• for K̃2,j of (38) exist, the pair (Ã(ϑk), C̃) should be
detectable for all ϑk ∈ Θ.

Under these assumptions, it is possible to design the
matrices K̃1,j , K̃2,j and K̃3,j using the polytopic recon-
figured closed-loop augmented system (25) as follows:

⎡

⎢
⎣

x̃(k+1)
ẽ(k+1)
ẽf (k+1)

⎤

⎥
⎦=

N∑

j=1

αk(pk)A0,j

⎡

⎢
⎣

x̃(k)
ẽ(k)
ẽf (k)

⎤

⎥
⎦

+

⎡

⎢
⎣

B̃K̃3,j

0
0

⎤

⎥
⎦ x̃r(k)+

⎡

⎢
⎣

B̃

0
0

⎤

⎥
⎦ ũss(k),

(39)

where

A0,j

=

⎡

⎢
⎣

Ãj − B̃K̃3,j 0 0

0 Ãj − B̃K̃1,j L̃H̃C̃Ãj − B̃K̃1,j

0 0 ¯̃A − K̃2,jC̃

⎤

⎥
⎦ .

According to Chilali and Gahinet (1996), an LMI re-
gion is any subset D of the complex plane that can be
defined as

D =
{
z ∈ C : P + zM + z̄MT < 0

}
, (40)

where P and M are real matrices such that PT = P . The
matrix-valued function fD(z) = P +zM + z̄MT is called
the characteristic function. This LMI region D (−q, r) is
characterized by a disk of radius r and center q such that
the characteristic function is given by

fD(z) =
[ −r q + z

q + z̄ −r

]
< 0. (41)
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These two scalars q and r are used to determine a specific
region included in the unit circle where to place closed-
loop system eigenvalues.

Using the LMI region (41) to locate the poles of the
augmented system (39), the following set of LMIs should
be solved for all the vertices models j ∈ [1, . . . , N ]

( −rX qX + (A0,jX)T

qX + A0,jX −rX

)
< 0, (42)

where A0,j is stable if and only if there exists a symmetric
matrix such that X = XT > 0.

It can be observed from the structure of A0,j in (39)
that the eigenvalues of the matrix A0,j are the union of

Ãj −B̃K̃1,j , ¯̃AT
j − C̃T K̃T

2,j and Ãj −B̃K̃3,j . This clearly
indicates that the design of the state feedback, observer
and controller can be carried out independently (separa-
tion principle). Thus, the following inequalities can be
derived:
[ −rX1 q1X1 + XT

1 (ÃT
j − K̃T

1,jB̃
T )

(q1 + Ãj − B̃K̃1,j)X1 −r1X1

]

< 0, (43)

[
−r2X2 q2X2 + XT

2 ( ¯̃Aj − K̃2,jC̃)
(q2 + ¯̃AT

j − C̃T K̃T
2,j)X2 −r2X2

]

< 0, (44)

[ −r3X3 q3X3 + XT
3 (ÃT

j − K̃T
3,jB̃

T )
(q3 + Ãj − B̃K̃3,j)X3 −r3X3

]

< 0, (45)

for j = 1, . . . , N .
We should note that the expressions (43)–(45) are Bi-

linear Matrix Inequalities (BMIs), which cannot be solved
with LMI tools. However, by introducing the new ma-
trices W1,j = K̃1,jX1, W2,j = K̃T

2,jX2 and W3,j =
K̃3,jX3 it is possible to transform them into the follow-
ing LMIs:

[ −r1X1 q1X1,j + XT
1 ÃT

j − WT
1,jB̃

T

(q1 + Ãj)X1 − B̃W1,j −r1X1

]

< 0, (46)

[
−r2X2 q2X2,j + XT

2
¯̃Aj − WT

2,jC̃

(q2 + ¯̃AT
j )X2 − C̃T W2,j −r2X2

]

< 0, (47)

[ −r3X3 q3X3,j + XT
3 Ãj − WT

3,jC̃

(q3 + ÃT
j )X3 − C̃T W3,j −r3X3

]

< 0 (48)

for j = 1, . . . , N .
Thus, the design procedure boils down to solv-

ing the LMIs (46)–(48), and then determining K̃1,j =
W1,j(X1)−1, K̃2,j =

(
W2,j(X2)−1

)T
and K̃3,j =

W3,j(X3)−1 for j = 1, . . . , N .

5. Application example: A twin-rotor
MIMO system

5.1. Description of the twin-rotor multiple input mul-
tiple output system. The Twin-Rotor MIMO System
(TRMS) is a laboratory setup developed by Feedback In-
struments Limited for advanced control experiments. The
system is perceived as a challenging control engineering
problem due to its high non-linearity, cross-coupling be-
tween its two axes, and inaccessibility of some of its states
through measurements. The TRMS mechanical unit has
two rotors (the main and tail rotors) driven by DC motors
placed on a beam together with a counterbalance whose
arm with a weight at its end is fixed to the beam at the
pivot (Fig.2). The TRMS can rotate freely both in the hor-
izontal and vertical planes.

Fig. 2. Components of the twin rotor MIMO system.

The system input vector is u = [ut, um]T , where
ut is the input voltage of the tail motor and um is the
input voltage of the main motor. The system states are
x = [ωh, ωv, Ωh, Ωv, θh, θv]T , where ωt/m is the ro-
tational velocity of the tail/main rotor, Ωh/v is the angular
velocity around the horizontal/vertical axis, and θh/v is
the azimuth/pitch angle of the beam. Finally, the system
measured outputs are y = [ωv, θh, θv]T .

5.2. Polytopic LPV model of the TRMS. A polytopic
LPV model is obtained by discretizing (T = 0.05 s) and
linearizing the non-linear system around different operat-
ing points (N = 4 models). Thus, the polytopic LPV
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representation (31)–(32) consists of the following matri-
ces

A1 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

0.9812 −0.0105 0.1847
0 0.9657 0
0 0 0.878
0 0.0152 −0.0254
0 0.0004 0.1367

0.0495 0.0276 0.0047

0 0 0
0 0 0
0 0 0

0.9908 −0.1718 0
0.0498 0.9957 0

0 0 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

A2 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

0.9814 −0.0103 0.1841
0 0.9657 0
0 0 0.878
0 0.02 −0.0254
0 0.0005 0.1367

0.0495 0.0274 0.0046

0 0.0004 0
0 0 0
0 0 0

0.9908 −0.1718 0
0.0498 0.9957 0

0 −0.001 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

A3 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

0.9818 −0.0098 0.183
0 0.9657 0
0 0 0.878
0 0.0405 −0.0254
0 0.001 0.1367

0.0495 0.0268 0.0045

0 0.0007 0
0 0 0
0 0 0

0.9908 −0.1718 0
0.0498 0.9957 0
−0.0001 −0.002 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

A4 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

0.9826 −0.009 0.1809
0 0.9657 0
0 0 0.878
0 0.0734 −0.0254
0 0.0018 0.1367

0.0496 0.0256 0.0044

0 0.001 0
0 0 0
0 0 0

0.9908 −0.1717 0
0.0498 0.9957 0
−0.0001 −0.003 1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

,

B1 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

47.2 −2.6
0.0 491.4

468.8 0.0
−5.4 5.0
35.0 0.1
0.8 6.9

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

× 10−4,

B2 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

46.9 −2.5
0.0 491.4

468.8 0.0
−5.4 10.2
35.0 0.2
0.8 6.8

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

× 10−4,

B3 =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

46.3 −2.3
0.0 491.4

468.8 0.0
−5.4 18.5
35.0 0.3
0.7 6.5

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

× 10−4,

B4 =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

45.4 −2.0
0.0 491.4

468.8 0.0
−5.4 28.4
35.0 0.5
0.7 6.0

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

× 10−4,

C1 =

⎡

⎣
0 0 0 0 0 1
0 0 0 0 1 0
0 896.24 0 0 0 0

⎤

⎦ ,

C2 =

⎡

⎣
0 0 0 0 0 1
0 0 0 0 1 0
0 894.14 0 0 0 0

⎤

⎦ ,

C3 =

⎡

⎣
0 0 0 0 0 1
0 0 0 0 1 0
0 879 0 0 0 0

⎤

⎦ ,

C4 =

⎡

⎣
0 0 0 0 0 1
0 0 0 0 1 0
0 851.01 0 0 0 0

⎤

⎦ ,

where the scheduling variable is the azimuth angle of the
beam θh(k).

5.3. FTC design. The virtual actuator K1(ϑk) is ob-
tained by solving the LMI (46) and locating the eigenval-
ues in a disk LMI region with center q1 = 0 and radius
r1 = 0.8.

Analogously, the LPV observer K2(ϑk) is obtained
solving the LMI (47) placing the eigenvalues in the disk
LMI region with center q2 = 0 and radius r2 = 0.2.
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Finally, the LPV controller K3(ϑk) is designed solv-
ing the LMI (48) considering a disk LMI region with cen-
ter q3 = −0.8 and radius r3 = 0.15.

5.4. Fault scenarios. To assess the performance of the
proposed approaches, two fault scenarios are considered.
In both, the controller set-points are defined as follows:

θh =

⎧
⎨

⎩

0.0, k < 1000,
0.4, 1000 ≤ k < 5000,
0.1, k ≥ 5000,

(49)

θv =

⎧
⎨

⎩

0.0, k < 1000,
0.06, 1000 ≤ k < 5000,
0.0, k ≥ 5000.

(50)

This is to see the ability of the FTC controller to control
the system and tolerate the faults in two operating points.

5.4.1. Fault scenario 1. In this scenario, a fault in the
tail rotor ft(k) and the main rotor fm(k) is introduced as
follows:

ft(k) =

⎧
⎪⎨

⎪⎩

0, k < 3000,

−0.075, 3000 ≤ k < 4000,

0, k ≥ 4000,

(51)

fm(k) =

⎧
⎪⎨

⎪⎩

0, k < 6000,

0.05, 6000 ≤ k < 8000,

0, k ≥ 8000,

(52)

Figure 3 presents the control performance of the az-
imuth angle of the beam with and without the virtual
actuator based FTC strategy. The system is stabilized
with the virtual actuator approach in spite of the actua-
tor fault, whereas without including such an FTC mecha-
nism the angle of beam is not under control while the fault
is present. Figure 4 shows the pitch angle of the beam.
When using the virtual approach, it can be noticed, that
the azimuth trajectory was not changed significantly after
the fault occurrence. On the other hand, notice that, when
the virtual actuator strategy is not used, the system is not
able to track the reference. In this case, when the virtual
actuator is not included, the controller is not able to toler-
ate the additive actuator fault.
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Fig. 3. Azimuth angle of the beam (horizontal position).
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Fig. 4. Pitch angle of the beam (vertical position).

Figures 5 and 6 show the actuator faults and their
estimations. Fault estimation presents a deviation of the
nominal value due to changes in the reference. However,
fault estimation achieves the real value in both the cases
after the transient.
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Fig. 5. Input voltage fault of the tail motor and its estimate.
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Fig. 6. Input voltage fault of the main motor and its estimate.

5.4.2. Fault scenario 2. In this scenario, a fault in the
tail and the main rotor is introduced as follows:

fh(k) =

⎧
⎨

⎩

0, k < 3000,
0.05, 3000 ≤ k < 5000,
0, k ≥ 5000,

(53)

fv(k) =
{

0, k < 5000,
−0.05, k ≥ 5000.

(54)

Notice that the fault appears when the system adapts to the
second operating point.

Figures 7 and 8 present the azimuth and the pitch an-
gle of the beam, respectively, when the virtual actuator
strategy is applied and, for comparison, when it is dis-
abled. Notice that in this case, without the virtual actuator
strategy, the system is not able to track the reference. Fig-
ures 9 and 10 present the input voltage applied to the main
rotor and that the fault can be estimated with very high ac-
curacy, except maybe in the transient.

6. Conclusions

In this paper, an active FTC strategy based on a kind of
virtual actuator for non-linear systems that can be approxi-
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Fig. 7. Azimuth angle of the beam (horizontal position).
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Fig. 8. Pitch angle of the beam (vertical position).
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Fig. 9. Input voltage fault of the tail motor and its estimate.
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Fig. 10. Input voltage fault of the main motor and its estimate.

mated by LPV models has been presented. The key contri-
bution of the proposed approach is an integrated FTC de-
sign procedure for fault identification, the virtual actuator
and fault-tolerant control schemes using LPV techniques.
Fault identification is based on the use of an UIO. The idea
of the virtual actuator is to adapt the faulty plant instead
of adapting the controller to the faulty plant. FTC strategy
is designed through LMI pole placement. The proposed
design of the FTC strategy places the eigenvalues of the
closed-loop system in a predetermined LMI region inside
the unit circle. The performance of the proposed approach
has been satisfactorily assessed using a two degree of free-
dom helicopter.
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