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Based on a Takagi–Sugeno (T–S) fuzzy model and an inverse system method, this paper deals with the problem of actuator
fault estimation for a class of nonlinear dynamic systems. Two different estimation strategies are developed. Firstly, T–S
fuzzy models are used to describe nonlinear dynamic systems with an actuator fault. Then, a robust sliding mode observer
is designed based on a T–S fuzzy model, and an inverse system method is used to estimate the actuator fault. Next, the
second fault estimation strategy is developed. Compared with some existing techniques, such as adaptive and sliding mode
methods, the one presented in this paper is easier to be implemented in practice. Finally, two numerical examples are given
to demonstrate the efficiency of the proposed techniques.
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1. Introduction

To improve system performance efficiency, maintainabil-
ity and reliability can be achieved by designing Fault-
Tolerant Control (FTC), which relies on early detection
of fault, using Fault Detection and Isolation (FDI) proce-
dures, and on fault accommodation or system reconfigu-
ration strategies, to achieve the system goal in spite of the
faults. The fault-tolerant design approach can be mainly
classified into two types: passive and active (Staroswiecki
and Gehin, 2001). In the passive approach, the same con-
troller is used throughout the normal case as well as the
fault case such that this passive fault-tolerant controller
can be easily implemented (Gu et al., 2010; Pang and
Tang, 2010). An active FTC system compensates for the
effect of the fault by synthesizing a new control strategy
based on online accommodation (Xu et al., 2011a; Guo
et al., 2010).

System reconfiguration is the strategy with which the
goals are achieved by switching off the faulty part of the
system and controlling only its healthy part (Staroswiecki

and Gehin, 2001). For system reconfiguration, FDI algo-
rithms should only detect and isolate the faults (Shumsky,
2007). The design and analysis of such algorithms
have received considerable attention during the past two
decades. Fruitful results can be found in several excellent
survey papers (Zhang and Jiang, 2008; Isermann, 2005)
and books (Chen and Patton, 1999; Vachtsevanos et al.,
2006; Isermann, 2006).

Most research work on FDI has concentrated on lin-
ear systems and only limited results for nonlinear systems
have been reported. Early work on fault diagnosis for
a class of nonlinear systems was investigated by Seliger
and Frank (1991) using the unknown input observer ap-
proach (Guan and Saif, 1991), while recently some results
on FDI for nonlinear systems have been obtained, e.g., by
Edwards et al. (2000), Yan and Edwards (2007), or Jiang
et al. (2006) based on nonlinear observers, Staroswiecki
and Gehin (2001) based on parity space approaches, and
Christophe et al. (2002) exploiting the relationship be-
tween the two methods. More recently, Persis and Isidori
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(2001) investigated the problem of fault detection and iso-
lation for nonlinear systems using a differential geometric
approach. Observer design was dealt with by Edwards
et al. (2000) to maintain a sliding motion even in the pres-
ence of faults which are detected by analysing the so-
called equivalent output injection.

Fault accommodation is the strategy with which
the goals are achieved by controlling the fault system
(Staroswiecki and Gehin, 2001), which means that only
the controller is reconfigured. If a fault is detected and
isolated, the fault also needs to be estimated so that its ef-
fect can be compensated by adapting (reconfiguring) the
control algorithm. Compared with FDI only, fault estima-
tion is not an easy task. However, some results for fault di-
agnosis/estimation have been obtained based on adaptive
observers (Ding and Frank, 1993; Jiang et al., 2001; Jiang
et al., 2010) unknown input observers (Fu et al., 2004) and
using a learning approach (Polycarpou, 2001). But uncer-
tainty exists in the model of an actual plant, so fault esti-
mation for uncertain systems has been studied. Jiang et al.
(2006) applied robust/sliding-mode observers to estimate
the faults for an affine nonlinear system with uncertainty.
Yan and Edwards (2007) used sliding-mode observers to
estimate faults, but the estimation error depends on the
bounds on the uncertainty.

In recent years, there has been a growing interest
in the Takagi–Sugeno (T–S) fuzzy modeling technique
since it is a powerful solution that bridges the gap be-
tween linear and nonlinear control systems (Zhang and
Jiang, 2010; Jiang et al., 2010; Gao et al., 2010; Nguang
et al., 2007; Wu et al., 2011). The important advantage of
a T–S fuzzy system is its universal approximation of any
smooth nonlinear function by mixing some local linear
system models. This greatly facilitates the analysis and
synthesis of complex nonlinear systems. Many important
results on the analysis and synthesis for a T–S fuzzy sys-
tem have been reported (cf. Zhou et al., 2007; Nguang and
Shi, 2003; Lendek et al., 2010a; Gao et al., 2009; Tak-
agi and Sugeno, 1985; Boukezzoula et al., 2003). Be-
cause of the advantage of T–S fuzzy systems in approx-
imating complex nonlinear systems, the fault diagnosis
observer based on a T–S fuzzy system was investigated
using adaptive observers (Jiang et al., 2010; Gao et al.,
2010; Lendek et al., 2010a; Lendek et al., 2010b; Zhang
and Jiang, 2010) or unknown input observers (Lendek
et al., 2010a; Lendek et al., 2010b; Chen and Saif, 2010).

Based on the aforementioned works, this paper de-
velops a methodology for comprehensive estimation al-
gorithm of actuator faults in nonlinear systems. The T–S
fuzzy modeling technique is firstly employed to approxi-
mate the nonlinear dynamic system, and an fault model is
developed. Then, two different actuator fault estimation
strategies are proposed. For the first strategy, a T–S fuzzy
observer has been designed based on the T-S fuzzy model
and a sliding mode technique, which is used to observe

the state for the nonlinear system. The designed filter es-
timates a high-order derivative of the output. Next, using
the inverse system of the nonlinear system, the actuator
fault can be estimated. The second strategy, combining a
T–S fuzzy observer and the inverse system, is used to es-
timate and observe the actuator fault and state. It does not
have to use adaptive and sliding mode techniques. Apart
from that the paper not only outlines estimation of actu-
ator faults, but also provides the state observer. The esti-
mated actuator fault inputs could be potentially employed
for the development of a fault tolerant control system. Fi-
nally, simulation results are presented to demonstrate the
effectiveness of the proposed strategies.

2. Problem formulation and preliminaries

Consider the nonlinear invertible system

ẋ(t) = f(x(t), u(t), d(t), fa(t)),
y(t) = h(x(t)),

(1)

where x(t) ∈ R
r is the state vector, u(t) ∈ R

m is the input
vector, y(t) ∈ R

n is the output vector, fa(t) ∈ R
m is the

actuator fault signal, d(t) ∈ R
p is the unmeasurable dis-

turbance, and f(·) and h(·) are nonlinear functions. The
continuous actuator fault is modeled by a “fault pattern” as
in Zhang and Jiang (2010), Yang (2004), as well as Patton
et al. (2001). The “fault signal” fa(t) < faM represents
the unexpected disturbance in the control channel and can
be constant or time varying.

Assume the system is locally observable that and the
disturbance d(t) can be identified. According to input
equivalent disturbance (LED) of Xie et al. (1999), the sys-
tem (1) is re-written in the following form:

ẋ(t) = f(x(t), (u(t) + μ(t))),
y(t) = h(x(t)).

(2)

This model lumps an actuator fault, the time-varying pa-
rameter, unmeasurable disturbance and unmodeled dy-
namics into μ(t).

Nonlinear systems can be approximated as locally
linear systems is much the same way as nonlinear func-
tions can be approximated as piecewise linear functions.
Systems (2) can be represented by T–S fuzzy models of
the following forms:

IF z1(t) is M i
1, z2(t) is M i

2 and · · · · · · zq(t) is M i
q,

THEN

ẋ(t) = Aix(t) + Biu(t) + Biμ(t), (3)

y(t) = Cix(t), i = 1, . . . , L. (4)

This is referred to as a Takagi–Sugeno model. The quan-
tities z(t) = [z1(t) z2(t) . . . zq(t)] are the premise vari-
ables, and M i

1, . . . , M
i
q are fuzzy sets. Ai, Bi and Ci
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are known real constant matrices with appropriate dimen-
sions. Each of the L local models of (3) and (4) is a linear
time-invariant model. A fuzzy combination of these local
models results in the global model

ẋ(t) =
L∑

i=1

hi(z(t))[Aix(t) + Biu(t) + Biμ(t)], (5)

y(t) =
L∑

i=1

hi(z(t))Cix(t), (6)

where the membership grades hi(z(t)) are defined as

hi(z(t)) =
νi(z(t))

∑L
i=1 νi(z(t))

,

νi(z(t)) =
q∏

j=1

M i
j(z(t)). (7)

Hence, hi(z) satisfies the following conditions:

hi(z(t)) ∈ [0, 1],
L∑

i=1

hi(z(t)) = 1. (8)

From (5) and (6) we can derive

ẋ(t) = A(t)x(t) + B(t)u(t) + B(t)μ(t), (9)

y(t) = C(t)x(t), (10)

where A(t), B(t) and C(t) are given as

A(t) =
L∑

i=1

hi(z(t))Ai,

B(t) =
L∑

i=1

hi(z(t))Bi,

C(t) =
L∑

i=1

hi(z(t))Ci.

(11)

In other words, the global model, which is a fuzzy
combination of L local linear time invariant models, can
be represented as a time-varying model. If the premise
variables z(t) are functions of the state or control, then
the model is nonlinear. However, if the premise variables
are independent of the state or control, then the model is
linear.

Now we define L continuous time signals xi(t) and
L continuous time signals yi(t) as

xi(t) = hi(z(t))x(t), yi(t) = hi(z(t))y(t). (12)

From these definitions and (8), it can be seen that

x(t) =
L∑

i=1

xi(t), y(t) =
L∑

i=1

yi(t). (13)

The dynamic behavior of xi(k) and yi(k) is presented in
the following lemma.

Lemma 1. The T–S fuzzy model (5) and (6) can be de-
scribed as follows:

ẋi(t) = Aixi(t) + hi(z(t))Biu(t)
+ hi(z(t))Biμ(t), (14)

yi(t) = Cixi(t), i = 1, . . . , L. (15)

Proof. From (12)–(14), we obtain

ẋ(t) =
L∑

i=1

ẋi(t)

=
L∑

i=1

[Aixi(t) + hi(z(t))Biu(t) + hi(z(t))Biμ(t)]

=
L∑

i=1

Aihi(z(t))x(t) +
L∑

i=1

hi(z(t))Biu(t)

+
L∑

i=1

hi(z(t))Biμ(t).

(16)
Now we can use (11) to obtain

ẋ(t) = A(t)x(t) + B(t)u(t) + B(t)μ(t), (17)

where A(t), B(t) and C(t) are given in (11). This is ex-
actly the dynamic behavior of the global system as de-
scribed in (9), which shows that (9) does indeed describe
the dynamic behavior of xi. A similar method can be used
to show that the premises of the lemma also result in

y(t) = C(t)x(t). (18)

�

3. Estimation algorithm via a fuzzy robust
observer

3.1. Design of a T–S robust sliding mode observer.
A robust Sliding Mode Observer (RSMO) is used to solve
the state estimate problem for uncertain systems. In this
section we modify the RSMO for the system given by (14)
and (15), if the following assumption holds.

Assumption 1. The matrices hi(z(t))Bi, Ci are full rank,
(Ai, Ci) are observable, uncertain vector functions are
hi(z(t))Biμ(t) = ΔFi and a scalar function α(t, y) is
such that

F̄i = μ(t), ‖ΔF̄i‖ ≤ r‖u(t)‖ + α(t, yi), (19)

where r is a known positive real coefficient.

There exists an exponentially convergent RSMO for
the system described by (14) and (15), which is given by

˙̂xi = Aix̂i + hi(z(t))Biu − Ki(ŷi − yi)
+ hi(z(t))Biν, (20)

ŷi = Cix̂i, (21)
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where ˙̂xi is the i-th local state estimate Ki is the observer
feedback gain matrix, ν is the control input.

Let ei(t) = x̂i(t) − xi(t). From (14), (15), (20) and
(21), the dynamics of the observation error are given by

d
dt

ei = (Ai − KiCi)ei − hi(z(t))BiΔF̄i

+ hi(z(t))Biν (22)

Let A0
i = (Ai − KiCi). At a finite time, if state variables

of the deviation system (22) are asymptotically convergent
to the origin, then the states can be estimated by (14) and
(15).

In order to design the RSMO which is given by (20),
first, design the sliding mode surface as

si = Miei = FiCiei = Fi(Cix̂i − yi). (23)

Hence, the parameter matrix Fi is designed for the sliding
mode surface.

In this paper, the following sliding mode strategy ν
is used for RSMO (22):

ν =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if |sT
i MihiBi‖ = 0,

− (sT
i MihiBi)T

‖sT
i MihiBi‖ (ρi‖si‖‖MihiBi‖ + Δi),

otherwise,
(24)

where

Δi = η
(1

2

)β

‖si‖2β

and the parameters β > 0, 0 < η < 1, ρi = r‖u(t)‖ +
α(t, yi).

In order to facilitate the proof, let ei = [e1
i , e

2
i ]

T . The
error system (22) can be written as follows:

ė1
i (t) = A011

i e1
i (t) + A012

i e2
i (t), (25)

ė2
i (t) = A021

i e1
i (t) + A022

i e2
i (t)

− hiBi2F̄i + hiBi2ν, (26)

where [A011, A012; A021, A022] = A0, [0, Bi2]T = Bi.
The sliding mode (22) can be written as follows:

si = Mi1e
1
i + Mi2e

2
i , (27)

where [Mi1, Mi2] = Mi. Define the following matrices:

AM
i = A011

i − A012
i M−1

i2 Mi1, (28)

As
i =

1
2
(MT

i MiA
0
i + A0T

i MT
i Mi). (29)

The following theorem provides the design method
of the robust sliding-mode observer (20). The designed
observer is robust with respect to nonlinear uncertain
parts, and can asymptotically estimate the state of the sys-
tem (14).

Theorem 1. For an RSMO, using the sliding mode (23)
and the control input of the observer (24) to design the
parameter matrix Ki and sliding mode parameter ma-
trix Mi, respectively, make A0

i and AM
i Hurwitz matri-

ces. Moreover, λmax(As
i ) ≤ 0, where λmax(·) denotes

the maximum eigenvalue of matrix. Then RSMO is robust
to nonlinear uncertain parts ΔFi, and the states of the
system (14) can be estimated asymptotically. The conver-
gence speed of the error system (22) is determined by the
eigenvalues of AM

i .

Proof. Consider the following Lyapunov function:

V (t) =
1
2
sT

i si =
1
2
eT

i MT
i Miei. (30)

Its time derivative with respect to (30) is

V̇ (t) = sT
i ṡi = eT

i MT
i Miei

= eT
i MT

i Mi(A0
i ei − hiBiΔF̄i + hiBiν)

=
1
2
eT

i (MT
i MiA

0
i + A0

i M
T
i Mi)ei

− sT
i MihiBiΔF̄i + sT

i MihiBiν

≤ λmax(As
i )‖ei‖2 − sT

i MihiBiΔF̄i + sT
i MihiBiν

≤ ‖si‖‖MihiBi‖‖ΔF̄i‖
− (ρi‖si‖‖MihiBi‖ + η(

1
2
)β‖si‖2β).

(31)
By (19) and (24), design the parameter ρi ≥ ‖ΔF̄i‖.

Hence

V̇ (t) ≤ −
(1

2

)β

η‖si‖2β ≤ −ηV β , ∀t ≥ 0,

V (0) ≥ 0. (32)

The error system (22) can be obtained on sliding the sur-
face si = 0 in a limit time Tr, Tr = [η(1−β)]−1V 1−β(0).
When the system (34) reaches the sliding surface si = 0,
the dynamic performance of the system (22) is decided by
the linear sliding mode (23). Through Eqn. (27), we can
obtain si = Mi1e

1
i + Mi2e

2
i = 0, or e2

i = M−1
i2 Mi1e

1
i ,

substituting it into (33), and obtain the reduced order sys-
tem equation

ė1
i (t) = (A011

i −A012
i M−1

i2 Mi1)e1
i (t) = AM

i e1
i (t). (33)

The design parameters of the sliding matrix Mi make AM
i

a Hurwitz matrix, so that the system (33) is asymptoti-
cally stable. The convergence speed of the error system
(22) is determined by the eigenvalues of AM

i . Hence, the
observer is robust to nonlinear uncertain parts and can be
used to estimate the state of the system (14). �

We combine the state observer which is described
by Eqns. (20) and (21) for the local systems given in
(14) and (15) to obtain a state estimator for the T–S fuzzy
model given in (3) and (4). Since we know from (13) that
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x(t) =
∑L

i=1 xi(t), we can combine the local state esti-
mates in (20) to estimate the state of the T–S fuzzy model
(3) and (4)

x̂(t) =
L∑

i=1

x̂i(t). (34)

Theorem 2. The state estimation given by (20) and (34)
is an unbiased estimate of the true state of the T–S fuzzy
model given by (3) and (4).

Proof. We can use (13) and (34) to derive the error in the
state estimate as

x̃(t) = x(t) − x̂(t) =
L∑

i=1

xi(t) −
L∑

i=1

x̂i(t). (35)

Therefore, knowing from Theorem 1 that limt→∞(xi(t)−
x̂i(t)) = 0, we obtain

lim
t→∞ x̃(t) = 0. (36)

�

Remark 1. An important advantage of a T–S fuzzy sys-
tem is its universal approximation of any smooth nonlin-
ear function by blending some local linear system models.
This greatly facilitates the analysis and synthesis of the
complex nonlinear system. Considering the advantage of
the T–S fuzzy system, in this paper, a robust sliding mode
observer based on a T–S fuzzy system is to be designed
for nonlinear systems.

3.2. Determination of the inverse system. Consider
the nonlinear system (2). It is defined as the system S0,
and it is described by the following equation:

S0 :
{

ẋ = f(x, u + μ),
g0(y, x) = 0,

(37)

where g0(y, x) = y − h(x), and x ∈ M0 ⊂ R
r, u ∈

L0 ⊂ R
m, y ∈ N0 ⊂ R

n. Then, a system sequence S1,
S2, . . . , Sk, . . . is defined in the recursive way from S0.
Generally, Sk can be described by

Sk :
{

ẋ = f(x, u + μ),
gk(y, y′, . . . , y(k), x, u + μ) = 0,

(38)

where x ∈ Mk, u ∈ Lk, [y, y′, . . . , y(k)] ∈ Nk.
Set

ηk = max
Ωk

{
rank[

∂

∂(u + μ)
gk(y, y′, . . . , yk, x, u + μ)]

}
,

where Ωk = [Lk, Mk, Nk],

Mk+1 =
{
x | x ∈ Mk, rank

[ ∂

∂(u + μ)
hk(·)

]
= ηk

}
,

Lk+1 =
{
u + μ | u + μ ∈ Lk,

rank
[ ∂

∂(u + μ)
hk(·)

]
= ηk

}
,

Nk+1 =
{

y, . . . , y(k)|(y, . . . , y(k)) ∈ Nk,

rank
[ ∂

∂(u + μ)
hk(·)

]
= ηk

}
.

(39)
From (38), it follows that the disturbance/fault is

given by

u + μ = g−1
k (x, y, y′, . . . , yk) = uc, (40)

and uc can be obtained by the above equation. However,
the actual state must be observed while the state is un-
measurable. Consequently ûc → uc as x̂ → x by the
following theorem.

Theorem 3. Let the observer

ûc = g−1
k (x̂, y, y′, . . . , y(k))

be used to estimate the input vector uc. If the state esti-
mate of x̂ → x, then ûc → uc.

Proof. Let e = x̂ − x. Then the observer uc can be
described as

ûc = g−1
k (x + e, y, y′, . . . , y(k))

= g−1
k (x, y, y′, . . . , y(k), e).

(41)

Obviously, the function g−1
k (·) has the properties

g−1
k (x, y, y′, . . . , y(k), e) |e=0= g−1

k (x, y, y′, . . . , yk).
(42)

Hence, the function g−1
k (x, y, y′, · · · , y(k), e) can be ex-

panded in a Taylor polynomial at e = 0. Thus

ûc = g−1
k (x, y, y′, · · · , yk, e)

∣∣∣
e=0

+
∂(g−1

k )
∂x

e + o(e2),
(43)

where

∂(g−1
k )

∂x
� ∂(g−1

k (x, y, y′, . . . , y(k)))
∂x

.

If ∂(g−1
k )/∂x is bounded, namely,

∣∣∣
∂(g−1

k )
∂x

∣∣∣ ≤ σ,

it is easy to see that if x̂ → x, then ûc → uc. �

Remark 2. In the actual plant, |∂(g−1
k )/∂x| is bounded,

and

lim
e→0

∂(g−1
k )/∂x

e
= 0.
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3.3. Actuator fault estimation . Because of the design
of an observer for uncertain systems, the actual state can
be estimated by an RSMO when a fault occurs. In this
section, we propose a novel fault detection and estimation
strategy based on an inverse system method. From (40), it
follows that the actual fault is given by

μ = g−1
k (x, y, y′, . . . , yk) − u(t). (44)

It is easy to see that the state, output and high-order
derivative of the output are the input in (44). In real-world
systems, the k-th derivative of the output y is unavailable,
so we introduce the following:

⎡

⎢⎢⎢⎢⎢⎣

ẏe

ÿe

y
(3)
e

...

y
(a)
e

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

− 1
τ 0 0 · · · 0

− 1
τ2 − 1

τ 0
. . . 0

− 1
τ3 − 1

τ2 − 1
τ

. . . 0
...

...
...

. . .
...

− 1
τa−1 − 1

τa−2 − 1
τa−3 . . . − 1

τ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎣

ye

ẏe

ÿe

...

y
(a−1)
e

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

1
τ
1
τ2
1
τ3

...
1

τa−1

⎤

⎥⎥⎥⎥⎥⎦
y.

(45)

Note that (45) is obtained by repeated use of the filter
τω̇ + ω = ν to obtain ω̇ as a filtered derivative of ν. The
successive derivatives of the output y shown in Eqn. (45)
are obtained by the repeated use of such a filter. Hence,
as τ → 0, y

(k)
e → y(k), k = 1, . . . , a. Thus the following

equation can be obtained for the actuator fault:

μ̂ = g−1
k (x̂, y, y′

e, . . . , y
k
e ) − u(t). (46)

Therefore, according to Theorem 2 and (46), where x̂ →
x and y

(k)
e → y(k), we obtain μ̂ → μ.

A flow chart in Fig. 1 gives a clear idea of the overall
design procedure,

Fig. 1. Actuator fault estimate scheme via a T–S robust sliding
mode observer.

Remark 3. LED is used to design the estimation al-
gorithm for the system for an actuator fault. Compared

with the results of Yan and Edwards (2007), the estima-
tion algorithm does not need to know the bounds of the
disturbance. The estimation algorithm can be applied to
FTC for a nonlinear uncertain system, while the informa-
tion of the estimate is used to accommodate the control
command.

4. Estimation algorithm based on
an integrated fuzzy observer and
an inverse system

Fault estimation based on an adaptive observer has good
accuracy and robustness for unknown parameters. At the
same time, fault estimation based on an adaptive observer
is based ona pure integral term. However, the speed and
accuracy of fault estimation cannot be satisfactory. For
some of the above problems, Zhang et al. (2009) proposed
a fast adaptive fault estimation. However, this method is
mainly focused on linear time invariant systems. Indeed,
the established form of the actuator fault may be very
time-varying, so estimation based on an adaptive observer
may not be satisfactory to estimate rapid time-varying pa-
rameters. Sliding mode observer-based fault estimation
has a proportional term at heart, which can quickly en-
sure the requirement for a time-varying fault. However, a
steady-state error will exist for a constant fault.

In this section, the second observer algorithm is pro-
posed based on a combined fuzzy observer and an inverse
system without adaptive and sliding mode techniques.

4.1. Inverse system of the T–S fuzzy form. The
fuzzy inverse model or the T–S inverse model is used to
control nonlinear systems (e.g., Babuska, 1998; Boukez-
zoula et al., 2003; 2007), mainly for input and out-
put data identification. Essentially, fuzzy inverse con-
trol is a data-driven control method primarily for Single-
Input Single-Output (SISO) system. For Multiple-Input
Multiple-Output (MIMO) systems, in this section a form
of a T–S fuzzy inverse system is given by a dynamic in-
verse method to design K(t) =

∑L
i=1 Kihi.

Consider the system in (17). Let the vector relative
degree of the system from the output y ∈ R

n to the input
u ∈ R

m be [ru1 ru2, . . . , run]. Hence

CjAkB = 0, k = 0, 1, . . . , ruj − 2, (47)

CjAruj−1B 	= 0, j = 0, 1, . . . , n. (48)

It follows that

y
ruj

j = (CjAruj )x(t)+(CjAruj−1B)(u(t) + μ(t)),

j = 0, 1, . . . , n.
(49)
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Hence

⎡

⎢⎢⎢⎣

yru1
1

yru2
2
...

yrum
m

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

C1Aru1−1B
C2Aru2−1B

...
CmArum−1B

⎤

⎥⎥⎥⎦ (u(t) + μ(t))

+

⎡

⎢⎢⎢⎣

C1Aru1x
C2Aru2x

...
CmArumx

⎤

⎥⎥⎥⎦ ,

(50)

where yj is the j-th output of y. From (50), it follows that
the actuator fault is given by

μ(t) =

⎡

⎢⎢⎢⎣

C1Aru1−1B
C2Aru2−1B

...
CmArum−1B

⎤

⎥⎥⎥⎦

−1

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

yru1
1

yru2
2
...

yrum
m

⎤

⎥⎥⎥⎦−

⎡

⎢⎢⎢⎣

C1Aru1x
C2Aru2x

...
CmArumx

⎤

⎥⎥⎥⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
− u(t).

(51)

4.2. Estimation algorithm via an inverse-based fuzzy
observer. In this section, an estimation algorithm via an
inverse-based fuzzy observer is proposed in the following
theorem. The same effect can be achieved as in the first es-
timation algorithm. However, no adaptive or sliding mode
technologies are used in the design.

Theorem 4. Consider the following observer and actua-
tor fault estimator:

˙̂x(t) =
L∑

i=1

hi(z)[Aix̂(t) + Biu(t)

− Ki(ŷ(t) − y(t)) + Biμ̂(t)],

(52)

μ̂(t) =

⎡

⎢⎢⎢⎣

C1Aru1−1B
C2Aru2−1B

...
CmArum−1B

⎤

⎥⎥⎥⎦

−1

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

yru1
e1

yru2
e2
...

yrum
em

⎤

⎥⎥⎥⎦−

⎡

⎢⎢⎢⎣

C1Aru1 x̂
C2Aru2 x̂

...
CmArum x̂

⎤

⎥⎥⎥⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
− u(t).

(53)

Suppose it is used to estimate the state vector x̂ and the
magnitude of the actuator fault μ̂. From the filter equation
(45), let the observer gain matrix Ki be chosen such that

the system

˙̃x =
L∑

i=1

L∑

j=1

hihj (Ai − KiCj − Bi

×

⎡

⎢⎣
C1A

ru1−1B
...

CmArum−1B

⎤

⎥⎦

−1 ⎡

⎢⎣
C1Aru1

...
CmArum

⎤

⎥⎦

⎞

⎟⎟⎠ x̃

(54)

is stable. Then the filter constant τ → 0, μ̂ → μ and
x̂ → x as t → ∞.

Proof. Let x̃ = x̂ − x be the estimation error, while (51)
and (53) are substituted into the equation for the estima-
tion error. Then

˙̃x =
L∑

i=1

L∑

j=1

hihj [(Ai − KiCj)x̃ + Bi(μ̂ − μ)]

=
L∑

i=1

L∑

j=1

hihj (Ai − KiCj − Bi

×

⎡

⎢⎣
C1A

ru1−1B
...

CmArum−1B

⎤

⎥⎦

−1 ⎡

⎢⎣
C1Aru1

...
CmArum

⎤

⎥⎦

⎞

⎟⎟⎠ x̃

+

⎡

⎢⎣
C1A

ru1−1B
...

CmArum−1B

⎤

⎥⎦

−1 ⎡

⎢⎣
yru1

e1 − yru1
1

...
yrum

em − yrum
m

⎤

⎥⎦ .

(55)

Hence, as τ → 0, we get y
(r)
e → y(r). Thus it follows

that, as t → ∞, μ̂ → μ and x̂ → x. �
The estimation error equation (54) can be represented

as

˙̃x =
L∑

i=1

L∑

j=1

hihj

(
Āi − KiCj

)
x̃, (56)

where

Āi = Ai − Bi

⎡

⎢⎣
C1A

ru1−1B
...

CmArum−1B

⎤

⎥⎦

−1 ⎡

⎢⎣
C1Aru1

...
CmArum

⎤

⎥⎦ .

To design the parameters matrix Ki, make Āi − KiCi a
Hurwitz matrix. The matrix Ki can guarantee the asymp-
totical stability of the estimation error (55) via a T–S fuzzy
model in the case of actuator faults. At same time, the ac-
tuator fault value can be estimated.

To give a clear idea of the overall design procedure,
we provide a flow chart in Fig. 2.

Remark 4. An important advantage of a T–S fuzzy sys-
tem is its universal approximation of any smooth nonlin-
ear function by “blending” some local linear system mod-
els. This greatly facilitates the analysis and synthesis of
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Fig. 2. Disturbance/fault estimate scheme via an integrated T–S
fuzzy observer and inverse system.

complex nonlinear systems. Consequently, Theorem 3 in
Section 4 is only used to design the observer time-varying
feedback gain K(t) =

∑L
i=1 hi(z)Ki. Actually, Eqns.

(52) and (53) are replaced as follows:

˙̂x(t) = f(x̂, (u + μ̂)) −
L∑

i=1

hi(z)[Ki(ŷ − y)],

μ̂ = g−1
k (x̂, y, y′

e, . . . , y
k
e ) − u(t).

Remark 5. The estimation algorithm which is presented
in this section does not require the system to be minimum
phase, which not only provides information for fault de-
tection but also enables estimation of an actuator fault.
Compared with the first estimation method in Section 3, it
does not need adaptive and sliding mode techniques, and
parameter selection is easy, i.e., only the parameter ma-
trix Ki have to be designed to make Āi −KiCi a Hurwitz
matrix. Compared with the results of Yan and Edwards
(2007) as well as Lendek et al. (2010a), this estimation
method is much simpler in design and easier to realize.

Remark 6. Geometric theory is used to design the fault
observer based on decoupling techniques in the works of
Kabore and Wang (2001) as well as Kabore et al. (2000).
This will make the design process complicated. Hence
these methods are difficult to promote for engineering ap-
plications. Some differences between the approach of Ka-
bore and Wang (2001) and Kabore et al. (2000) and ours
concern two aspects:

• The fault diagnosis approaches of Kabore and Wang
(2001) as well as Kabore et al. (2000) were presented
for affine systems based on decoupling techniques,
but our study is focused on general nonlinear systems
and uses the T–S fuzzy approach.

• Our paper deals with actuator failures, while the
above scientists studied system faults in their works.
Hence, the results presented in our paper have wider
application potentials, which cover more general
practical systems.

5. Illustrative examples

5.1. Example 1. In this section, the first proposed es-
timation strategy will be demonstrated with an example,

which is a nonlinear continuous system taken from the
work of Chang and Yeh (2006). It is described as follows
under the actuator fault:

ẋ1(t) = {−21.96 + 21.96 · cos(x1(t))} · sin(x1(t))
+ 6.1 − 5.55 cos(x1(t)) · x2(t) + ω1(t)

+
u(t) + μ(t)

1.54 − 0.54 · cos(x1(t))
,

ẋ2(t) = 3x1(t) + 0.11x2(t) + ω2(t),
y(t) = 3x1(t) + 2x2(t).

(57)
We apply the technique called local approximation

in fuzzy partition space and presented by Tanaka and
Wang (2001) to construct the structure of a T–S fuzzy
model. The spirit of this method is to approximate a non-
linear term by judiciously chosen linear terms. In this ex-
ample, we assume that the state variable x1(t) is measur-
able and its range is of x1(t) ∈ [−π/2, π/2]. Besides,
the nonlinear terms sin(x1(t)) and cos(x1(t)) in nonlinear
system equations (57) are approximated by the following
two rules:

Rule 1: When x1(t) → 0, it is assumed that sin(x1(t)) →
x1(t) and cos(x1(t)) → 1.

Rule 2: When x1(t) → ±π/2 (|x1(t)| < π/2), it is as-
sumed that sin(x1(t)) → 2/πx1(t) and cos(x1(t)) →
cos(88o × π/180o).

Based on the above representation, one can obtain the
following two-rule (i.e., L = 2) T–S fuzzy model.
Plant Rule 1: IF x1(t) is about 0, THEN

ẋ(t) = A1x(t) + B1u(t) + B1μ(t),
y(t) = C1x(t).

Plant Rule 2: IF x1(t) is about ±π/2(|x1(t)| < π/2),
THEN

ẋ(t) = A2x(t) + B2u(t) + B2μ(t)
y(t) = C2x(t),

where

A1 =
(

0 0.55
3 0.11

)
, A2 =

(−13.98 5.9063
3 0.11

)
,

B1 =
(

1
0

)
, B2 =

(
0.65
0

)
.

We can choose the control input as

u(t) =
L∑

i=1

hi(z)Kix̂(t).

Let us use the feedback control gains Ki of Chang and
Yeh (2006),

K1 =
(−3.8753 − 5.2832

)
,

K2 =
(
12.1769 − 11.7884

)
.
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Fig. 3. Unknown constant fault estimate and the observer state
error.

By solving the derived stability conditions of Theorem 1,
the designed observer gains are

K1 =
(
0.340 0.0854

)T
,

K2 =
(
0.340 0.0854

)T
.

The parameter matrices F of the sliding mode sur-
face which is defined by (35) can be obtained as F1 =
3.31 and F2 = 4.46. The parameters of the sliding mode
surface are selected as β = 10, η = 0.1, ρi = 5 by Eqn.
(36), and the filter parameters as τ = 0.005. It is sup-
posed that the unknown disturbance ω(t) is band-limited
white noise with power 0.001. Using the method proposed
in Section 3, we can calculate the inverse system of (57).
We apply the above observed-state feedback control gains
K1 and K2, the observer gains K1 and K2, and a constant
actuator fault is assumed as

μ(t) =
{

0, 0 ≤ t < 3
20, 3 ≤ t ≤ 10

As seen in Fig. 3, the actuator fault and the states are
estimated well with the first estimation approach. In sim-
ulation, the initial states are given as [x1(0), x2(0)]T =
[0.1, 0.5]T .

Secondly, it is assumed that a time-varying actuator
fault μ(t) appears as

μ(t) =
{

0, 0 ≤ t < 3,
20 sin(πt), 3 ≤ t ≤ 10.

The estimation of a time-varying actuator fault and the
error of states are displayed in Fig. 4. �

5.2. Example 2. In this subsection, we test the pro-
posed second estimation strategy of a two-link planar
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Fig. 4. Unknown time-varying fault estimate and the observer
state error.

1q

1l

2l

1m

2m
2q

Fig. 5. Configuration of two-link robot systems.

robot manipulator with an actuator fault, cf. Fig. 5. The
dynamic equation of the two-link robot system is given as
follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (58)

where

M(q)=
[

(m1 + m2)l21 m2l1l2(s1s2 + c1c2)
m2l1l2(s1s2 + c1c2) m2l

2
2

]
,

C(q, q̇) = m2l1l2(c1s2 − s1c2)
[

0 q̇2

−q̇1 0

]
,

G(q) =
[−(m1 + m2)l1gs1

−m2l2gs2 0

]
,

q = [q1, q2], q1 and q2 are generalized coordinates, M(q)
is the moment of inertia, C(q, q̇) includes Coriolis and
centripetal forces, and G(q) is the gravitational force.
Other quantities include link masses m1, m2, link lengths
l1, l2, angular positions q1, q2, torques applied τ =
[τ1, τ2]T , acceleration due to gravity g = 9.8(m/s2). For
brevity, we use the notation s1 = sin(q1), s2 = sin(q2),
c1 = cos(q1) and c2 = cos(q2). Let x1 = q1, x2 = q2,
x3 = q̇1 and x4 = q̇2.
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For all simulations, the parameters are given in Ta-
ble 1. The initial conditions are assumed to be x(0) =

Table 1. Parameters of the two link-robot.

Inertia parameter Link 1 Link 2

m (kg) 1.0 1.0
l (m) 1.0 1.0

[1, 1, 0, 0]T and x̂(0) = [0, 0, 0, 0]T .
The T–S fuzzy model for the system in (58) is given

by the following nine-rule fuzzy model:

Rule 1: IF x1(t) is about −π/2 and x2 is about −π/2,
THEN

ẋ(t) = A1x(t) + B1u(t) + ω(t), y(t) = C1x(t).

Rule 2: IF x1(t) is about −π/2 and x2 is about 0, THEN

ẋ(t) = A2x(t) + B2u(t) + ω(t), y(t) = C2x(t).

Rule 3: IF x1(t) is about −π/2 and x2 is about π/2,

THEN

ẋ(t) = A3x(t) + B3u(t) + ω(t), y(t) = C3x(t).

Rule 4: IF x1(t) is about 0 and x2 is about −π/2, THEN

ẋ(t) = A4x(t) + B4u(t) + ω(t), y(t) = C4x(t).

Rule 5: IF x1(t) is about 0 and x2 is about 0, THEN

ẋ(t) = A5x(t) + B5u(t) + ω(t), y(t) = C5x(t).

Rule 6: IF x1(t) is about 0 and x2 is about π/2, THEN

ẋ(t) = A6x(t) + B6u(t) + ω(t), y(t) = C6x(t).

Rule 7: IF x1(t) is about π/2 and x2 is about −π/2,

THEN

ẋ(t) = A7x(t) + B7u(t) + ω(t), y(t) = C7x(t).

Rule 8: IF x1(t) is about π/2 and x2 is about 0, THEN

ẋ(t) = A8x(t) + B2u(t) + ω(t), y(t) = C8x(t).

Rule 9: IF x1(t) is about π/2 and x2 is about π/2, THEN

ẋ(t) = A9x(t) + B9u(t) + ω(t), y(t) = C9x(t),

where x = [x1, x2, x3, x4]T , u = [τ1, τ2]T . The pa-
rameter matrices Ai, Bi, Ci are given in Appendix. It

is supposed that the unknown disturbance ω(t) is band-
limited white noise with power 0.001. It can be seen that
rank(CB) = 0, so the proposed first estimation strategy
cannot be designed in the robotic system.

The observer gains are given in Appendix by Theo-
rem 3. We design the normal nonlinear controller based
on backstepping control. The control objective is to force
the system outputs q1 and q2 to track the sinusoidal de-
sired trajectories yd

1 = sin(0.5t) and yd
2 = sin(0.5t). The

parameters k1 and k2 of the controller can also be selected
following Xu et al. (2011b).

We assumed that actuator faults are created as fol-
lows:

μ1(t) =
{

0, 0 ≤ t < 3
50 sin(2(t − 3)), 3 ≤ t ≤ 10,

μ2(t) =
{

0, 0 ≤ t < 3
50(1 − e−4(t−3)), 3 ≤ t ≤ 10.

The system states are also estimated accurately as seen
in Fig. 6. Figure 7 illustrates the result of actuator fault
estimation. It can be seen that the proposed method is
effective to estimate the actuator fault.

0 5 10
−2

−1

0

1

2

Time(s)

x 1

0 5 10
−2

−1

0

1

2

Time(s)

x 2

0 5 10
−2

−1

0

1

2

Time(s)

x 3

0 5 10
−2

−1

0

1

2

Time(s)

x 4

Fig. 6. Actual and estimated states (solid: actual, dotted: esti-
mate).

The actuator fault and states can be estimated by
the fault estimation observer without using adaptive and
sliding mode technologies. The fault estimation ob-
server can estimate a time-varying actuator fault quickly
and the steady-state error for a constant actuator fault
accurately. �

6. Conclusions

This paper developed a methodology for actuator fault di-
agnosis and quantitative estimation of actuator fault sig-
nals in nonlinear systems via a T–S fuzzy model. The T–S
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Fig. 7. Unknown fault input and its estimate.

fuzzy modeling approach is firstly employed to approxi-
mate the nonlinear dynamic system, and then the actuator
fault model is presented. Two different actuator fault es-
timation strategies are developed. For the first strategy, a
T–S fuzzy observer was designed based on a T–S fuzzy
model and the sliding mode technique, which is used to
observe the state of the nonlinear system. Next, using the
inverse system of the nonlinear system, the actuator fault
can be estimated. The second strategy, combining a T–S
fuzzy observer with an inverse system, is to estimate and
observe the actuator fault and state. Simulation results are
used to show the effectiveness of the obtained results. Ac-
tuator fault estimation system design for T–S fuzzy sys-
tems with an approximation error and application to prac-
tical nonlinear systems are meaningful and challenging is-
sues, which will be studied in our future work.
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Appendix

The parameter matrices Ai, Bi, Ci are given as

A1 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

5.927 −0.315 −0.001 −8.4 × 10−6

−6.859 3.155 0.002 6.2 × 10−6

⎤

⎥⎥⎦ ,

A2 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

3.0482 0.1791 −0.0011 −0.0002
3.5436 2.5611 0.0313 1.14 × 10−5

⎤

⎥⎥⎦ ,

A3 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

6.2728 0.4339 0.0030 −0.0001
9.1041 −1.0574 0.0158 −3.2 × 10−5

⎤

⎥⎥⎦ ,

A4 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

6.5435 1.2427 0.0017 0.0002
−3.1873 5.1911 −0.0306 −1.8 × 10−5

⎤

⎥⎥⎦ ,

A5 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

11.1336 −1.18145 0.0000 0.0000
−9.0918 9.1638 0.0000 0.0000

⎤

⎥⎥⎦ ,

A6 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

6.1702 1.6870 −0.000 0.0002
−2.3559 4.5298 0.0314 1.1 × 10−5

⎤

⎥⎥⎦ ,

A7 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

6.1206 0.6205 −0.0041 0.0001
8.8794 −1.0119 −0.0193 4.4 × 10−5

⎤

⎥⎥⎦ ,

A8 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

3.6421 0.0721 0.0018 0.0002
2.4290 2.9832 −0.0305 −1.9 × 10−5

⎤

⎥⎥⎦ ,

A9 =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

6.2933 −0.2188 −0.0009 −1.2 × 10−5

−7.4649 3.2693 0.0024 9.2 × 10−6

⎤

⎥⎥⎦ .

B1 =

⎡

⎢⎢⎣

0 0
0 0
1 −1
−1 2

⎤

⎥⎥⎦ , B2 =

⎡

⎢⎢⎣

0 0
0 0

0.5 0
0 1

⎤

⎥⎥⎦ ,

B3 =

⎡

⎢⎢⎣

0 0
0 0
1 1
1 2

⎤

⎥⎥⎦ , B4 =

⎡

⎢⎢⎣

0 0
0 0

0.5 0
0 1

⎤

⎥⎥⎦ ,

B5 =

⎡

⎢⎢⎣

0 0
0 0
1 −1
−1 2

⎤

⎥⎥⎦ , B6 =

⎡

⎢⎢⎣

0 0
0 0

0.5 0
0 1

⎤

⎥⎥⎦ ,

B7 =

⎡

⎢⎢⎣

0 0
0 0
1 1
1 2

⎤

⎥⎥⎦ , B8 =

⎡

⎢⎢⎣

0 0
0 0

0.5 0
0 1

⎤

⎥⎥⎦ ,
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B9 =

⎡

⎢⎢⎣

0 0
0 0
1 −1
−1 2

⎤

⎥⎥⎦ , Ci =
[

1 0 0 0
0 1 0 0

]
.

The observer gains of Example 2 are given as

L1 =

⎡

⎢⎢⎣

4.5110× 102 −4.4693× 10
−7.5851× 10 2.5735× 102

1.2168× 103 −1.7120× 102

−2.4621× 102 7.7910× 102

⎤

⎥⎥⎦ ,

L2 =

⎡

⎢⎢⎣

4.6963× 102 −8.1664× 10
−8.0699× 10 2.6313× 102

1.2667× 103 −2.7067× 102

−2.6021× 102 7.9779× 102

⎤

⎥⎥⎦ ,

L3 =

⎡

⎢⎢⎣

4.0385× 102 −1.1052× 102

−6.4433× 10 2.7854× 102

1.0888× 103 −3.5054× 102

−2.0810× 102 8.4484× 102

⎤

⎥⎥⎦ ,

L4 =

⎡

⎢⎢⎣

4.3523× 102 −5.5508× 10
−8.8939× 10 2.5128× 102

1.1773× 103 −1.9855× 102

−2.8464× 102 7.6144× 102

⎤

⎥⎥⎦ ,

L5 =

⎡

⎢⎢⎣

3.7229× 102 −4.1800× 10
−5.7890× 10 2.4382× 102

1.0041× 103 −1.6094× 102

−1.8940× 102 7.3892× 102

⎤

⎥⎥⎦ ,

L6 =

⎡

⎢⎢⎣

4.3828× 102 −5.9589× 10
−9.2605× 10 2.5321× 102

1.1861× 103 −2.0975× 102

−2.9571× 102 7.6731× 102

⎤

⎥⎥⎦ ,

L7 =

⎡

⎢⎢⎣

4.0793× 102 −1.0870× 102

−6.6944× 10 2.7792× 102

1.1001× 103 −3.4554× 102

−2.1585× 102 8.4292× 102

⎤

⎥⎥⎦ ,

L8 =

⎡

⎢⎢⎣

4.6273× 102 −7.6872× 10
−7.9199× 10 2.6137× 102

1.2481× 103 −2.5757× 102

−2.5558× 102 7.9235× 102

⎤

⎥⎥⎦ ,

L9 =

⎡

⎢⎢⎣

4.4698 × 102 −4.2650× 10
−7.6254× 10 2.5663× 102

1.2059 × 103 −1.6560× 102

−2.4734× 102 7.7684× 102

⎤

⎥⎥⎦ .
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