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In this paper, a robust fault-tolerant control strategy for constrained multisensor linear systems, subject to sensor faults and
in the presence of bounded state and output disturbances, is proposed. The scheme verifies that, for each sensors–estimator
combination, suitable residual variables lie inside pre-computed sets and selects a more appropriate combination based on a
chosen criterion. An active fault tolerant output feedback controller yields an MPC-based control law and, by means of the
notion of a “tube” of trajectories, we ensure robust closed-loop exponential stability and good performance in the fault-free
case and under the occurrence of abrupt sensor faults.
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1. Introduction

Almost all real world control systems have an associated
set of constraints. For example, inputs always have mini-
mum and maximum values and states are usually required
to lie within certain ranges (Goodwin et al., 2005). A cor-
rect controller design will ensure that the constraints are
satisfied. However, even with such a design, when some
plant components such as sensors fail, the constraints
could be violated. Therefore, it is important to take into
account constraints in fault-tolerant control design.

Model Predictive Control (MPC) is one of the most
successful approaches for designing non-linear controllers
for linear systems with constraints. The idea of devel-
oping Fault Tolerant Control (FTC) approaches based on
MPC control has been discussed in the last few years
within the research community. In the work of Ma-
ciejowski (1999), the foundations of a possible theory
were discussed and simulations on an aircraft system
showed that MPC offers the possibility to achieve fault
tolerance by reconfiguring the controller in response to a
fault.

Further on, it was shown (Maciejowski, 2002) that
when knowledge of the fault is available one can increase
fault tolerance by modifying parameters of the optimi-
sation problem which is solved at each sampling instant
in MPC. Faults that affect the internal model or system

constraints can be incorporated into an MPC controller in
a straightforward way. When a fault occurs in one ele-
ment of the system (e.g., actuators) and makes the con-
trol objective unattainable, it is possible to discard that
control item by removing the corresponding output from
the optimisation cost function (Maciejowski, 2002). Other
possibilities consist of degrading the control objective by
changing the constraints in order to represent certain kind
of faults, and/or modifying the internal system model used
by the MPC controller.

Maciejowski (1999) claims that the inclusion of the
knowledge of the fault in an MPC controller relies on the
presence of an efficient and dependable FDI unit, on the
capacity of updating automatically the model of the sys-
tem, and on the control objectives defined for the MPC
controller which can be left unchanged after the fault. Pat-
wardhan et al. (2006) developed a model predictive and
fault tolerant control scheme using an innovative form of
state space model derived purely from data using sys-
tem identification techniques. An FTC approach using
fuzzy techniques for FDI and MPC for fault accommoda-
tion is presented by Mendonça et al. (2006). In the work
of Mhaskar (2006), a fault tolerant scheme using the ex-
plicit characterisation of the stability region, together with
the constraint handling capabilities and optimality proper-
ties of MPC, is proposed for nonlinear systems subject
to uncertainty, constraints, and faults in the control actu-
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ators. Pranatyasto and Qin (2001) considered a princi-
pal component-based FTC system controlling a simulated
fluid catalytic cracking unit using MPC. Sheng-Qi et al.
(2008) proposed an active fault tolerant control scheme
based on MPC and FDI using a two-stage Kalman filter-
ing algorithm.

Ocampo-Martinez and Puig (2008) embedded an ac-
tive fault-tolerant scheme based on MPC within the hy-
brid system framework. A hybrid model of the system
to be controlled including faulty modes is proposed, and
then a fault-tolerant hybrid MPC controller is designed. In
the work of Mhaskar et al. (2006), the problem of achiev-
ing fault tolerance in the presence of uncertainty was ad-
dressed, where a robust hybrid predictive controller was
used to characterise the stability region under each con-
trol configuration.

Most of these approaches tackle the problem of FDI
and reconfiguration separately and are usually carried out
on simulation examples, experimental systems, or real ap-
plications, but very few of them provide analytical proofs
that guarantee fault tolerance for constrained systems.

In this paper we consider a sensor FDI strategy which
employs a bank of sensors–estimator combinations and
verifies that, for each of these combinations, the up-
dated estimation tracking errors lie inside pre-computed
“healthy” sets. Those combinations for which the lat-
ter set-containment property holds are considered within
a chosen selection criterion (e.g., switching of sensors-
estimator combinations (Seron et al., 2008; Yetendje
et al., 2010), sensors–estimation fusion (De Doná et al.,
2009; Yetendje et al., 2011)) to be used by the controller.

We propose an active fault-tolerant control scheme
based on the output feedback problem for constrained lin-
ear discrete-time systems subject to state and measure-
ment disturbances (Mayne et al., 2006). The output feed-
back controller yields a “tube”, whose center is generated
by using conventional MPC with tighter constraints on the
nominal system, and whose size is restricted by using a
local feedback that attempts to steer all trajectories of the
uncertain system to the central trajectory (Rawlings and
Mayne, 2009).

Proofs of fault tolerance of the resulting closed-loop
system and robust exponential stability of a robust invari-
ant set are given under a set of conditions on the sys-
tem parameters (disturbance bounds, reference offsets and
bounds, etc.) in the fault-free case and under the occur-
rence of sensor faults. We consider both sensor bias and
the loss of effectiveness (including total outage). In that
sense, we extend the approach initiated by the authors in
the preliminary conference paper (Yetendje et al., 2010) to
consider the loss of effectiveness by an unknown amount
and the likely case of sensor bias, and we include integral
action in the stabilising tube MPC controller.

The remainder of the paper proceeds as follows. Sec-
tion 2 outlines the proposed FTC scheme, together with a

description of the plant, as well as a formulation of the
tracking objective. In Section 3 we describe the measure-
ment system and detail the sensor fault model. Section 4
shows the estimator design, followed by a description of
the estimate reconfiguration in Section 5. In Section 6
we introduce the robust tube-MPC controller and track-
ing errors. In Section 7 we derive invariant sets for the
closed-loop system dynamics. Section 8 describes the
nominal optimal MPC design for the reference system. In
Section 9 we describe the fault detection and identifica-
tion principle and establish the stability and fault tolerance
properties of the overall scheme. Finally, Section 10 illus-
trates with an example the effectiveness of the proposed
fault tolerant constrained control scheme.

2. FTC scheme structure, plant and
tracking objective

2.1. General FTC scheme structure. Figure 1 de-
picts the proposed robust fault tolerant multisensor MPC
scheme, whose elements are described in the subsequent
sections.

2.2. Plant description and tracking objective. Con-
sider the discrete-time linear time-invariant plant

x+ = Ax + Bu + Ew, (1a)

y∗ = C∗x, (1b)

where x ∈ R
n is the system state, u ∈ R

m is the con-
trol input, x+ ∈ R

n is the successor state, w ∈ R
r is an

unknown but bounded state disturbance and y∗ ∈ R
q is a

system performance output1 not affected by faults (typi-
cally, measurements that the system cannot afford to lose
without affecting detectability). A ∈ R

n×n, B ∈ R
n×m,

E ∈ R
n×r, C∗ ∈ R

q×n are constant matrices, and the
pair (A, B) is assumed to be controllable. We assume that
w ∈ W ⊂ R

r, where W is a known C-set2.
The control objective is for the performance output

y∗ to track a setpoint ys = C∗xs where xs satisfies

xs = Axs + Bus (2)

for some vector us and such that the controlled plant (1)
fullfils hard constraints x − xs ∈ X, u − us ∈ U, where
X ⊂ R

n is a closed set that contains the origin in its inte-
rior and U ⊂ R

m is a compact set that contains the origin
in its interior.

1We use “performance output” to distinguish it from the measured
outputs defined further in Section 3. This gives us more design free-
dom in the sense that one may be measuring particular combinations of
states but require performance properties (e.g., tracking) for some other
combination of states.

2A C-set is a compact, convex set that contains the origin in its (non-
empty) interior.
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ū

ū
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Fig. 1. FTC scheme (NS: Nominal System (17)).

3. Measurement system and sensor
fault model

We consider a bank of output equations which, when all
sensors are healthy, combine several sensor measurements
as follows:

yi = Cix + ηi

for i = 1, . . . , M , where yi ∈ R
pi is the measured output

of the i-th group of sensors Si (see Fig. 1), ηi ∈ R
pi is an

unknown but bounded measurement noise, Ci ∈ R
pi×n

are constant matrices. The measurement noise ηi is known
to the extent that it lies in the C-set Ni ⊂ R

pi , that is,
ηi ∈ Ni, for i = 1, . . . , M . We observe that the above
measurement framework allows the same physical sensor
to belong to more than one group, and different groups of
sensors can measure the same or different state variables.
We require the following assumption.

Assumption 1. The pairs (A, Ci) are observable, for
i = 1, . . . , M . To model sensor faults, we will expand
the above measurement equation to contemplate the sen-
sor loss of effectiveness and bias in the following form:

yi = Πi(Cix + ηi) + (Ipi − Θi)ηF
i , (3)

where ηF
i ∈ R

pi are unknown but bounded measurement
noises, and Ipi is the pi × pi identity matrix.

In the forecoming analysis, the “under-fault” noise
ηF

i will be considered to lie in the following compact, con-
vex set:

N
F
i (η̄i) = {ηi ∈ R

pi : |ηi − η̄i| ≤ η̃F
i }, (4)

where η̄i is a constant vector that models bias in the i-th
group of sensors and η̃F

i is a non-negative vector.
The fault matrices Πi ∈ R

pi×pi , Θi ∈ R
pi×pi in (3)

and the vector η̄i ∈ R
pi in (4) characterise the sensor fault

situation, and are described as follows:

• Fault free situation (all sensors are healthy):

Πi = Θi = Ipi . (5)

• Loss of effectiveness:

Πi = diag {πi1, . . . , πipi} , Θi = Πi, η̄i = 0,
(6)

where πij ∈ [0, 1], for j = 1, . . . , pi. From (3),
πij < 1 signifies that the j-th sensor of the i-th
sensor group has lost effectiveness. In particular,
πij = 0 indicates an outage of the sensor.

• Sensor bias:

Πi = Ipi , Θi = diag {1, . . . ,

j
↓
0, . . . , 1} ,

η̄i = [0, . . . , η̄ij , . . . , 0]′ (7)

with η̄ij �= 0, where the above choices of the combi-
nation (Πi, Θi, η̄i) indicate bias in the j-th sensor of
the i-th group.

4. Estimators

In accordance with the measurement equations (3), we
consider a bank of M estimators E1, . . . , EM (see Fig. 1),
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where each estimator is associated with one group of sen-
sors and is designed in order to estimate the states of the
system (1). The estimators are described by the following
equations, for i = 1, . . . , M :

x̂+
i = Ax̂i + Bu + Li[yi − Cix̂i], (8)

x̂UP
i = x̂i + Gi[yi − Cix̂i], (9)

where x̂i ∈ R
n is the current state estimate and x̂UP

i ∈ R
n

is the updated state estimate. The estimator gains Li ∈
R

n×pi are such that

ALi � A − LiCi (10)

are Schur3 matrices, for i = 1, . . . , M (this is always pos-
sible by Assumption 3). The update gains Gi ∈ R

n×pi

are arbitrary real matrices of appropriate dimensions.4

Provided the i-th group of sensors is “healthy” (i.e.,
Πi = Θi = Ipi ), the estimated states x̂i satisfy, using (3)
and (8),

x̂+
i = Ax̂i + Bu + LiCix̃i + Liηi (11)

with the state estimation error

x̃i � x − x̂i (12)

satisfying

x̃+
i = ALi x̃i + (Ew − Liηi) . (13)

5. Estimate reconfiguration

Every estimator (8) and (9) independently estimates the
states of the system (1) and gives the updated state esti-
mate x̂UP

i to be evaluated by an FDI mechanism. Only
“healthy” updated estimates, as diagnosed by the FDI unit
(described in Section 9), are used at the reconfiguration
stage, which will then provide an adequate “reconfigured”
updated estimate for use by the feedback controller.

We consider two different methodologies for the re-
configuration stage. The first methodology switches be-
tween the available sensors–estimator combinations by
means of a suitable criterion (Yetendje et al., 2010). In the
second methodology, employed by De Doná et al. (2009),
the estimates deemed “healthy” by means of the FDI test
are fused based on an optimal fusion steady-state Kalman
filter.

Each methodology, the switching or fusion of esti-
mates, has its own merits. The fusion estimate is optimal
in the linear minimum variance sense and hence, in that
sense, it is regarded as the best estimate possible. On the

3A Schur matrix has eigenvalues of magnitude less than one.
4If the estimators are steady-state Kalman filters, then Li and Gi

are obtained via an algebraic Riccati equation (see, e.g., Sun and Deng,
2008).

other hand, the switching strategy is computationally very
simple to implement since, at each time instant, only one
sensor (or one group of sensors) is selected based on a
trivial optimisation problem. The choice of the reconfig-
uration technique is left at the user discretion. Therefore,
for the remainder of the paper, the “reconfigured” updated
estimate provided by either technique is generically de-
noted by

x̂UP∗ =
∑

�∈H

λ�x̂
UP
� (14)

with H defined as

H �{� ∈ {1, . . . , M} : sensor group � is diagnosed as

healthy} (15)

and
∑

�∈H
λ� = In.

We will later explain in Section 9 how the set H is
constructed and updated at each time step by the FDI unit.
For details on how the coefficients λ�, � ∈ H, are com-
puted, see the works of Yetendje et al. (2010) for switch-
ing, and De Doná et al. (2009) as well as Yetendje et al.
(2011) for fusion. For each possible H ∈ PM (the set of
all subsets of {1, . . . , M}), the corresponding coefficients
λ�, ∀� ∈ H, can be precomputed and stored so that the on-
line reconfiguration task simply amounts to employing the
pre-stored set of coefficients corresponding to the current
index set H.

For future reference, we define the “reconfigured”
updated state estimation error as

x̃UP∗ � x − x̂UP∗ =
∑

�∈H

λ� [(In − G�C�) x̃� − G�η�] ,

(16)
where we used (3) (with Π� = Θ� = Ip�

), (9), (12), and
(14).

6. Robust tube-MPC controller and
tracking errors

Following Rawlings and Mayne (2009), we view as the
“reference model” as the nominal system obtained from
(1) by neglecting w,

x̄+ = Ax̄ + Bū, (17)

where x̄ ∈ R
n denotes the nominal system state and

ū ∈ R
m is the input to the nominal system. Choosing an

initial state x̄ = x̄(0) and a nominal control sequence ū �
{ū(0), ū(1), . . .} yields a nominal state sequence solution
x̄ � {x̄(0), x̄(1), . . .} of (17), which constitutes the cen-
ter of a tube. In Section 8 we will elaborate more on the
implementation of this nominal system with a constrained
MPC design, once we have all the necessary elements (in
particular, the invariant sets described in Section 7).

Since the real system is disturbed, the future trajec-
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tory of the disturbed plant will differ from the nominal
prediction. To counteract the effect of the disturbances,
we use the methodology of Rawlings and Mayne (2009,
Ch. 3) to force the trajectory to lie as close as possible to
the nominal one by combining in the control u a feed-
forward part, given by the tube-based model predictive
controller, and a feedback part with integral action:

u = ū + K1(x̂UP∗ − x̄) + K2σ, (18)

where σ ∈ R
q denotes the integral action state, defined by

σ+ = σ + TsC
∗(x̄ − x̂UP∗) (19)

with Ts > 0 an arbitrary constant (typically the sampling
interval) and C∗ the performance output matrix as in (1b).

Assumption 2. (Controller gain) The gain K =[
K1 K2

]
is computed off-line such that

AK =
[
A + BK1 BK2

−TsC
∗ Iq

]

is a Schur matrix.

Note that the above is a standard assumption in refer-
ence tracking applications (see, e.g., Jemaa and Davison
(2003)) for an equivalent condition in terms of the original
system (1a) and integral action (19)).

Further, in Section 8, we will explain how the control
action ū is obtained by means of MPC.

We define the plant tracking error, z, the integrator-
augmented plant tracking error, ξ, the estimation tracking
errors, ei, the augmented estimation tracking errors, υi,
and the updated estimation tracking errors, eUP

i , for i =
1, . . . , M , as

z � x − x̄, (20)

ξ =
[
z′ σ′]′ , (21)

ei � x̂i − x̄, (22)

υi =
[
e′i σ′]′ , (23)

eUP
i � x̂UP

i − x̄ = ei + γi, (24)

where, from (9),

γi � Gi[yi − Cix̂i]. (25)

(Note, in particular, that the tracking error of the integrator
state is computed relative to its reference which is zero.)

Using (12), and substituting (3) (with Πi = Θi =
Ipi ) in (25), we have that, under healthy operation of the
i-th group of sensors,

γi = GiCix̃i + Giηi. (26)

Also, using (16) and (20), the “reconfigured” updated es-

timate tracking error eUP∗ satisfies

eUP∗ � x̂UP∗ − x̄ = z − x̃UP∗. (27)

Then, from (1), (16)–(21) and (27), we can express the
dynamics of the augmented plant tracking error as

ξ+ = AKξ +
[−BK1 E

TsC
∗ 0

] [
x̃UP∗

w

]
. (28)

Using (18) and (27) in (11), the closed-loop estimator
states x̂i corresponding to healthy sensors satisfy

x̂+
i = Ax̂i + Bū + BK1

(
z − x̃UP∗)

+ BK2σ + LiCix̃i + Liηi. (29)

Using (12), (17), (19), (20), (22), (23), (27) and (29),
each augmented estimation tracking error υi satisfies the
difference equation

υ+
i = AKυi +

[
BK1 + LiCi

−TsC
∗

]
x̃i

+
[−BK1

TsC
∗

]
x̃UP∗ +

[
Li

0

]
ηi. (30)

7. Invariant sets for the closed-loop system
dynamics

In this section, we derive invariant sets for the closed-loop
system dynamics. In this analysis, we will assume that
the FDI unit (described in Section 9) correctly identifies
the faulty groups of sensors, so that the “reconfigured”
updated estimate (14) is only formed by estimates cor-
responding to healthy groups of sensors. Later, in Sec-
tion 9, we will validate this analysis by providing condi-
tions that guarantee that the FDI unit correctly discards
faulty groups of sensors.

7.1. Estimation errors analysis. The difference equa-
tion (13) can be rewritten in the form

x̃+
i = ALi x̃i + δ̃i, δ̃i � Ew − Liηi. (31)

Each “disturbance” δ̃i lies in the C-set Δ̃i � EW ⊕
(−LiNi) (where the symbol ⊕ denotes the Minkowski
sum of sets).

Since ALi are Schur matrices, there exist a C-set S̃i

that is finite time computable and RPI5 for the system (31)

and the constraint set
(
R

n, Δ̃i

)
(Rawlings and Mayne,

2009).

5A set Ω ∈ R
n is Robust Positively Invariant (RPI) for x+ =

f(x, w) and the constraint set (X, W), if Ω ⊂ X and f(x, w) ∈ Ω,
for x ∈ Ω, and w ∈ W. If f(x, w) = Ax + w, then the set Ω satisfies
AΩ ⊕ W ⊆ Ω. In addition, if x(0) ∈ Ω, then x(k) ∈ Ω, for all k ≥ 0.
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Using (16), we can compute the C-set S̃
UP∗

, where
x̃UP∗ lies whenever each estimation error x̃� ∈ S̃�, � ∈ H,
as

S̃
UP∗ � Conv.hull

(
∪H∈PM

( ⊕�∈H λ�

[(
In − G�C�

)
S̃�

⊕ (−G�) N�

]))
,

(32)

where ‘Conv.hull’ denotes the convex hull and PM is the
set of all subsets of {1, . . . , M} (see Section 5).

Remark 1. Notice that, since the set S̃
UP∗ in (32) is ob-

tained over all possible combinations of healthy sensor
groups, a valid alternative would be to compute S̃

UP∗ only
for the current combination of healthy sensors. However,
employing (32) makes the FDI algorithm simpler since the
sets used in the corresponding tests are fixed for any pos-
sible fault situation. Alternatively, at the expense of more
calculations, one could update the FDI algorithm by re-
computing the relevant sets after a fault occurs, possibly
resulting in a less conservative overall approach.

7.2. Augmented plant tracking error analysis. The
dynamics of the augmented plant tracking error ξ given in
(28) can be rewritten in the form

ξ+ = AKξ + δξ, δξ =
[−BK1 E

TsC
∗ 0

] [
x̃UP∗

w

]
, (33)

where x̃UP∗ and w are bounded respectively by S̃
UP∗

and
W. Here δξ lies in the set Δξ defined by

Δξ =
[−BK1

TsC
∗

]
S̃

UP∗ ⊕
[
E
0

]
W. (34)

Since AK is a Schur matrix, there exists a C-set Ξ
that is finite time computable and RPI for the system (33)
and the constraint set (Rn+q, Δξ). In the sequel, Ξz and
Ξσ represent respectively the projection of Ξ on its com-
ponents z and σ.

7.3. Estimation and updated estimation tracking er-
rors analysis in the case of healthy sensors. The dy-
namics of the augmented estimation tracking errors υi

(under healthy operation of the i-th group of sensors)
given in (30) can be rewritten in the form

υ+
i = AKυi + δi,

δi �
[
BK1 + LiCi

−TsC
∗

]
x̃i +

[−BK1

TsC
∗

]
x̃UP∗ +

[
Li

0

]
ηi,

(35)

where each δi lies in the set Δi defined by

Δi �
[
BK1 + LiCi

−TsC
∗

]
S̃i ⊕

[−BK1

TsC
∗

]
S̃

UP∗ ⊕
[
Li

0

]
Ni.

(36)
Since AK is a Schur matrix, there exists a C-set Υi

that is finite time computable and RPI for the system (35)
and the constraint set (Rn+q, Δi). In particular, the set Si,
projection of the set Υi on the first component ei, is asso-
ciated to the estimation tracking error of the i-th group of
sensors.

Using (27), we can compute the C-set S
UP∗, where

the “reconfigured” updated estimation tracking error eUP∗

lies whenever z ∈ Ξz and x̃UP∗ ∈ S̃
UP∗

, with S̃
UP∗

defined in (32), as

S
UP∗ � Ξz ⊕ ( − S̃

UP∗)
. (37)

We conclude this section with a result that estab-
lishes the existence of and characterises the invariant tubes
where the system trajectories lie.

Theorem 1. (Tube for system trajectories) Assume the
system initial state, x(0), the integral action initial state,
σ(0), the nominal system initial state, x̄(0), and the initial
value of the estimators associated with healthy groups of
measurements, x̂i(0), for i ∈ H satisfy

x̃i(0) = x(0) − x̂i(0) ∈ S̃i,

ξ(0) =
[
x(0) − x̄(0)

σ(0)

]
∈ Ξ,

υi(0) =
[
x̂i(0) − x̄(0)

σ(0)

]
∈ Υi.

Let

u(k) = ū(k) + K1(x̂UP∗(k) − x̄(k)) + K2σ

∀ k ≥ 0, where x̂UP∗ is defined in (14). Then for every
k ≥ 0, we have

(i) x̃UP∗(k) ∈ S̃
UP∗,

(ii) ξ(k) ∈ Ξ, z(k) ∈ Ξz and x(k) ∈ {x̄(k)} ⊕ Ξz ,

(iii) υi(k) ∈ Υi and, in particular, ei(k) ∈ Si. In addi-
tion, eUP∗(k) ∈ S

UP∗.

Proof. (Part 1) Since S̃i is an RPI set, the assumption
on the initial conditions x̃i(0) ∈ S̃i implies x̃i(k) ∈ S̃i,
∀k ≥ 0. Therefore, from (16) and (32), x̃UP∗(k) ∈ S̃

UP∗,
∀k ≥ 0.

(Part 2) Since x̃UP∗(k) ∈ S̃
UP∗, then δξ(k) ∈ Δξ in

(33)–(34), ∀k ≥ 0. Combining this result with the as-
sumption ξ(0) ∈ Ξ, together with the invariance of Ξ,
we have ξ(k) ∈ Ξ, ∀k ≥ 0. In particular, z(k) ∈ Ξz
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(see Section 7.2). Moreover, from (20), we have that
x = x̄ + z, and it follows that the system state, x(k),
satisfies x(k) ∈ {x̄(k)} ⊕ Ξz , ∀k ≥ 0.

(Part 3) Since x̃i(k) ∈ S̃i and x̃UP∗(k) ∈ S̃
UP∗, we have

that δi ∈ Δi in (35) and (36), ∀k ≥ 0. With the assump-
tion on the initial condition υi(0) ∈ Υi, and the invariance
of Υi, it follows that υi(k) ∈ Υi, ∀k ≥ 0. In particular,
ei(k) ∈ Si. Moreover, z(k) ∈ Ξz , and x̃UP∗(k) ∈ S̃

UP∗,
∀k ≥ 0 imply, from (27) and (37), that eUP∗(k) ∈ S

UP∗,
∀k ≥ 0. �

The assumption made in Theorem 1 above, that the
initial values are in the corresponding invariant sets, is sat-
isfied if, e.g., enough time elapses at the beginning of sys-
tem operation without a change in the fault situation (a
reasonable initialisation assumption), since those sets are
attractive and convergence in finite time is ensured.

8. Nominal MPC design

We define the nominal optimal control problem for the
reference system (17) to track the setpoint (xs, us) as

P̄N(x̄, xs, us) :

V 0
N (x̄, xs, us) � min

ū
{VN (x̄, ū, xs, us)|ū ∈ ϑN (x̄, xs)} ,

(38)

where N is the prediction horizon, x̄ = x̄(0) is the initial
condition of the nominal system (17) at the current time,
and the cost VN (x̄, ū, xs, us) is defined by6

VN (x̄, ū, xs, us)

�
N−1∑

k=0

[ ‖x̄(k) − xs‖2
Q

+ ‖ū(k) − us‖2
R

]
+ ‖x̄(N) − xs‖2

P (39)

where Q, R and are P positive definite weighting matri-
ces.

The constraint set ϑN (x̄, xs) is defined by7

ϑN (x̄, xs)

�
{
ū|ū(k) − us ∈ U � (K1S

UP∗ ⊕ K2Ξσ),
x̄(k) − xs ∈ X � Ξz, ∀k ∈ {0, 1, . . . , N − 1} ,

x̄(N) − xs ∈ Xf} , (40)

where Xf ⊂ X � Ξz is the terminal constraint set. Note
that ū is forced to satisfy the tighter constraint ū − us ∈
U � (K1S

UP∗ ⊕ K2Ξσ), which from (18), (27) and (iii)
Theorem 1), ensures u − us ∈ U. Similarly, in order to
ensure that the unknown state x = x̄ + z (see (20) and

6For a given matrix F , ‖x‖F denotes ‖x‖F =
√

x′Fx.
7The symbol 	 denotes the Minkowski (Pontryagin) set difference.

Theorem 1, Item 2)) satisfies the state constraint x−xs ∈
X, we must ensure that x̄ − xs ∈ X � Ξz .

The solution of P̄N (x̄, xs, us) is

ū0(x̄, xs, us)
= argmin

ū
{VN (x̄, ū, xs, us)|ū ∈ ϑN (x̄, xs)} , (41)

and the model predictive control law κN is obtained as

ū = κN (x̄, xs, us) � ū0(0; x̄, xs, us), (42)

where ū0(0; x̄, xs, us) is the first element in the sequence
ū0(x̄, xs, us).

We next establish the stability properties of the above
nominal controller. We start by imposing the following
assumption that requires the disturbances and noises to be
“small enough”, which suffices for the sets in the condi-
tions defining the constraint set (40) to be non-empty (see
Rawlings and Mayne, 2009).

Assumption 3. (Tighter sets for constraint satisfaction)
The disturbance sets W, Ni, for i = 1, . . . , M, are suf-
ficiently small to ensure that Ξz ⊂ X and K1S

UP∗ ⊕
K2Ξσ ⊂ U.

We will next select the cost function and the termi-
nal constraint set in the following way, standard in MPC,
(Rawlings and Mayne, 2009).

Assumption 4. (Cost function and terminal set) The ma-
trices Q, R, P in (39) satisfy the discrete algebraic Riccati
equation

A′PA− P − (A′PB)(R + B′PB)−1(B′PA) + Q = 0.

The terminal constraint set Xf given in (40) is cho-
sen to be the maximal positively invariant constraint ad-
missible set for the system x̄+ = Ax̄ + Bū under the
tighter constraints x̄ − xs ∈ X � Ξz and ū − us ∈
U � (K1S

UP∗ ⊕ K2Ξσ). Let

X̄N (xs) � {x̄ |ϑN (x̄, xs) �= ∅} , (43)

where ϑN (x̄, xs) is the constraint set defined in (40). We
then have the following result.

Lemma 1. (Exponential stability of the nominal system)
Consider the system (17) where ū is the nominal MPC law
(42). Suppose that X̄N (xs) defined in (43) is compact.8

Then, the setpoint xs is exponentially stable with a region
of attraction X̄N(xs) for the system (17) and (42).

Proof. If Assumptions 1–4 are satisfied for the opti-
mal control problem P̄N (x̄, xs, us), and X̄N(xs) is com-
pact, then there exist constants c1 and c2 such that

8If X in (40) is not compact, the compactness of X̄N (xs) can be
ensured by substituting X in (40) by its intersection with an arbitrarily
large bounded box.
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the value function V 0
N (x̄, xs, us) satisfies (Rawlings and

Mayne, 2009)

V 0
N (x̄, xs, us) ≥ c1|x̄ − xs|2, ∀x̄ ∈ X̄N (xs),

ΔV 0
N (x̄, xs, us) ≤ −c1|x̄ − xs|2, ∀x̄ ∈ X̄N (xs),

V 0
N (x̄, xs, us) ≤ c2|x̄ − xs|2, ∀x̄ ∈ X̄N (xs),

(44)

where

ΔV 0
N (x̄, xs, us) = V 0

N (x̄+, xs, us) − V 0
N (x̄, xs, us).

Hence xs is exponentially stable for the nominal sys-
tem x̄+ = Ax̄ + BκN (x̄, xs, us) with a region of at-
traction X̄N (xs), i.e., there exist constants c ≥ 0 and
γ ∈ (0, 1) such that |x̄(k)−xs| ≤ c|x̄(0)−xs|γk, ∀k ≥ 0
(Rawlings and Mayne, 2009). �

Corollary 1. The nominal state x̄ in (17) is bounded such
that x̄ ∈ X̄ � {x ∈ R

n : |x − xs| ≤ x̄max}, for some vec-
tor x̄max ∈ R

n.

Proof. It is straightforward to see from the proof of
Lemma 1 that taking x̄max = c|x̄(0) − xs| ensures that
the nominal state x̄ is bounded as claimed. �

Later, in Section 9.2, we will show exponential sta-
bility of the fault tolerant output MPC scheme based on
the above nominal controller results.

9. Fault detection and identification

In this section we describe the proposed fault detection
and identification principle. The principle is based on the
separation of “healthy” sets, where the updated estima-
tion tracking errors (24) remain under healthy operation,
from “under-fault” sets, towards which the updated esti-
mation tracking errors jump when abrupt sensor faults oc-
cur in one or more groups of sensors. In contrast with
other schemes, (see, e.g., Larson et al., 2002) which use
stochastic arguments for fault detection and control recon-
figuration, the approach followed here is very simple com-
putationally since, once the required conditions are satis-
fied by design (off-line), the on-line system complexity
only depends on the number of different fault situations
considered.

9.1. Condition for fault tolerance. Suppose that the
j-th group of sensors is healthy and such that its associ-
ated estimation error, x̃j , defined in (12), and the estima-
tion tracking error, ej , defined in (22), satisfy x̃j ∈ S̃j and
ej ∈ Sj , where S̃j and Sj are the RPI sets defined in Sec-
tions 7.1 and 7.3, respectively. Using (24) and (26), we
can then compute the C-set

S
UP
j � Sj ⊕ (GjCj) S̃j ⊕ GjNj , (45)

to which the updated estimation tracking error eUP
j be-

longs whenever ej ∈ Sj , x̃j ∈ S̃j , ηj ∈ Nj . We know
from (iii) of Theorem 1, that this condition will hold for
as long as the j-th group of sensors remains healthy

Consider next a fault in the j-th group of sensors,
characterised by a change of the fault matrices Πj and/or
Θj in (3) from the identity matrix (the healthy case,
see (5)) to a new “under fault” value (see (6) and (7) for
some cases of fault situations that can be contemplated in
the present framework). At the time of the fault, substi-
tuting (3) into (24) and (25) and using (12) and (22) we
have that the “under fault” updated estimation tracking er-
ror, eUP,F

j , satisfies

eUP,F
j =

[
In + Gj

(
Πj − Ipj

)
Cj

]
ej

+ Gj

(
Πj − Ipj

)
Cj x̄ + GjΠjCj x̃j

+ Gj

[
Πjηj +

(
Ipj − Θj

)
ηF

j

]
. (46)

Since, at the time of the fault, the estimation tracking
error ej still belongs to Sj and the estimation error x̃j is
still in S̃j , the updated estimation tracking error eUP,F

j at
the time of the fault will belong to the set

S
UP,F
j (Πj , Θj, η̄j)

=
[
In + Gj

(
Πj − Ipj

)
Cj

]
Sj

⊕ Gj

(
Πj − Ipj

)
CjX̄ ⊕ GjΠjCj S̃j ⊕ GjΠjNj

⊕ Gj

(
Ipj − Θj

)
N

F
j (η̄j), (47)

where X̄ is as in Corollary 1, and the measurement noise
sets Nj , N

F
j (η̄j) are defined in Section 3.

In order to ensure effective fault detection and iden-
tification, we have to verify that the sets S

UP
j and

S
UP,F
j (Πj , Θj , η̄j) are separated.

Assumption 5. The condition S
UP
j ∩ S

UP,F
j (Πj , Θj , η̄j)

= ∅ holds for all j = 1, . . . , M , for any of the possible
values of the combination (Πj , Θj , η̄j) characterising the
examined fault situations for the j-th group of sensors.

Remark 2. The scheme will be ensured to be fault tol-
erant for each value of the fault combination (Πj , Θj, η̄j)
that satisfies Assumption 5. Depending on the problem
characteristics, more than one value (usually a continu-
ous range) of this combination can be considered for the
j-th group of sensors. For example, one can test the
range of fault tolerance against the loss of effectiveness
of a particular i-th sensor of the j-th group by consider-
ing Πj = Θj = diag{1, . . . , πji, . . . , 1}, η̄j = 0, and
testing the separation condition of Assumption 5 for all
πji ∈ [0, π∗

ji], for some π∗
ji ∈ [0, 1). The range of fault

tolerance against bias in a particular i-th sensor of the j-
th group can be tested similarly by considering the values
of the combination (Πj , Θj, η̄j) given in (7) (with the in-
dices i and j interchanged) and verifying the validity of
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Assumption 5 for all |η̄ji| ∈ [η̄∗
ji,∞), for some η̄∗

ji > 0.
More generally, depending on the topology of the sets in-
volved, one can test more complex fault scenarios such as
simultaneous bias and loss of effectiveness, simultaneous
failure of one or more sensors in each group, etc.

Note that the healthy updated estimation tracking er-
ror sets S

UP
j defined in (45) are centred at 0 (this is so

because the sets S̃j associated with the dynamics (31), Sj

associated with the dynamics (35), and Nj defined in Sec-
tion 3, are all centred at 0). The set S

UP,F
j (Πj , Θj , η̄j)

defined in (47), on the other hand, is offset around a cen-
tre point cj(Πj , Θj, η̄j) given by

cj(Πj , Θj, η̄j) = Gj(Πj − Ipj )Cjxs + Gj(Ipj − Θj)η̄j ,
(48)

where xs and η̄j are respectively the center points of X̄

and N
F
j (η̄j), as expressed in Corollary 1 and (4). Thus,

the reference offset xs and the bias constant η̄j (which in
turn shift the centre cj(Πj , Θj, η̄j) in (48)) are instrumen-
tal to the set separation condition of Assumption 5. The
former is determined by the required operation point of
the system (as given by the setpoint ys, cf. Section 2.2).
The latter is given by the type of faults the sensors are
subjected to.

We require the following assumption, which de-
scribes the initialisation condition of the FTC scheme.

Assumption 6. Before the occurrence of the first sensor
fault, the system has been operating under a healthy con-
dition for a sufficiently long time such that all the estima-
tion error trajectories are inside the RPI sets S̃i defined in
Section 7.1, for i = 1, . . . , M , and the estimation track-
ing errors are inside the RPI sets Si defined in Section 7.3.
Moreover, we assume that at least one group of sensors is
healthy at all times.

Remark 3. Notice that Assumption 6 guarantees that
when the fault in the j-th sensor group occurs at some
time instant k, x̃j(k) is in S̃j and ej(k) is in Sj . Hence we
have, at the time of the fault, eUP,F

j ∈ S
UP,F
j (Πj , Θj, η̄j).

Combining this condition with Assumption 5, we con-
clude that the j-th group of sensors, for j ∈ {1, . . . , M},
is healthy at any time k (and thus can be combined and
used for reconfiguration in (14)) if eUP

j (k) ∈ S
UP
j , and

that the moment eUP
j (k) leaves the set S

UP
j allows us to

detect a fault in that sensor group which, in consequence,
must be discarded.

Based on the above developments, the fault diagnosis
criterion proposed for the FDI unit is as follows:
Criterion 1. (FDI) At each time step k, for each i =
1, . . . , M , if the updated estimation tracking error satisfies
eUP

i (k) ∈ S
UP
i , with S

UP
i defined in (45), then the i-

th group of sensors is deemed healthy and considered for
reconfiguration in (14)–(15). If eUP

i (k) /∈ S
UP
i , then the

i-th group of sensors is deemed faulty and discarded for
all future times.

9.2. Stability analysis. The tube MPC controller (18)
steers the trajectories of the uncertain system (1) toward
the central trajectory x̄ generated by the nominal system
(17). The following theorem uses the properties of this
nominal system to establish closed-loop stability of the
overall fault tolerant control scheme based on the tube
MPC controller reconfigured with the use of the FDI Cri-
terion 1.

Theorem 2. Consider the system (1), where u is com-
puted as in (18)–(19), with ū given by (42), x̂UP∗ given
by (14), and x̄ generated by the nominal system (17) and
(42). Suppose the conditions stated in Assumptions 3, 4, 5
and 6 hold. Then we have what follows:

1. The system (1) reconfigured with the use of the FDI
Criterion 1 to select the index set H in (15) (used to
compute the “reconfigured” updated estimates (14))
preserves exponential stability with a region of at-
traction X̄N (xs) ⊕ Ξz , whenever the j-th group of
sensors fails with fault combination (Πj , Θj , η̄j).

2. The state of the system (1), x, converges robustly and
exponentially fast to {xs} ⊕ Ξz while satisfying the
state and control hard constraints x − xs ∈ X and
u − us ∈ U.

Proof. As explained in Remark 3, Assumptions 5 and
6 guarantee that the FDI Criterion 1 only selects healthy
groups of sensors to compute the “reconfigured” updated
estimates (14) used in the control law (18).

While x̃� ∈ S̃�, ∀� ∈ H, we have x̃UP∗ ∈ S̃
UP∗ and

hence z ∈ Ξz (see Theorem 1, Parts (i) and (ii)). The
proposed choices for the cost function and the terminal
constraint set Xf in Assumption 4 guarantee that the re-
sult in Lemma 1 holds. As explained in the latter lemma,
the region of attraction for x̄ is the feasibility region of the
optimisation problem X̄N (xs). Since x = x̄ + z, the do-
main of attraction for x is X̄N (xs) ⊕ Ξz . Therefore, the
system is exponentially stable with a region of attraction
X̄N (xs)⊕Ξz , and x converges robustly and exponentially
fast to {xs}⊕Ξz . In addition, using the fact that x = x̄+z,
x̄−xs ∈ X�Ξz and z ∈ Ξz , yields x−xs ∈ X. Similarly,
using (18)–(19), (27), ū− us ∈ U � (K1S

UP∗ ⊕ K2Ξσ),
and eUP∗ ∈ S

UP∗, we have that u − us ∈ U. The proof
is thus complete. �

10. Illustrative example

We consider the automotive longitudinal control problem
under a stop-and-go scenario, discussed by Martı́nez and
de Wit (2004), to illustrate the effectiveness of the pro-
posed fault tolerant constrained control approach. In this
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problem, the vehicle interdistance dynamics are typically
represented by discretisation of a double integrator plant
which, for a sampling period Ts = 0.01 s, satisfies (1)
with

A =
[
1 0.1
0 1

]
, B = E =

[
0

0.1

]
,

where the first state represents the interdistance [m] and
the second state its time derivative [m/s]. The process
disturbance w represents an error in the estimation of the
leader vehicle acceleration and belongs to the C-set W �{
w ∈ R

2 : |w| ≤ 0.01
}

. The vehicle interdistance can be
measured using sensors of different nature, accuracy and
noise levels (e.g., automotive lasers, radars, stereo-vision),
which lead to having the same output matrix with differ-
ent noise characteristics. To illustrate this point, we con-
sider four distance sensors Si, with the following charac-
teristics in the measurement equations (3): Ci =

[
1 0

]

for i = 1, . . . , 4, and the measurement noises have the
associated C-sets N1 � Ñ

F
1 � {η ∈ R : |η| ≤ 0.001},

Np = N
F
p � {η ∈ R, |η| ≤ 0.1} , p = 2, 3, 4. Sensor

S1 exhibits a low noise level, while the remaining sensors
exhibit a higher noise level. We will consider that a bias
appears in sensor S1 at time tf = 17 s, characterised by
Π1 = 1, Θ1 = 0 in (7), and the magnitude of the bias in
(4) is any value such that |η̄1| ∈ [0.85,∞). The state, and
control constraint sets are X �

{
x ∈ R

2 : |x2| ≤ 6
}

and
U � {u ∈ R : |u| ≤ 25}.

The tube MPC controller is required to steer the nom-
inal system from the locally stable initial state x̄ = x̄(0) =[
0 0

]
at time 0, to, alternatively (following a square-like

wave pattern), the setpoints xs = xs2 = [2 0]′ and
xs = xs10 = [10 0]′, with a horizon N = 30. The
matrices Q, R, P in (39) are computed as explained in
Assumption 4, with Q = I2, R = 10−5 and

P =
[
11.5134 1.0523
1.0523 1.1063

]
.

Moreover, the feedback part of the tube MPC
controller uses the stabilising gain K =[
6.3608 8.0362 −0.8830

]
computed using LQR.

With the above data, we computed the domains of
attraction X̄N(xs2 ), X̄N (xs10) of the nominal system un-
der tighter constraints as depicted in Fig. 2 associated, re-
spectively, with the setpoints xs2 and xs10 . The constant
setpoints xs2 , xs10 (dot markers), the terminal constraint
sets, respectively Xf (xs2 ) � {xs2} ⊕ Xf , Xf (xs10 ) �
{xs10} ⊕ Xf , together with the initial state x̄ (square
marker) are also plotted on the same figure. Note that
xs2 ∈ int(Xf (xs2 )), xs10 ∈ int(Xf (xs10 )) and starting
from the initial condition x̄, the states of the nominal sys-
tem can be steered to the respective terminal constraint set
in N steps while satisfying the tighter control constraints.

The estimators (8) and (9) are designed as steady

state Kalman estimators whose equations can be found in,
e.g., the work of Sun and Deng (2008). We chose the fol-
lowing parameters in those equations:

G1 =
[
0.9991
0.9503

]
, G2 = G3 = G4 =

[
0.6875
0.6250

]
,

Li = AGi, ∀i ∈ {1, . . . , 4} .

The “reconfigured” updated estimate x̂UP∗ presented in
Section 5 is obtained by using an optimal fusion steady
state Kalman filter technique, as explained by De Doná
et al. (2009).

Using the procedure of Kofman et al. (2007), we
compute the RPI sets described in Section 7 as well as
the “healthy” and “faulty” sets (45) and (47). As can be
inferred from Fig. 3, the separation condition of Assump-
tion 5 holds for the range of bias considered for sensor S1,
in particular for η̄1 = {±0.85,±2.95}.

When a fault occurs in sensor S1, the corresponding
updated estimation tracking error trajectories jump from
the RPI set S

UP
1 defined in (45) to the “shifted” RPI sets

S
UP,F
1 (Π1, Θ1, η̄1) defined in (47), making fault diagnosis

possible. According to Theorem 2, we can conclude that
the system preserves exponential stability with respective
regions of attraction X̄N(xs2 ) ⊕ Ξz and X̄N (xs10 ) ⊕ Ξz

whenever S1 fails. At time tF − Ts, eUP
1 belongs to

S
UP
1 , and at the time of the fault, tF , eUP

1 jumps to the
sets S

UP,F
1 (Π1, Θ1, η̄1). Figure 4 shows the effective-

ness of the fault tolerant constrained scheme (for the pur-
pose of this temporal simulation, we used a constant bias
η̄1 = 2.95). The first subplot displays the reference sig-
nal (dash-dotted line) which is tracked by the actual ve-
hicle interdistance (dotted line) under the fault situation
considered. The second subplot depicts the reference and
the system velocity which satisfy, respectively, the tighter
bounds [−4.707 4.707]′ and the constraints previously
defined. Finally, as shown in the third subplot, the refer-
ence and the system acceleration (control action) satisfy,
respectively, the tighter bounds [−7.438 7.438]′ and the
input constraints previously defined.

11. Conclusion

We have proposed a robust fault tolerant control scheme
for constrained multisensor linear systems subject to sen-
sor faults and in the presence of bounded state and output
disturbances. An FDI unit provides a mechanism where
the updated estimation tracking error of each sensor-
estimator combination is tested for containment in a pre-
computed healthy set. An active fault tolerant output feed-
back MPC controller guarantees robust closed-loop expo-
nential stability of the system in normal operation and un-
der abrupt faults in some of the sensors, including loss of
effectiveness (total outage as an extreme case) and sensor
bias, in both cases by unknown amounts. An illustrative
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example shows the effectiveness of the scheme in those
situations.
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Seron, M., Zhuo, X., De Doná, J. and Martı́nez, J. (2008). Multi-
sensor switching control strategy with fault tolerance guar-
antees, Automatica 44(1): 88–97.

Sheng-Qi, S., Dong, L., Lin, L. and Shu-Sheng, G. (2008). Fault-
tolerant control for constrained linear systems based on
MPC and FDI, International Journal of Information and
Systems Sciences 4(4): 512–523.

Sun, S. and Deng, Z. (2008). Distributed optimal fusion steady-
state Kalman filter for systems with coloured measure-
ment noises, International Journal of Systems Science
36(3): 113–118.
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