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Sliding mode methods have been historically studied because of their strong robustness properties with regard to a certain
class of uncertainty, achieved by employing nonlinear control/injection signals to force the system trajectories to attain in
finite time a motion along a surface in the state-space. This paper will consider how these ideas can be exploited for fault
detection (specifically fault signal estimation) and subsequently fault tolerant control. It will also describe applications of
these ideas to aerospace systems, including piloted flight simulator results associated with the GARTEUR AG16 Action
Group on Fault Tolerant Control. The results demonstrate a successful real-time implementation of the proposed fault
tolerant control scheme on a motion flight simulator configured to represent the post-failure EL-AL aircraft.
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1. Introduction

The fundamental purpose of a Fault Detection and Isola-
tion (FDI) scheme is to generate an alarm when a fault oc-
curs and to pin-point the source (Patton et al., 1989). Fault
Tolerant Control (FTC) systems seek to provide, at worst,
a degraded level of performance (compared to the fault
free situation) in the event of a fault or failure developing
in the system. Most existing FDI schemes in the literature
are concerned with the design of the so-called residuals.
These residual signals are used as ‘alarms’ to indicate the
occurrence of a fault and, if properly designed, give infor-
mation from which the source of the fault may be identi-
fied.

In analytic redundancy approaches, the residuals are
(usually dynamic) weightings of the difference between
the measured plant output and the output of a model of the
system. Many fault detection methods are observer based;
the observer will usually be designed from a model which
will inevitably not be a perfect representation of the real
system. In terms of the observer design, the plant/model
mismatch will usually be encapsulated as uncertainty. The
design procedure for the FDI scheme must then seek to
mitigate the effect of the uncertainty on the residuals in

an effort to minimize false alarms and missed faults when
the scheme is implemented on a real system (Chen and
Patton, 1999).

In the last decade the use of sliding mode observers
for FDI has been explored. The novelty of the approach
lies in the ability of sliding mode observers to recon-
struct unmeasurable signals within a process by appro-
priate scaling and filtering of the so-called ‘equivalent
output error injection’ (Edwards et al., 2000). This is
a unique property of sliding mode observers, which em-
anates from the fact that the introduction of a sliding mo-
tion forces the outputs of the observer to perfectly track
the plant measurements (Edwards et al., 2000). Recon-
struction approaches attempt to capture both the magni-
tude and ‘shape’ of the faults, which can be advantageous.

The fact that even in the presence of faults the out-
put of the sliding mode observer still perfectly follows the
plant output means that residuals formulated in the usual
way, i.e., as functions of the output estimation error, would
always be zero. Instead, the effect of the faults is seen
through the fact that the equivalent output error injection
term must compensate for the fault in order to maintain
sliding. The work of Edwards et al. (2000) relies on the
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assumption that the transfer function matrix relating the
faults to the measurement signals has relative degree one
minimum phase properties. Robustness to uncertainty in
the modelling process is vital. Edwards et al. (2000) as
well as Edwards and Spurgeon (2000) used a sliding mode
observer to reconstruct faults, in which there was no ex-
plicit consideration of the disturbances or uncertainty. Tan
and Edwards (2003) built on the work of Edwards and
Spurgeon (2000) as well as Edwards et al. (2000) and pre-
sented a design algorithm for the observer, using Linear
Matrix Inequalities (LMIs) (Boyd et al., 1994), such that
the L2 gain from the disturbances to the fault reconstruc-
tion is minimized. Subsequent work has sought to develop
schemes which relax the conditions imposed by Edwards
et al. (2000).

FDI schemes often represent only a subcomponent
of the overall control architecture. In safety critical sys-
tems, there is an inherent requirement that, overall, some
level of possibly degraded performance must be main-
tained even in the event of serious faults or failures oc-
curring within the system. The ability to deal with situa-
tions in which faults and failures occur originally coined
the term ‘self repairing control’, although now this is more
commonly referred to by the moniker ‘fault tolerant con-
trol’.

Generally speaking, fault tolerant control schemes
are classified as either passive or active (Blanke et al.,
2006). Passive schemes operate independently of any
fault information and basically exploit the robustness of
the underlying control paradigm (Blanke et al., 2006; Pat-
ton, 1997). Such schemes are usually less complex, but in
order to cope with ‘worst case’ fault effects they are con-
servative. In this situation, nominal performance must of-
ten be sacrificed to achieve fault tolerance (Banda, 1999).
Active fault tolerant controllers react to the occurrence of
faults, typically by using information from a fault detec-
tion and isolation scheme, and invoke some form of recon-
figuration. This represents a more flexible architecture.

In some situations the faults can be accommodated,
i.e., a new controller can be found (at least theoretically)
to recover an acceptable level of performance (Blanke
et al., 2006). Reconfiguration is usually necessary in
the event of severe faults such as total failures in actua-
tors/sensors. For example, if a sensor or actuator fails to-
tally, no adaptation within that feedback loop can recover
performance without modification to the choice of actua-
tors and sensors coupled via the controller (i.e., reconfigu-
ration). Furthermore, often the reference trajectory needs
to be reconfigured to acknowledge the loss of performance
as a result of faults and failures (Theilliol et al., 2008).

Historically, sliding mode concepts have been the fo-
cus of research because of their robustness to the so-called
matched uncertainty (Utkin, 1992). The possibilities of
exploiting the inherent robustness properties of sliding
modes for fault tolerance has previously been explored

for aerospace applications (Hess and Wells, 2003; Sht-
essel et al., 2002). In fact, the work of Hess and Wells
(2003) argued that sliding mode control has the potential
to become an alternative to reconfigurable control.

This paper will describe how sliding mode ideas can
be exploited for fault detection (specifically fault signal
estimation) and subsequently fault tolerant control. It will
also describe applications of these ideas to aerospace sys-
tems and describe piloted flight simulator results associ-
ated with the GARTEUR AG16 action group on fault tol-
erant control. The results demonstrate a successful real-
time implementation of the proposed fault tolerant control
scheme on a motion flight simulator configured to repre-
sent the EL-AL aircraft associated with the Bijlmermeer
incident (Edwards et al., 2010).

2. First order sliding mode observers

Historically, sliding mode ideas emerged from the former
USSR in the 1950s (Utkin, 1992). Usually, these ideas
are discussed for control system design, in which case
the control law is designed to drive the states onto and
forces them to remain on a predetermined surface in the
state space. The motion while constrained to the surface
is termed the sliding motion. There are two advantages of
this approach:

• the sliding motion is of lower order than the original
system;

• sliding mode systems exhibit insensitivity properties
to the so-called matched uncertainty (Draženović,
1969)

The latter property has fuelled research in the area of slid-
ing modes (and this robustness can be exploited for fault
tolerant control). In this section, sliding modes will be
considered from the perspective of observer design.

As an example consider the equations of motion for
a pendulum

φ̈(t) = − sin(φ(t))

written as

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0
1

]
ξ(t, x), (1)

where x1 = φ, x2 = φ̇ and ξ(t, x) = − sin(φ). Artifi-
cially choose y(t) = Cx(t), where

C =
[

1 1
]
. (2)

The aim is to simultaneously estimate both x(t) and
ξ(t, x) from y(t) and u(t). A sliding mode observer is
given by

ż(t) =
[

0 1
0 0

]
z(t)−

[
1
1

]
ey(t)−

[
0
1

]
2sign(ey)︸ ︷︷ ︸

ν

,

(3)
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Fig. 1. Comparison of the outputs from the plant and the ob-
server.
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Fig. 2. Output estimation error.

where ey(t) = Cz(t)−y(t) is the output estimation error.
Here

sign(ey) =
{

+1 if ey > 0,
−1 otherwise.

Notice that without the last term in (3) the equations have
a traditional Kalman filter/Luenberger observer structure,
i.e., a model of the plant driven by signals depending on
the output estimation error.

When the initial conditions of the true states and ob-
server states are deliberately set to different values, the
following simulation results can be obtained. Figure 1
shows the outputs of the plant and the observer. It can
be seen that that of the observer quickly tracks the output
of the plant.

Figure 2 shows that a sliding motion takes place after
0.2 seconds, i.e., ey is forced to zero and remains at zero
for all subsequent time despite the presence of uncertainty.
The figure demonstrates the finite time response that is a
characteristic of sliding modes.

Figure 3 shows the states of the observer and the
plant. Although the difference between the output of the
plant and the observer becomes zero in finite time, the
state estimation error persists, although it decays to zero
asymptotically despite the plant/observer mismatch (since
the sine term has been ignored for the purpose of observer
design).

Figure 4 shows a low pass filtered version of the non-
linear injection ν. The key issue to notice in Fig. 4 is that,
on average, the nonlinear term ν = 2sign(ey) replicates
the ‘unknown signal’ ξ without any knowledge of the sig-
nal beyond a bound on its magnitude.
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Fig. 3. Comparison of the states of the observer and the plant.
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Fig. 4. Evolution of the ‘equivalent output error injection’ of the
observer.

3. Sliding mode observers for fault detection

This section considers the use of sliding mode observers
for fault detection. A relevant model of the problem may
be posed as

ẋ = Ax + Qξ(x, t) + Mfi(u, t), (4)

y = Cx, (5)

where A ∈ R
n×n, Q ∈ R

n×h, M ∈ R
n×q and C ∈

R
p×n. The state x(t) is assumed to be unknown. The

bounded unknown function fi(u, t) represents the actu-
ator fault to be estimated. The term ξ(x, t) represents
bounded uncertainty affecting the system and the fault is
assumed to satisfy

‖fi(u, t)‖ ≤ k1 + α(t, u, y), (6)

where k1 is a positive scalar and α(·) is a known function.
The aim is to design an observer of the form

ż(t) = Az(t) + Bu(t)−Gley(t) + Gnν, (7)
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where

ν = −ρ(t, u, y)
ey(t)
‖ey(t)‖ if ey(t) �= 0 (8)

and ey(t) = ŷ(t) − y(t). The two gains Gl, Gn ∈ R
n×p

are to be determined and the modulation function ρ : R+×
R

p × R
m → R+ is chosen to satisfy

ρ(t, y, u) ≥ k1 + α(t, u, y) + η, (9)

where η ∈ R+. A fixed gain W ∈ R
q×p will also be

sought to form a reconstruction signal

f̂i(t) = Wν(t). (10)

Under the following assumptions:

A1: CM has rank q;

A2: (A, M, C) is minimum phase;

the gains Gl and Gn can be chosen so that R(M) ⊂
R(Gn) and the transfer function C(sI −A + GlC)−1Gn

is strictly positive real. As a result, the signal f̂i in (10)
can be designed to have the following properties:

• if ξ = 0, then f̂i → fi (at worst asymptotically);

• if ξ �= 0, then there exists a positive scalar γ such
that∫ ∞

0

‖fi(t)− f̂i(t)‖2 dt ≤ γ2

∫ ∞

0

‖ξ(t)‖2 dt,

(11)
where γ represents the L2 gain between the uncer-
tainty/disturbance ξ and the fault estimation error
(Tan and Edwards, 2003).

Remark 1. This is a fault estimation approach, i.e., not
residual based. Moreover, provided the gain γ is small,
isolation is inherent in the scheme.

As a result of A1 and A2, there exists a change of
coordinates such that

A =
[

A11 A12

A21 A22

]
, M =

[
0

Mo

]
, (12)

Q =
[

Q1

Q2

]
, C =

[
0 T

]
, (13)

where A11 ∈ R
(n−p)×(n−p), Mo ∈ R

q×q is nonsin-
gular and T ∈ R

p×p is orthogonal (Edwards and Spur-
geon, 1998).

Define A211 as the top p − q rows of A21. It can
be shown that (A11, A211) is detectable. Furthermore, the
unobservable modes are the invariant zeros of (A, M, C)
(Edwards and Spurgeon, 1998). It can be shown that a
suitable choice of the gain Gn is

Gn =
[

LT T

T T

]
, (14)

where
L =

[
Lo 0

]
(15)

with Lo ∈ R
(n−p)×(p−q), and

f̂i = fi + Ĝ(s)ξ, (16)

where

Ĝ(s) :=WA21(sI − (A11 + LA211)−1(Q1 + LQ21)
+ WQ2,

where Q21 represents the top p−q rows of Q2. The objec-
tive is to minimize the effect of ξ on f̂i in an L2 sense as
in (11), with respect to the choice of L and W . The syn-
thesis of the observer design parameters can be posed as a
convex optimization problem and solved using LMI tech-
niques in a systematic way (Tan and Edwards, 2003). If
‘precise’ fault reconstruction is not possible, the LMI op-
timization seeks to minimize the effect of the uncertainty
on the reconstruction.

Remark 2. In this paper, a clear distinction is made be-
tween faults and disturbances. The faults are to be recon-
structed as accurately as possible, but there is no require-
ment per se to estimate the disturbances. Other works
have not made this distinction. For example, Saif and
Guan (1993) aggregate the faults and disturbances to form
an augmented ‘fault’ vector and suggest using a linear un-
known input observer to reconstruct the new ‘fault’ vec-
tor. A necessary condition in the works of Edwards et al.
(2000), Edwards and Spurgeon (2000), Tan and Edwards
(2003) as well as Saif and Guan (1993) is that the first
Markov parameter of the system connecting the fault to
the output must be full rank (i.e., Assumption A1). This
limits the class of systems to which the results of Edwards
et al. (2000), Edwards and Spurgeon (2000), Tan and Ed-
wards (2003) as well as Saif and Guan (1993) are applica-
ble.

Recently, fault reconstruction schemes for systems
for which CM is not full rank have been developed.
Higher order sliding mode schemes have been suggested
by Bejarano et al. (2007), Chen and Saif (2007), Fridman
et al. (2007), Dávila et al. (2010) as well as Moreno and
Osorio (2008). The work of Fridman et al. (2007) uses
the notion of ‘strong observability’ together with the so-
called higher order sliding mode observers. Strong ob-
servability concepts have also been exploited by Bejarano
et al. (2007) using a hierarchy of observers. Chen and Saif
(2007) advocate a bank of high-order sliding-mode differ-
entiators to obtain derivatives of the outputs and then es-
timate the faults from these signals. Floquet et al. (2007)
suggest the use of exact differentiators to generate deriva-
tives of the measurements to ‘create’ additional outputs to
circumvent relative degree assumptions.
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The problem of input reconstruction has also been
considered from a geometric perspective by Edelmayer
et al. (2004). The works of Chen and Saif (2007), Flo-
quet et al. (2007), Bejarano et al. (2007), or Fridman et al.
(2007) do not consider uncertainty, unless the faults and
uncertainty are augmented and treated as ‘unknown in-
puts.’ In this case the number of disturbances plus faults
must not exceed that of outputs. This limits the class of
systems for which the results are applicable. Ng et al.
(2007) extended the work of Tan and Edwards (2003) ex-
ploiting two sliding mode observers in cascade. Known
signals from the first observer were considered as out-
puts of a ‘fictitious’ system which has a full rank (first)
Markov parameter. Then a second sliding mode observer
is designed based on the fictitious system to reconstruct
the fault. This enables robust fault reconstruction for sys-
tems where the number of disturbances and faults exceeds
that of outputs. The next section builds on the results of
Ng et al. (2007) using multiple observers in cascade.

4. Cascade based robust fault
reconstruction scheme

The use of sliding mode observers in a cascade frame-
work for unknown input estimation is not new (see, e.g.,
Sharam and Aldeen, 2007; Wang et al., 2003; Haskara
et al., 1998; Krasnova et al., 2001). However, the work
of Haskara et al. (1998) assumes full state measurement,
whilst Wang et al. (2003) do not consider any external dis-
turbances. Although Sharam and Aldeen (2007) consider
both faults and uncertainties, they are aggregated and both
treated as unknown inputs—this introduces unnecessary
conservatism.

In this section the faults and disturbances are treated
differently. Using similar techniques as Ng et al. (2007)
did, measurable signals from an observer are used as out-
puts of a fictitious system. The next observer is designed
for the fictitious system, and the known signals from this
observer are used as outputs of another fictitious system.
The process is repeated until a fictitious system is ob-
tained, whose (first) Markov parameter is full rank. The
technique proposed by Tan and Edwards (2003) is then
used to robustly reconstruct the fault. This results in a
robust fault scheme reconstruction applicable to a wider
class of systems than in the work of Ng et al. (2007).

The final fictitious system is found to be in the same
framework as in the case of Tan and Edwards (2003),
which minimizes the L2 gain from the disturbances to the
fault reconstruction. This means the algorithm is applica-
ble for systems where the number of outputs is less than
the sum of the faults and disturbance channels. In addi-
tion, it is found that the design of previous observers does
not affect the sliding motion of the final observer, which
implies that the L2 gain from the disturbances to the fault
reconstruction is not affected (Tan and Edwards, 2010).

The recursive scheme will now be described. First,
re-write the system in (4)–(5) as

ẋ1 = A1x1 + M1f1 + Q1ξ1, (17)

y1 = C1x1, (18)

where x1 ∈ R
n1

are the states, y1 ∈ R
p are the outputs

and f1 ∈ R
q are unknown faults. The signals ξ1 ∈ R

h

are uncertainties that represent the mismatch between the
linear model (17) and the real plant. Assume without
loss of generality that rank(M1) = q, rank(C1) = p
and rank(C1M1) = r̄1 < q, which implies that r̄1 ≤
min {p, q}. The objective is to reconstruct f1 whilst min-
imizing the effects of ξ1 on the fault reconstruction. If
h + q > p and r̄1 < q, then the approaches suggested
by Edwards et al. (2000), Edwards and Spurgeon (2000),
Saif and Guan (1993), Tan and Edwards (2003), Sharam
and Aldeen (2007), Bejarano et al. (2007), Chen and Saif
(2007), Fridman et al. (2007) as well as Floquet et al.
(2007) are not applicable. In this situation, the following
proposes the cascade observer scheme.
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Fig. 5. Observer scheme.

For the algorithm which will be described in the se-
quel, partition the matrices from (17) as

A1 =
[

A1
1 A1

2

A1
3 A1

4

]
, M1 =

[
M1

1

M1
2

]
,

Q1 =
[

Q1
1

Q1
2

]
�n1−p

�p,

where A1
1 is square. Since C1 =

[
0 Ip

]
and

rank(C1M1) = r̄1, we have rank(M1
2 ) = r̄1. In the

above, Q1 has no particular structure. The idea is to cre-
ate a systematic way of

• computing the number of observers required,

• calculating the gains of the sliding mode observers.

Consider a recursive sequence of ‘systems’ of the
form

ẋi = Aixi + M if i + Qiξi, yi = Cixi, (19)

where xi ∈ R
ni

are the states, yi ∈ R
pi

the outputs and
f i ∈ R

q are unknown faults to be estimated. The sig-
nals ξi ∈ R

h are uncertainties. The following proposition
underpins the strategy.
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Proposition 1. (Tan and Edwards, 2010) Assume that
rank(CiM i) = r̄i < qi where qi = rank(M i). Then
there exists a change of coordinates xi 	→ T i

1x
i and a

nonsingular scaling f i 	→ f i+1 := T i
2f

i such that

• the fault matrix has the structure

M i=
[
M i

1

M i
2

]
=

⎡
⎣M i

11 0
0 0
0 M̄ i

22

⎤
⎦ �ni−pi

�pi−r̄i

�r̄i

, (20)

where M̄ i
22 ∈ R

r̄i×r̄i

is invertible with M i
11 being

full column rank;

• the output matrix has the structure

Ci=
[
0 Ci

2

]
, (21)

where Ci
2 ∈ R

pi×pi

and is full rank;

• the matrices Ai, Qi have no particular structure but
are partitioned as

Ai =
[

Ai
1 Ai

2

Ai
3 Ai

4

]
, Qi =

[
Qi

1

Qi
2

]
�ni−pi

�pi
.

(22)
At Step i suppose that rank(CiM i) = r̄i < qi,

where qi = rank(M i). This is certainly true when
i = 1, otherwise the method proposed by Tan and Ed-
wards (2003) can be used directly.

A key assumption is that ξ is smooth and an upper
bound on its bandwidth is known. As a result, write

ξ1 = Ω(s)ξk, (23)

where Ω(s) is a known filter with low-pass characteristics
of appropriate bandwidth and ξk is a bounded unknown
signal. The transfer function matrix Ω(s) can be viewed
as a ‘weighting function’ often used in frequency domain
approaches to control (Zhou et al., 1996). Furthermore,
assume that each ξi satisfies

ξ̇i = Ai
Ωξi + Bi

Ωξi+1, (24)

where Ai
Ω is a stable matrix and where, by definition,

ξ1 := ξ. Suitable choices for Ai
Ω and Bi

Ω need to be made
to capture the characteristics of ξk. The idea is then to
augment (19) and (24) to obtain

˙̄xi = Āix̄i + M̄ if i + Q̄iξi+1, yi = C̄ix̄i. (25)

For each intermediate system (25), an observer of the
form

˙̄zi = Āiz̄i − Ḡi
l ē

i
y + Ḡi

nν̄i (26)

is used, where z̄i ∈ R
n̄ is the estimate of x̄i and ēi

y =
C̄iz̄i − yi. The matrices Ḡi

l , Ḡ
i
n ∈ R

n̄i×pi

are observer
gains (to be designed). Structurally this is the observer

from (7). In the canonical form coordinates associated
with Proposition 1,

Ḡi
n =

[ −L̄i

Ip

]
(P̄oC̄2)−1, L̄i =

[
L̄i

o 0
]
, (27)

where P̄o ∈ R
pi×pi

is semi-positive definite and L̄i
o ∈

R
(n̄i−pi)×mi+1

. The term ν̄i is a nonlinear discontinuous
term defined by

ν̄i = −ρ̄
ēi

y

‖ēi
y‖

, ρ̄ ∈ R+ for ēi
y �= 0. (28)

If the modulation function ρ is chosen to ensure a sliding
motion, then, during sliding, in appropriate coordinates

˙̄ei
1 = (Āi

1 + L̄i
oĀ

i
31)ē

i
1 − M̄ i

1f
i+1 − Q̄i

1ξ
i+1, (29)

0 = C̄i
2Ā

i
3ē

i
1 − C̄i

2M̄
i
2f

i+1 + (P̄ i
o)−1ν̄i

eq , (30)

where ν̄i
eq is the equivalent output injection. Making a

change of variables wi := −ēi
1 and re-arranging (29)–(30)

gives the representation

ẇi = (Āi
1 + L̄i

oĀ
i
31)w

i + M̄ i
1f

i+1

+ Q̄i
1ξ

i+1, (31)

(P̄ i
oC̄i

2)
−1ν̄i

eq = Āi
3w

i + M̄ i
2f

i+1, (32)

Define

zi := (P̄ i
oC̄i

2)
−1ν̄i

eq =
[

zi
1

zi
2

]
�mi+1

�p−mi+1 .

Then in a suitable coordinate system,

zi
1 =

[
0 Imi+1

]
wi, (33)

zi
2 = Āi

32w
i +

[
0 0
0 M̄ i

22

]
f i+1. (34)

Define a signal zi
f (a filtered version of zi

2) such that

żi
f := −αizi

f + αizi
2, (35)

where αi ∈ R+. From Eqns. (34) and (35),

żi
f = −αizi

f + αiĀi
32w

i +
[

0 0
0 αiM̄ i

22

]
f i+1. (36)

Combining (31), (33) and (36) yields the state-space sys-
tem representation

ẋi+1 = Ai+1xi+1 + M i+1f i+1 + Qi+1ξi+1, (37)

yi+1 = Ci+1xi+1, (38)

where xi+1 := col
(
wi, zi

f

)
, yi+1 := col

(
zi
1, z

i
f

)
and

Ai+1 :=
[

Ā1
1 + L̄1

oĀ
1
31 0

α1Ā1
32 −α1I

]
,

M i+1 =

⎡
⎣ M̄1

1[
0 0
0 α1M̄1

22

] ⎤
⎦ ,
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where Qi+1 = col
(
Q̄1

1, 0
)

and Ci+1 =
[

0 Ip

]
.

Notice that (38) is in the form of (19). Now only two
scenarios can occur:

• rank(Ci+1M i+1) < rank(M i+1) and the process
continues with i← i + 1.

• rank(Ci+1M i+1) = rank(M i+1) and a sliding
mode observer of the type as in the work of Tan and
Edwards (2003) based on Ai+1, M i+1, Ci+1, Qi+1

can be used to reconstruct f i+1 and also minimize
the L2 gain from ξi+1 to the fault reconstruction.

Key results can be stated following Tan and Edwards
(2010):

• If (A, M, C) is minimum phase, then all the fictitious
systems (Ai, M i, Ci) are minimum phase. (This
guarantees the existence of stable sliding motions.)

• The gain matrix L̄i−1 affects only the last p columns
of Ai, and it can be shown that L̄i−1 will not affect
the reduced order sliding motion of observer i and all
subsequent observers.

Therefore, the quality of the fault reconstruction de-
pends on the sliding motion of the last observer i = k.

Remark 3. The choice of the filter in (24) is important
to capture the characteristics of the uncertainty ξk. The
choice of the filters (Ai

Ω, Bi
Ω) is not unique. The crucial

decision is the choice of the filter bandwidth and not the
particular choice of the filter itself. In the example which
follows, first order filters have been chosen, although a
higher order filter could have been used. The hypothesis
here is that the uncertainties ξk are assumed to be smooth
and an upper bound on their bandwidth known. The as-
sumption that there is a bound on the frequency content of
the disturbances is common in the applications literature.
This sort of information has been used in the development
of models of practical engineering systems such as, e.g.,
satellites and ships and for process control, (typically, the
disturbances are then assumed to be of low frequency in
character). Insight into the underlying physics is usually
employed to decide on the meaningful frequency range of
the disturbance (Tan and Edwards, 2010).

Remark 4. A common approach in terms of practical
implementation of classical sliding mode schemes is to
replace the unit vector terms with a sigmoidal approxi-
mation (e.g., Edwards and Spurgeon, 1998). In the cas-
cade scheme this will lead to a loss of accuracy. Instead,
the unit vector can be replaced by a super-twist scheme
(Levant, 2003) term to preserve accuracy. The super-twist
scheme can be included within the Lyapunov analysis as
discussed by Tan and Edwards (2010).

4.1. Design example. The method described above
will now be demonstrated using a model of a civil aircraft
(Edwards et al., 2010) whose system matrices are given as
follows:

A1 =

⎡
⎢⎢⎢⎢⎣

−0.5137 −0.5831 −0.6228
1.0064 −0.6284 −0.0352

0 0 −37.0000
0 1.7171 0

1.0000 0 0

0.0004 0
−0.0021 0

0 0
−0.0166 −9.8046

0 0

⎤
⎥⎥⎥⎥⎦ ,

M1 =
[

0 0 37 0 0
]T

,

where the states are the pitch rate, angle of attack, ele-
vator position, total airspeed and pitch angle. The input
is the elevator command. It is assumed that the first and
second rows of the matrix A1 contain uncertainties asso-
ciated with the aerodynamic derivatives. The problem is
to reconstruct actuator faults using only measurements of
the speed and pitch angle. If the signals f1 and ξ1 are aug-
mented to form a new ‘fault’ vector, this results in a new
‘fault’ vector having three components.

The filter matrices that describe the characteristics of
ξ1 are chosen here as A1

Ω = −10I2 and B1
Ω = 10I2. Note

that this choice is not unique: first order linear filter re-
alizations have been chosen, although higher order filters
could have been used as well. The crucial decision is the
choice of the filter bandwidth and not the particular choice
of the filter itself. With this choice of filter, it can be shown
that C2M2 = 0, and hence r̄2 = 0, which results in r2 =
0. The matrices of the filter associated with ξ2 have been
chosen as A2

Ω = −10I2, B
2
Ω = 10I2. It can be shown that

this gives m3 = 1 and rank(C3M3) = rank(M3), and
the robust sliding mode observer can be designed based
on A3, M3, C3, Q3 as described in Section 3.

Figure 6 shows the nominal case when there is no
uncertainty. Figure 7 compares the disturbances ξ1 that
impact on the system and shows ξ3, which is the fictitious
disturbance signal associated with ξ1 = Ω(s)ξ3. It can be
seen that ξ3 is visually identical to ξ1, which implies the
weighting function for the disturbance is valid. Figure 8
shows the fault reconstruction in the presence of the uncer-
tainty. Although there is a slight degradation due to ΔA1,
the reconstruction is not severely affected by ξ1 (which is
significant—being more than 10% of the magnitude of the
fault).



116 C. Edwards et al.

0 2 4 6 8 10 12 14 16 18 20
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

time, sec

Fig. 6. Fault applied to the actuator and its reconstruction when
ΔA1 = 0, i.e., when there is no uncertainty.
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Fig. 7. Components of ξ1 and the fictitious signal ξ3.
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Fig. 8. Fault reconstruction in the presence of uncertainty.

5. Reconstruction of incipient sensor faults

Consider initially1 a nominal dynamical system affected
by sensor faults modelled as

ẋ(t) = Ax(t) + Bu(t), (39)

y(t) = Cx(t) + Ffo(t), (40)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and F ∈

R
p×q , with n ≥ p > q. The methods for sensor fault

estimation proposed by Tan and Edwars (2002; 2003) re-
quire one (testable) assumption, to guarantee the existence
of the observer design. Tan and Edwards (2002) suggest
introducing a new state xf ∈ R

p satisfying

ẋf (t) = −Afxf (t) + Afy(t), (41)

where −Af ∈ R
p×p is a stable matrix. Equations (39)

and (41) can be combined to give a system of order n + p
with states xa = col(xp, xf ) in the form

ẋa(t) = Aaxa(t) + Bau(t) + Mafo(t), (42)

xf (t) = Caxa(t), (43)

1An extension to uncertain systems is discussed by Alwi et al.
(2009a).

It can be shown that the invariant zeros of
(Aa, Ma, Ca) are a subset of the open loop poles of the
plant (cf. Tan and Edwards, 2002; 2003). A sufficient
condition for using observers of the structure as in Sec-
tion 2 is therefore that the system is open-loop stable in
order to robustly estimate the sensor faults. Open-loop
stability is not a necessary condition, but for open-loop
unstable systems with certain classes of faults, examples
can be constructed such that the methods given by Tan and
Edwards (2003; 2002) are not applicable. Note that clas-
sical linear Unknown Input Observers (UIOs) cannot be
employed in this situation (Edwards and Tan, 2006; Chen
et al., 1996; Chen and Zhang, 1991; Darouach, 1994; Saif
and Guan, 1993). This section discusses a new observer
design for sensor fault reconstruction which addresses this
restriction.

Without loss of generality, it can be assumed that the
outputs of the system have been reordered (and scaled if
necessary) so that

F =
[

0
Iq

]
, C =

[
C1

C2

]
. (44)

The function fo : R+ → R
q is assumed to be unknown

but smooth and bounded. The objective is to design a
sliding mode observer to reconstruct the faults fo(t) us-
ing only y(t) and u(t). Define

ϕ(t) := ḟo(t). (45)

It is assumed that the sensor faults are incipient
(Patton et al., 1989) and hence ‖ϕ(t)‖ is small, but over
time the effects of the fault increment and become signif-
icant. Equations (39) and (45) can be combined to give a
system of order n + q with states xa := col(x, fo) in the
form[

ẋ

ḟo

]
=

[
A 0
0 0

]
︸ ︷︷ ︸

Aa

[
x
fo

]
+

[
B
0

]
︸ ︷︷ ︸

Ba

u +
[

0
Iq

]
︸ ︷︷ ︸

Fa

ϕ, (46)

y=
[

C F
]

︸ ︷︷ ︸
Ca

[
x

fo

]
. (47)

Equations (46) and (47) represent an unknown input prob-
lem for (Aa, Fa, Ca) driven by the unknown signal ϕ(t).

Proposition 2. (Alwi et al., 2009b) The pair (Aa, Ca)
is observable if (A, C1) does not have an unobservable
mode at zero or if the open loop system in (39) is stable.

After an appropriate change of coordinates (Alwi
et al., 2009a), the triple in the new coordinates is given
by

Ãa =
[

A 0
C2A 0

]
, C̃a =

[
0 Ip

]
, F̃a =

[
0
Iq

]
,

(48)
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where C2 ∈ R
q×n. In the xa coordinates,

fo(t) = Cfxa(t), (49)

where Cf :=
[

0q×n Iq

]
. Write

Aa =

⎡
⎣ A11 A12

A211

A212
A22

⎤
⎦ , (50)

where the matrices A11 ∈ R
(n+q−p)×(n+q−p) and

A211 ∈ R
(p−q)×(n+q−p). By construction, the unob-

servable modes of (A11, A211) are the invariant zeros of
(Aa, Fa, Ca) (Edwards et al., 2000). For the system in
(46) and (47), consider a sliding mode observer of the
form given in (7) and (8). An appropriate gain Gn for
the nonlinear injection term ν in (28) is

Gn =
[ −L

Ip

]
, L =

[
L1 L2

]
, (51)

where L1 ∈ R
(n+q−p)×(p−q) and L2 ∈ R

(n+q−p)×q

represent design freedom (Edwards and Spurgeon, 1994).
The reduced order sliding motion can be written as

˙̃e1(t) =
(
A11 + L1A211 + L2A212

)
ẽ1(t) + L2ϕ, (52)

ėy(t) = ey(t) = 0. (53)

The matrices L1 and L2 have to be chosen to ensure
that A11 + LA211 + L2A212 is stable. The effect of ϕ on
the estimation f̂o is given by G̃(s)ϕ, where

G̃(s) :=
[

A11 + L1A211 + L2A212 L2

Ce 0

]
, (54)

with Ce =
[

0n−p×q Iq

]
Since the pair (Aa, Ca) is

observable, there exist matrices L1 and L2 so that the sys-
tem matrix A11 + L1A211 + L2A212 is stable.

Proposition 3. If (Aa, Fa, Ca) from (39) and (40) is min-
imum phase, then a sliding mode observer exists such that
f̂o = Cfxa → fo as t→∞ (choosing L2 = 0).

Proposition 4. If the system matrix A from (39) is sta-
ble, then a sliding mode observer exists such that f̂o =
Cfza → fo as t→∞.

Remark 5. If A from (39) is unstable, then for cer-
tain fault conditions (A, C1) may be unobservable and
perfect reconstruction is not possible. Furthermore, if
(A, C1) is undetectable making (Aa, Fa, Ca) nonmini-
mum phase, then, as argued by Edwards and Tan (2006),
unknown input observers cannot be employed to reject
ϕ, (see Saif and Guan, 1993; Darouach, 1994; Chen and
Zhang, 1991; Chen et al., 1996). As described by Alwi
et al. (2009a), the gains L1 and L2 must be chosen to en-
sure that ‖G̃(s)‖∞ is minimised.

5.1. Simulation results. The ADMIRE model repre-
sents a small rigid fighter aircraft with a delta-canard con-
figuration (Forssell and Nilsson, 2005). The linear model
used for design has been obtained at a low speed flight
condition similar to the one given by Härkegård and Glad
(2005). The controlled outputs are angle of attack, sideslip
the angle and roll rate. The linear model is open-loop un-
stable, which is typical for fighter aircraft to allow high
manoeuvrability. It is assumed that the sensor for the pitch
rate (q) is prone to faults. It can be shown that the asso-
ciated augmented system (Aa, Fa, Ca) is non-minimum
phase (Alwi et al., 2009a).

The simulation displayed in Figs. 9 and 10 has been
obtained from the full nonlinear ADMIRE model with the
aircraft undergoing a banking manoeuvre and change in
altitude. Figure 10 shows the results of the fault recon-
struction using different sensor fault shapes, to show the
effectiveness of the method. In both conditions, the pro-
posed scheme provides satisfactory fault reconstructions
for the q-th sensor. As expected, perfect fault estimation
cannot be achieved.
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Fig. 9. Sensor fault reconstruction on the pitch rate.

6. Fault tolerant control

The inherent robustness properties of sliding modes to
matched uncertainty make it a natural candidate for pas-
sive fault tolerant control. It is argued by Alwi and Ed-
wards (2008a; 2008b) that a broad class of actuator faults
can be accommodated by an appropriate scheme which
monitors quantitatively the extent to which a sliding mo-
tion (in a control context) is being maintained and then
triggers an adaptive mechanism if there is deterioration
in performance. The controller is based around a state-
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Fig. 10. Sensor fault reconstruction on the pitch rate.
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feedback sliding mode scheme and the gain associated
with the nonlinear term is allowed to adaptively increase
when the onset of a fault is detected. Compared with
other FTC schemes which have been implemented on this
model, the controller is simple and yet is shown to work
across the entire ‘up and away’ flight envelope.

Although sliding mode controllers (e.g., Alwi and
Edwards, 2008a) cope easily with faults, they are not able
to directly deal with failures, i.e., the total loss of an ac-
tuator. In order to overcome this, the integration of a slid-
ing mode scheme with a control allocation framework has
been considered (Alwi and Edwards, 2008b), where the
effectiveness level of the actuators is used to redistribute
the control signals to the ‘healthier’ actuators when a fault
occurs.

One of the challenges of using traditional control
ideas for systems with redundancy, i.e., over-actuated sys-
tems, is how to deal with these additional degrees of free-
dom. Control Allocation (CA) has emerged as one of the
most studied techniques when dealing with such problems
(e.g., Enns, 1998; Bošković and Mehra, 2002; Buffington
et al., 1999; Davidson et al., 2001). One benefit of using a
CA structure for fault tolerant control is that the controller
remains the same and the control effort is distributed to all
available actuators without reconfiguration. This is vital
in terms of simplicity of design.

Recently, Alwi and Edwards (2008b) developed a
rigorous design procedure from a theoretical perspective
to achieve FTC while proving stability for a class of faults
and failures. Their work has been used to design lat-
eral and longitudinal controllers for the GARTEUR FM-
AG16 benchmark problem (Edwards et al., 2010). The
GARTEUR FM-AG16 action group has undertaken an ex-
tensive study to establish the benefits of using state of
the art fault detection and FTC methods for aerospace
systems. The different paradigms which have been ap-
plied are described by Edwards et al. (2010). The con-
trol allocation scheme described here uses the effective-
ness levels to redistribute the control signals to function-
ing healthy actuators when a fault/failure occurs (Alwi and
Edwards, 2008b; Alwi et al., 2008).

6.1. Design procedures. Consider an over-actuated
system subject to actuator faults,

ẋ(t) = Ax(t) + Bu(t)−BKu(t), (55)

where A ∈ R
n×n and B ∈ R

n×m. The matrix K =
diag(k1, . . . , km), where the scalars 0 ≤ ki ≤ 1 model
a decrease in effectiveness of an actuator. If ki = 0, the
actuator is healthy, otherwise a fault is present, and if ki =
1 the actuator has failed totally. The work of Alwi and
Edwards (2008b) advocates reordering the states such that

B =
[

B1

B2

]
, (56)

where B2 ∈ R
l×m has rank l and ‖B2‖ = 1 with ‖B1‖ �

1. Here l reflects the number of controlled outputs. Let the
‘virtual control’ ν(t) := B2u(t) so that u(t) = B†

2ν(t),
where

B†
2 := WBT

2 (B2WBT
2 )−1 (57)

and W ∈ R
m×m. Note B2B

†
2 = Il for any choice of W .

In the work of Alwi and Edwards (2008b) the choice

W = I −K (58)

is suggested (assuming good estimates of ki are avail-
able). In a fault free situation W = I , which is a com-
mon choice in the CA literature. Sliding mode control
methods (Utkin, 1992; Edwards and Spurgeon, 1998) will
be used to synthesize ν(t). Define a switching function
σ(t) : R

n → R
l to be

σ(t) = Sx(t),

where S ∈ R
l×n and det(SBν) �= 0. After an appropriate

coordinate transformation x 	→ x̂ = Trx, the system can
be written as
[ ˙̂x1(t)

˙̂x2(t)

]
=

[
Â11 Â12

Â21 Â22

][
x̂1(t)
x̂2(t)

]
+

[
B1B

N
2 B+

2

I

]
ν̂(t), (59)

where

BN
2 := (I −BT

2B2), B+
2 = W 2BT

2 (B2W
2BT

2 )−1

and
ν̂(t) := (B2W

2BT
2 )(B2WBT

2 )−1ν(t). (60)

The following proposition is crucial:

Proposition 5. (Alwi and Edwards, 2008b) There exists a
scalar γ0 such that

‖B+
2 ‖ < γ0 (61)

for all W = diag(w1, . . . , wm) such that 0 < wi ≤ 1.

In the x̂(t) coordinates,

Ŝ := ST−1
r =

[
N I

]
, (62)

where N ∈ R
l×(n−l) represents design freedom. If

(A, Bν) is controllable, then (Â11, Â12) is controllable
and N can be chosen to make Â11 − Â12N stable. The
sliding motion is governed by

˙̂x1(t) = (Ã11−B1B
N
2 B+

2 (I+NB1B
N
2 B+

2 )−1Ã21)x̂1(t).
(63)

In fault free conditions, BN
2 B+

2 |W=I = 0, and the
system in (63) ‘collapses’ to

˙̂x1(t) = Ã11x̂1(t).
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The system in (63) depends on W and stability needs
to be established. Define

G̃(s) := Ã21(sI − Ã11)−1B1B
N
2 , (64)

where Ã11 = Â11−Â12N and Ã21 := NÃ11+Â21−Â22.
By construction, G̃(s) is stable.

Define γ2 = ‖G̃(s)‖∞ and

γ1 := ‖MB1B
N
2 ‖. (65)

The following proposition provides stability guarantees
for the closed-loop fault system.

Proposition 6. (Alwi and Edwards, 2008b) During a fault
or failure condition, for any 0 < wi ≤ 1, the closed–loop
system will be stable if

0 <
γ2γ0

1− γ1γ0
< 1, (66)

where γ0 = ‖B+
2 ‖ as defined in Proposition 5.

The proposed control law is

ν̂(t) = ν̂l(t) + ν̂n(t),

where ν̂l(t) := −Ã21ê1(t)− Ã22σ(t) and

ν̂n(t) := −(ρ(t, x) + η)
σ(t)
‖σ(t)‖ for σ(t) �= 0. (67)

The gain from (67) is

ρ(t) = r(t)(l1‖x(t)‖+ l2). (68)

The scalar variable r(t) is an adaptive gain satisfying

ṙ(t) = a
(
l1‖x(t)‖+ l2

)
Dε(‖σ(t)‖) − br(t), (69)

where r(0) = 0, and the a and b are design constants. The
function Dε : R 	→ R is the nonlinear function

Dε(‖σ‖) =
{

0 if ‖σ‖ < ε,
‖σ‖ otherwise,

(70)

where ε is a positive scalar. The idea is only to trigger the
adaptive scheme if a fault is present and a degradation in
the sliding motion begins to appear (Alwi et al., 2010).

7. Implementation results

7.1. Actuator faults. The SIMONA (SImulation, MO-
tion and NAvigation) simulator is a motion simulator de-
veloped by the Delft University of Technology. The flight
deck provides pilots with simulated instruments. The pilot
interfaces with the ‘aircraft’ by a traditional control col-
umn or a sidestick controller, rudder pedals with engine
controls and a Mode Control Panel (MCP). The windows

Fig. 11. SIMONA flight simulator at the TU Delft.

Fig. 12. SIMONA flight deck.

give a view of a virtual environment and a motion sys-
tem moves the entire cabin to simulate aircraft motion. A
network of PCs provides the processing power to run the
simulator. A flexible software architecture (DUECCA) al-
lows the integration of the controller in a realistic aircraft
environment.

The design objective is to bring a faulty aircraft to
near landing conditions. This is achieved by tracking:

• roll (φ) and sideslip (β) using the lateral controller,

• Flight Path Angle (FPA) and airspeed (Vtas) com-
mands using the longitudinal controller.

The lateral control surfaces are the ailerons (four),
spoilers (ten) and EPR (differential). The longitudinal
control surfaces are the elevator, horizontal stabilizer and
total EPR.

The controller was implemented using Matlab’s
RTW utility. The Ode4 solver with a fixed time step of
0.01 s was employed running on a dual Pentium III 1 GHz
processor. A connection with the MCP enables the selec-
tion of ‘control modes’, e.g., altitude hold, heading select,
etc.

Figures 14 and 15 show the responses in the face of a
horizontal stabilizer runaway, where the stabilizer moves
at its maximum deflection rate to its maximum deflection
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Fig. 13. Schematic of the SIMONA setup.

position of 3 deg. The aircraft performs a series of 90
degree turns after the fault has occurred followed by an
attempt to reduce altitude to bring the aircraft to near land-
ing conditions. It can be seen in Figs. 14 and 15 that good
performance can be maintained despite the severe failure
which has occurred in the system.
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Fig. 14. Horizontal stabilizer runaway fault.
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Fig. 15. Horizontal stabilizer runaway (control signal).

Figures 16 and 17 are associated with a lateral fault,
specifically, a rudder runaway. The aircraft is piloted to
follow the same flight path as in Figs. 14 and 15. Again
it can be seen from Figs. 16 and 17 that good performance
can be maintained and the aircraft can be brought to a near
landing condition.
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Fig. 16. Rudder runaway.
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Fig. 17. Rudder runaway (control signal).

7.2. Sensor faults. Now a sensor fault scenario is con-
sidered. A general configuration representing the pro-
posed sensor FTC scheme is given in Fig. 18. The out-
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Fig. 18. Sensor fault tolerant control scheme.

put of the FDI module is the sensor fault estimate f̂o. The
estimated sensor fault f̂o will be used to correct the mea-
sured output signal, and y − f̂o will be used in the con-
trol law calculations to generate u. The controller is de-
signed for an ‘up and away’ flight envelope with Flight
Path Angle (FPA) and true airspeed (Vtas) as controlled
outputs. A nominal fault-free sliding mode controller has
been designed requiring the pitch rate, true airspeed, an-
gle of attack, and pitch angle. A key aspect of the design
is to establish the matrix Q from (42). For details, see the
work of Alwi and Edwards (2008a). Principal component
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analysis based on the computed difference between the re-
sponses of the linear/nonlinear model was used to obtain
Q as suggested by Patton and Chen (1993).

Assume that the pitch rate, true air speed, and angle
of attack (α) measurements are fault free and therefore

FT =
[

0 0 0 1
]
. (71)

The reference command sequence is such that the aircraft
is returned to (approximately) the initial flight conditions
(Fig. 19). The nominal tracking error is shown in Fig. 20.
The Root Mean Square (RMS) of the signal is 0.0150.
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Fig. 19. Nominal closed loop performance.
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Fig. 20. Flight path tracking error.

Now a fault on the pitch sensor is introduced. This
takes the form of a slowly increasing drift in the form of
a ramp, which reaches a peak and then returns to nominal
performance. Figure 21 shows the effect on the tracking
error of using this faulty measurement in the control law.
The performance of the closed loop system as shown in
Fig. 21 is dangerously unacceptable. This motivates the
use of the sensor fault tolerant control scheme shown in
Fig. 18. The same fault as deployed in Fig. 21 is intro-
duced. Figure 22 shows the actual fault f0 and the esti-
mate f̂0 obtained from the sliding mode observer. Using
the sensor fault tolerant control scheme shown in Fig. 18,
the closed loop performance is given in Fig. 23. Much bet-
ter performance is maintained. In fact , the RMS in Fig. 23
is 0.0154, which is close to the fault free case (0.0150).
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Fig. 21. Tracking error in the presence of a sensor fault (no
FTC).

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

Time (sec)

pi
tc

h 
(d

eg
)

recons Fo
actual Fo

Fig. 22. Estimate of the fault signal f̂0.

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

Time (sec)

F
P

A
 tr

ac
ki

ng
 e

rr
or

 (
de

g)

Fig. 23. Tracking error in the presence of a sensor fault (no
FTC)

8. EL-AL Bijlmermeer accident

Figure 24 summarizes the results of piloted tests based on
the EL-AL 1862 failure scenario in which engines nos. 3
and 4 detached from the right wing of a B747 and caused
a significant damage (Edwards et al., 2010). The figure
shows the comparisons between the implemented sliding
mode CA scheme and the piloted classical controller. Fig-
ure 24 clearly shows that the proposed scheme manages to
maintain nominal performance and achieve safe landing.
Meanwhile, the piloted classical controller crashes during
the final stage of the test flight before lining up with the
runway.

9. Conclusions

Sliding mode methods have been historically studied be-
cause of their strong robustness properties to a certain
class of uncertainty. This paper has considered how these
ideas can be exploited for fault detection (specifically fault
signal estimation) using sliding mode observers, and sub-
sequently fault tolerant control. It has discussed applica-
tions of these ideas to aerospace systems. In particular,
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Fig. 24. EL-AL incident flight path.

piloted flight simulator results associated with the EL-AL
1862 Bijlmermeer scenario studied as part of the GAR-
TEUR AG16 action group on fault tolerant control. The
results demonstrate a successful real-time implementation
of the proposed fault tolerant control scheme on a mo-
tion flight simulator configured to represent the EL-AL
aircraft.
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