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A computer vision system is described that captures color image sequences, detects and recognizes static hand poses (i.e.,
“letters”) and interprets pose sequences in terms of gestures (i.e., “words”). The hand object is detected with a double-active
contour-based method. A tracking of the hand pose in a short sequence allows detecting “modified poses”, like diacritic
letters in national alphabets. The static hand pose set corresponds to hand signs of a thumb alphabet. Finally, by tracking
hand poses in a longer image sequence, the pose sequence is interpreted in terms of gestures. Dynamic Bayesian models
and their inference methods (particle filter and Viterbi search) are applied at this stage, allowing a bi-driven control of the
entire system.
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1. Introduction

Hand image recognition is mainly considered in the con-
text of man-machine communication (Rehg and Kana-
de, 1993) and person identification (biometrics) (Sanchez-
Reillo et al., 2000). Here we focus on the first applica-
tion area. The system’s main attribute is given by the fact
whether it is designed for static posture recognition or for
(dynamic) gesture recognition. A useful application of the
first type of systems would be the recognition of a “finger
alphabet” (Marnik, 2003) or the Polish sign language po-
stures (Flasiński and Myśliński, 2010), as applied in mute
people’s communication.

Current research on gesture recognition in image se-
quences concentrates on the flexibility of system use: (i)
on “freely” located hands, without gloves, in front of a
random structured background, and (ii) on the general-
purpose architecture of the recognition system, i.e., dec-
larative languages for model representation, learning and
recognition. The main motivation for such research is to
make the man-machine interface more flexible and easier
for the user.

The “free hand” image-based gesture recognition

process can be decomposed into three main stages:

• single frame preprocessing and segmentation,

• hand feature extraction and pose classification, and

• hand tracking and pose sequence (gesture) interpre-
tation.

For the image segmentation task a large number of
different computational approaches and algorithms alre-
ady exist (e.g., Niemann, 2000; Pitas, 2000; Gonzalez and
Wintz, 1987; Kasprzak, 2009). As the human skin color
is a very characteristic feature, in our approach we shall
provide a color-based region-of-interest detection (Yining
et al., 1999; Fu et al., 2000; Emambakhsh et al., 2010).

A straightforward approach to object detection is to
extract its shape (or contour) information from the ima-
ge. Most often shape recognition is accomplished with
appearance-based methods (Rafajłowicz et al., 2008), al-
though an explicit shape model could also be used here
(Emambakhsh et al., 2010). A popular approach to clo-
sed contour detection for free-form and deformable ob-
jects uses active contours (Kass et al., 1998) or snakes
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(Terzopoulos, 2003). Snakes (active contours) are curves
defined in the image plane that can change their shape and
move under the influence of forces. These are decomposed
into internal forces, as a result of the expected curve stif-
fness, and external forces computed from the image data
and distributed over the image. After the snake is initiali-
zed inside or outside of an object boundary, it is expected
to evolve to this boundary while being controlled by these
forces. The internal forces are designed to hold the cu-
rve together (elasticity forces) and to avoid large bending
(bending forces). Typically we consider parametric curves
and allow them to move toward desired features, usually
edges, under the influence of external and internal forces
(Xu and Prince, 1998).

The gesture recognition system can be logically divi-
ded into two separate modules: that for hand posture de-
tection and recognition as well as that for dynamic gesture
interpretation.

In the past, a robust approach to hand feature extrac-
tion and pose classification was proposed (Kasprzak and
Skrzyński, 2006), which measured the difference betwe-
en two active contours. This approach allowed the reco-
gnition of 21 poses. One may want to extend this hand
set in order to cover a typical alphabet of characters. This
can be achieved by allowing a movement of the hand po-
se in a short image sequence. For dynamic process mo-
deling, stochastic approaches can be chosen, e.g., Hid-
den Markov Models (HMMs) (Rabiner and Juang, 1993)
or (more general) Dynamic Bayesian Networks (DBNs)
(Murphy, 2002). The advantage of such techniques is
that efficient learning algorithms exist for them (Baum
et al., 1970; Polanska et al., 2006). However, based on
the simple “naive Bayes” assumption, the HMM performs
well if applied for sentence recognition, even in speech
recognition where highly correlated observations appear
(Tóth et al., 2005). Hidden Markov models have also been
applied to the recognition of different gesture languages
(e.g., Starner and Pentland, 1995; Kapuściński, 2006).

Thus, our two object recognition modules utilize se-
parate modeling techniques: there is a deterministic ap-
proach to hand pose recognition proposed and a stocha-
stic approach, based on hidden Markov models, to hand
gesture recognition. In the methods presented so far, the
communication between these two modules is strictly
unidirectional, namely, the hand pose recognition modu-
le provides semi-processed data to the module responsi-
ble for gesture recognition. In this paper, we introduce a
feedback-like architecture for gesture recognition, by en-
suring bi-directional communication between the two re-
cognition modules.

We present a computer vision system for hand gestu-
re recognition that is structured into four steps. We start
with basic image segmentation with the goal of hand con-
tour detection (Section 2). Then we use our two active
contours approach for hand feature detection and pose

classification (Section 3), which is an extended version
and a more efficient implementation of our previous ap-
proach (Kasprzak and Skrzyński, 2006). The extension of
the static hand pose set by “dynamic” signs is possible
due to a hand motion detection in a short image sequen-
ce (Section 4). Finally, we apply a hybrid model (DBN
+ hidden Markov models) for pose sequence recognition
in a longer image sequence (Section 5). Extensive imple-
mentation details and tests verify the validity and quality
of the proposed approach (Section 6).

2. Structure of the approach

As usual, we can differentiate between two processing
modes of the image analysis system: the active work (on-
line) mode and the system setting (off-line) mode. The
basic steps in the active mode include:

(i) image acquisition and segmentation (Section 3),

(ii) hand pose recognition (single image analysis) (Sec-
tion 4),

(iii) short-time hand position tracking (short-time trajec-
tory detection) (Section 5),

(iv) long-time gesture recognition (model-based pose se-
quence recognition) (Section 6).

What is necessary to be done in the system settings
mode is

(i) system calibration,

(ii) assigning characters to hand poses (providing the
character set),

(iii) learning the hidden Markow model of gestures
(acquiring the model of gestures).

The system calibration step (Fig. 1) requires from the
user providing a color calibration as well as some para-
meter values to the system. A white color pattern should
be presented to the camera so that the system will adjust
the white balance (in normal lighting conditions the whi-
te color should be represented in the middle of the color
(U,V)-color component scale). After that, the automatic
white balance of the camera should be switched off. The
system parametrization need basically means informing
the system which hand (left or right) will be observed.

The character set is explained in Section 5, while the
HMM-based gesture model—in Section 6.

There are some restrictive assumptions about the
acquired scene:

• Hand is a foreground object (not occluded), freely
located and oriented (no fixed supports or gloves).

• Limited color restrictions posed onto the backgro-
und.
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Fig. 1. Example images in system calibration.

• Natural lighting conditions (no structured light).

• Hand motion speed in accordance with available pro-
cessing speed.

• The hand sign set is known to the user, who tries to
follow this set.

One cannot always expect perfect results of image
segmentation and contour classification, but due to the
model-based image sequence analysis these eventual low-
and intermediate-level errors should largely be eliminated.

3. Image segmentation

In this approach the processing of a single image consists
of the following steps: color-based skin region detection,
contour initialization, the evolution of two active contours,
the creation of a contour difference-based shape descrip-
tion, and hand pose recognition.

Fig. 2. Image segmentation: original image (a), results of back-
ground subtraction (b), results of color recognition (c),
results of both background subtraction and color reco-
gnition (d).

3.1. Color-based ROI. In the proposed approach the
segmentation of the hand image is due to a color-based
analysis that leads to the detection of skin colored regions
in the image (Kasprzak and Skrzyński, 2006; Wilkow-
ski, 2008). The skin color is detected based on chromi-
nance values, so that small changes in light intensity (e.g.,

due to shading) do not affect the results of segmentation.
In order to handle a complex but static background, back-
ground subtraction is used in processing. The main image
segmentation steps are illustrated in Fig. 2.

The sensor data are initially given in a 24-bit RGB
color scheme. It is evident that this color space is not well
designed for color-based object recognition. Among dif-
ferent alternative color spaces, we consider the YUV and
YCbCr spaces to be most suitable for this task, as the
explicit intensity component Y allows creating a particu-
lar color normalization scheme. Let us take, for example,
the YUV space. The Y component represents brightness,
while U and V are computed as scaled differences betwe-
en Y and the B and R values, respectively. Transformation
from the RGB to the YUV space (with components re-
presented by 8-bit unsigned integers, i.e., values from the
interval [0, 255]) may be performed as follows:

⎡
⎣

Y
U
V

⎤
⎦ =

⎡
⎣

0
128
128

⎤
⎦

+

⎡
⎣

0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

⎤
⎦
⎡
⎣

R
G
B

⎤
⎦. (1)

We applied a normalization of the U and V com-
ponents, driven by the normalization of Y to a predefi-
ned value (let us fix it to 128). Due to this procedure
we can achieve very stable and narrow intervals, cente-
red at 112 (for U) and 149 (for V), which represent the
skin color. Observe that in a color calibration table (called
Ideal Mackbeth YUV) the “dark skin” and “light skin”
colors are represented by very different (YUV)-values:
(88, 114, 146) and (161, 110, 151), respectively. The nor-
malized components are computed as

⎡
⎣

Ynorm

Unorm

Vnorm

⎤
⎦ =

⎡
⎣

128
κ · (U − 128) + 128
κ · (V − 128) + 128

⎤
⎦ , (2)

κ =

⎧
⎪⎪⎪⎪⎪⎨
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η
Ynorm

Y
for Y > Ynorm,

θ
256 − Y

Ynorm
for Y < Ynorm,

1 for Y = Ynorm,

(3)

In particular, after setting η = 1.135 as well as θ =
1/η � 0.881, the “dark” and “light” skin colors are
normalized to a common triplet (Ynorm, Unorm, Vnorm) =
(128, 111.8, 148.8).

Without the intensity-based normalization, color-
based skin detection may sometimes fail, especially in dif-
ficult lighting conditions. If shadows or strong lighting fall
onto the shin surface, then the colors significantly change.
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Also, in the case of a very structured dynamic background
containing colors similar to the skin color, palm detection
problems may arise. Obviously, other color correction so-
lutions may be tried, like, for example, luminance regu-
larization. We have applied image smoothing to an image
that contained the detected skin pixels.

Fig. 3. Initial contour detection.

3.2. Contour initialization. The input data to this step
consist of the binary image containing skin-color pixels.
The binary image is divided into 3 × 3 or 4 × 4 blocks
(the block size is a parameter). First, the blocks are exa-
mined from left to right and from top to down. If the block
examined contains a sufficient amount of skin pixels (let
us call it the “block filling” threshold), then the next acti-
ve contour point is located in the left upper corner of this
block. In such a case, the search moves to the next column
on the right side. This cycle is iterated until the end of the
image is reached or a no-skin column is found (see Fig. 3).
In this way the upper part of the initial contour is located.
Next, the blocks are examined from right to left and from
bottom to up to locate the bottom part of the initial conto-
ur. The control point of the active contour is now situated
in the bottom right corner of each positively verified block
found.

4. Two active contours

In this section we are going to demonstrate how the
double-contour approach allows us to recognize 21 diffe-
rent static poses. This variability is achieved due to simple
features, like the general type of hand view, the number of
visible fingers and the location of the thumb.

4.1. Active contour. Snakes (active contours) are cu-
rves defined in the image plane that can change their shape
and move under the influence of forces. These are decom-
posed into internal forces, as a result of the expected cu-
rve stiffness, and external forces computed from the image
data and distributed over the image. After the snake is ini-
tialized inside or outside an object boundary, it is expected
to evolve to this boundary while being controlled by these

forces. The internal forces are designed to hold the curve
together (elasticity forces) and to avoid a large bending
(bending forces).

4.2. Balance of forces. We consider parametric curves
and allow them to move toward desired features, usually
edges, under the influence of potential forces, which are
defined to be the negative gradient of a potential function.
The active contour is defined in the image plane as a sequ-
ence of control points pi = (xi, yi), (i = 0, . . . , n−1) and
connecting line segments Li = [pi, pi+1]. During contour
evolution the total energy of points is minimized.

The external energy Eext is traditionally estimated as
a potential energy (the sum of image function I(x, y)) me-
asured in control points:

Eext = K0 ·
n−1∑
i=0

I(xi, yi), (4)

where K0 is a scaling coefficient. The appropriate external
force is computed as the negative gradient of this poten-
tial energy function (Fext = −∇Eext). It pulls the contour
toward the desired image edges.

The internal energy Eint consists of two components:

Eint = Eelastic + Estiffness. (5)

The elasticity energy is proportional to the squared
contour length:

Eelastic = K1 ·
n−1∑
i=0

|pi − pi−1|2, (6)

where K1 is an elasticity coefficient and the pi s are the
contour’s control points. The elasticity force tends to shor-
ten the line segments, i.e., to move the control points clo-
ser to their neighbors.

The stiffness energy is proportional to the squared cu-
rvature measured at control points:

Estiffness = K2 ·
n−1∑
i=0

|pi−1 − 2pi + pi+1|2, (7)

where K2 is a stiffness coefficient. The stiffness force
tends to lower the curvature, i.e., it avoids bending the
contour without shortening it.

The appropriate elasticity and stiffness forces can be
derived by using the energy gradient (i.e., F = −∇E). In
the final stable state of the contour a balance of forces for
a given contour in a given image is achieved:

Fint + Fext = 0. (8)
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Fig. 4. Gradient image (left) and the gradient vector field (with
m = 0.2) (right) computed from a hand image with a
uniform background.

4.3. Contour update rule. Based on the initial border
of the most probable hand region, the active contour me-
thod is run twice with different parameter settings. In the
basic iteration loop, for every contour point pi = [xi, yi]
we apply the update equations:

xi = xi + a · Felastic(X, i)
+ b · Fstiff(X, i) + g · Fext(X, i), (9)

yi = yi + a · Felastic(Y, i) (10)

+ b · Fstiff(Y, i) + g · Fext(Y, i), (11)

where a, b, g are some weight parameters and F (X, i) or
F (Y, i) denote the force component along the X axis or
the Y axis, respectively, measured at pi.

4.4. Outer hand and inner palm contours. In a pre-
vious paper, we applied another approach for the compu-
tation of external forces, called the Gradient Vector Field
(GVF) (Xu and Prince, 1998). This allowed better moving
the snake into boundary concavities. The GVF is a den-
se vector field, v(x, y) = [u(x, y), v(x, y)], derived from
the image by minimizing a certain energy functional in a
variational framework (Fig. 4). The minimization of the
functional is a highly computationally expensive solution
and unsuitable for an on-line tracking mode of the image
analysis system. It was observed, however, that retrieval of
the precise shape of the hand is usually not crucial for re-
cognition of hand posture (e.g., the number of fingers can
be successfully counted even if concavities between fin-
gers are not exactly filled by the contour snake). For these
two reasons the computation of the GVF was dropped in
our final solution.

By varying the internal “force weights” in the active
contour method these iterations converge to two different
contours: (i) one covering both the palm and fingers, and
(ii) one related to the palm only.

For detection of the first (outer) contour, the parame-
ters were set to a = 0.1, b = 0.1, g = 0.6.

The second contour should detect the palm area of
the hand only, i.e., it should not include the fingers. For

this purpose the parameter g is set to 0.15. After this chan-
ge the elasticity force is more dominant than in the first
case, and this leads to a contour shorter than the first one.

The setting of parameter a allows controlling the
smoothness of the outer contour. With a higher value of
a (e.g., 0.8), the approach converges more slowly and im-
perfectly reaches the finger boundaries in comparison to
the case of a = 0.1 (Fig. 5). With a lower value of a the
influence of the internal forces is small and the contour
can approach exactly the image edges.

Fig. 5. Two different outer contours related to the hand achieved
for a = 0.8 (a) or a = 0.1 (b).

4.5. Contour difference description. A relocation of
the contour’s control points is established due to an ap-
proximation of existing points. The new control points are
uniformly distributed and their number is fixed. Next the
center of mass of the inner contour is determined. The
crossings of lines y = x + c1 and y = −x + c2 that
goes through the central point with the bottom part of the
inner contour allows elimination of its forearm part.

The distances of all contour points from this mass are
computed, starting from the point that is located lowest in
the image and nearest to the image column in which the
center of mass is located (Fig. 6). Thus we obtain two 1-D
distance distributions. These distributions are subtracted
one from the other and length-normalized, and all nega-
tive values are reset to zero. In the resulting function the
visible tips of fingers correspond to local maximum points
(Fig. 7).

Having computed the contour difference description
we can proceed to finger and palm detection.

The current hand pose is generated from the hand
contour description in three steps. The center of mass and
other specific boundary points of the inner contour deter-
mine the location and size of the palm (Fig. 8(a)). The fin-
gers are detected based on the locations of finger tips with
respect to the projection point of the center of mass onto
the palm rectangle side, opposite to the tips (Fig. 8(b)).
The finger is detected as a thumb when its tip projection
onto the palm rectangle is located below the mass center
point (Fig. 8(c)).
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(a) (b) (c)

Fig. 8. Detected hand pose: palm detection (a), finger detection (b), thumb detection (c).

Fig. 6. Computing differences between corresponding points of
the two contours. The correspondence is established with
respect to the mass center of the inner contour MPinner.

4.6. Hand pose classification. Finally, a hand pose
classification based two contour descriptions can be per-
formed and this pose can then be assigned a specific cha-
racter from a set of 21 characters. The implicit hand mo-
del consists of a box representing the palm and five cylin-
ders that represent the 5 fingers (Fig. 9). The relation of
the palm rectangle width to outer-contour-height induces
the front or side view, while the height-to-height relation
for outer and inner contour allows differentiating between
frontal open palm and fist postures (Fig. 10). In order to
classify the characters, the following features are utilized:
the position of the thumb, the number and configuration of
fingers and hand view (hand orientation) (see Tabela 1).

5. Hand pose set

5.1. Basic character set. The simple but quite reliable
set of double contour-difference features allows detection
of 21 static hand poses. One pose will be reserved for the
break sign, which will terminate every gesture. The other
poses were assigned 20 characters of the Polish alphabet
that appear most often in the language (Przepiórkowski,
2006) (Fig. 11).

Nine diacritic characters (marked by a boundary box)

Fig. 7. Local maxima of the difference function.

Fig. 9. Simple 3-D palm model.

are omitted, first. There are three letters, marked by a stair,
(Q, V, X), which are both rare and of low importance. For
example, they do not appear in the Polish finger alphabet
PAP. We eliminate them from consideration. Finally, Fig.
12 illustrates the 20 characters assigned to static hand po-
ses. The letter ‘J’ has meaning similar to ‘I’, but appears
relatively seldom. Hence this letter will be represented by
a “dynamic” version of the pose for letter ‘I’. The cha-
racters ‘G’ and ‘H’ will be dynamic versions of ‘W’ and
‘Y’, appropriately. The termination sign corresponds to a
“closed” fist pose (Fig. 13).

5.2. Hand motion detection. By detecting a hand mo-
tion in consecutive several images, we change the me-
aning of some characters, to be compatible with the thumb
alphabet (Fig. 14). This short-time tracking of hand pose
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Fig. 10. Front- and side-views of the palm model.

Fig. 11. Expected frequencies of characters in the Polish langu-
age.

is an intermediate processing step between single image
pose classification and gesture recognition. The motion is
computed as a time displacement of the central point of
the hand. The motion computed is quantized into five di-
stinct values: no-motion and motion in each of four major
directions.

By considering the motion information for the basic
hand pose we can generate modified poses, which usual-
ly corresponds to diacritic characters, like ‘Ą’, ‘Ć’, ‘Ę’,
‘Ł’, ‘Ń’, ‘Ó’, ‘Ś’, ‘Ż’ (Fig. 15). Additionally, the rema-
ining characters from the alphabet are detected, which we-
re omitted in the first single-image processing stage (e.g.,
the “moving” version of ‘I’ is ‘J’ and, similarly, ‘W’ →
‘G’, ‘Y’ → ‘H’) (Fig. 16).

6. Gesture recognition by bi-driven
inference

6.1. Gesture representation. A hidden Markov model,
HMM = (S, C, Π,A,B), represents a stochastic process
in time, in terms of (hidden) states S, (visible) observa-
tions C, initial state probabilities Π, state transition pro-
babilities A and output probabilities B (Rabiner and Ju-
ang, 1993). Its special case, the left-right HMM, is useful
to represent possible state paths that correspond to obse-
rvation sequences (Kasprzak, 2009) (Fig. 17).

The model is designed in two stages. First, the num-
ber of states and the model structure have to be deter-
mined. For every gesture, its own left-right sub-model is
created (Fig. 18). The number of HMM states matches
the number of different poses which constitute the gi-
ven gesture. Then the model parameters need to be tra-
ined: λ = (A,B, Π). The Baum–Welch training is ap-

Table 1. Set of 21 signs and their codes corresponding to hand
instances.

No. Thumb Detected Hand view Char-
position fingers acter

1 Not closed (0) Front/Back break
2 Not 5 together (0) Front/Back O
3 Not 1 Front/Back D
4 Not 2 Front/Back Y
5 Not 3 Front/Back W
6 Not 4 Front/Back N
7 Not 5 together Side I

(0,1)
8 Left thumb (1) Front/Back R
9 Left 4 together Front/Back B

+ thumb
10 Left 2 Front/Back L
11 Left 3 Front/Back P
12 Left 4 Front/Back F
13 Left 5 Front/Back M
14 Left 4 together Side U

+ thumb
15 Right thumb (1) Front/Back A
16 Right 4 together Front/Back Z

+ thumb
17 Right 2 Front/Back C
18 Right 3 Front/Back E
19 Right 4 Front/Back S
20 Right 5 Front/Back T
21 Right 4 together Side K

+ thumb

plied (Baum et al., 1970), which is a Maximum Likeliho-
od (ML) procedure that iterates over the learning set and
updates this parameter set in order the maximize the prior
probability: ∑

oi

log P(oi|λj), (12)

where oi = o1
i . . . oTi

i is the i-th training sequence for the
j-th model and λj is the set of the j-th model parameters.

Finally, the sub-models are integrated into a single
model, by connecting their “initial” states with a common
start state and, similarly, their “final” states with a com-
mon terminal state.

The goal of Viterbi search is to find a path in the mo-
del (leading from the start state to the terminal state) that
has the maximum posterior probability given the current
observation sequence:

P(S1S2 . . . StSt+1|o1o2 . . . otot+1)

= P(ot+1|St+1)

· maxSt+1 [P(St+1|St)P(S1 . . . St|o1 . . . ot)], (13)

where S1S2 . . . StSt+1 is the sequence of hidden states in
the HMM, and o1 . . . ot denotes the corresponding obse-
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Fig. 12. Twenty characters assigned to static poses.

Fig. 13. Word termination sign.

rvation sequence. In our approach the observation sequen-
ces are constructed from vectors representing similarities
between the hand detected and each of recognized sym-
bols. The similarity measure is computed from the simi-
larity of particular features such as hand orientation, the
number of fingers visible, and the orientation of a thumb.

6.2. Bi-driven inference. We have designed a hybrid
system for gesture recognition, incorporating both reco-
gnition modules (pose and gesture recognition) into one
scheme and ensuring bi-directional communication be-
tween them.

The benefits of bi-directional communication are
obvious: the top layer module which possesses the infor-
mation on the structure of gesture recognized can provide
the bottom layer module with the data permitting to accu-
rately predict the most expected hand shape and position
in order to increase the accuracy of hand detection. This
concept has been widely used in the problems of object
tracking such as Kalman filters or particle filters; howe-
ver, what we propose here is its extension to the task of
gesture recognition which comprises both the tracking of
the hand through its different shape, orientation and posi-
tion configurations, but also simultaneous recognition of
the gesture performed.

In our view the most convenient method for modeling

Fig. 14. Structure of the short-time tracking step.

Fig. 15. Paths of the hand contour center detected in an image
sequence: random path (a), letter ‘Ą’ represented by a
path and constant pose ‘A’ (b).

the dynamics of this hybrid system is the dynamic Bay-
esian network stochastic model (Murphy, 2002). This mo-
del ensures maximum flexibility in defining relationships
between different system parameters while providing ge-
neral inference and learning techniques. An additional ad-
vantage is that the probabilistic properties of the model
enable to easily represent uncertainty of the recognition
process. The most general form of the network that is pro-
posed is given in Fig. 19.

The main probabilistic element in the network is gi-
ven as St. This is actually composed of several different
discrete variables that together describe the current system
state:

• current probabilities of words Wt, i.e., the “obse-
rvation” variable corresponds to situations of HMM-
based word recognition processes for every possible
word;

• the mode of hand expression dynamics (variable
Dt); could also be interpreted as the stage of single
word recognition, and intuitively associated with the
HMM hidden state;

• current hand posture probabilities (variable Ht) com-
prise posture “observations” that depend on both on
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Fig. 16. Characters assigned to dynamic poses.

Fig. 17. Left-right hidden Markov model.

states Wt and Dt; this state is also used as a “se-
lector” of the motion model for the given stage of a
gesture.

In order to simplify transition probabilities, another
variable denoting reaching the final state of word recogni-
tion (Ft) can be used as well. The relationships betwe-
en particular component variables constituting the meta-
variable St can be further rewritten in the form of a sepa-
rate network. The bottom-up dependence needed for a re-
cursive state filtering process allows the current posterior
probability estimations of competitive words and hand dy-
namics. With this information, these two variables control
(modify), in a top-down manner, the probabilistic distri-
bution of a stochastic variable, created for “hand posture”
representation.

The continuous variable Xt represents the dynamical
parameters of the hand which may comprise its position,
velocity and acceleration along different axes and dimen-
sions (e.g., xy-coordinates, the rotation angle). The value
of the variable depends both on its value in the previous
time-step as well as on the value of the discrete control
variable St (in particular Ht). The latter relationship ma-
kes the system “trajectory-aware” since each phase of the
gesture performed can have a different model of hand mo-
tion associated.

Fig. 18. Words as sequences of hand poses: ‘TAK’ (yes) (a),
‘NIE’ (no) (b), ‘KĄT’ (angle) (c).

Fig. 19. Proposed Bayesian network: iterative structure of two-
slices of temporal representation.

Zt is the observed variable that represents the me-
asurable features of the hand that are retrieved from the
image. This variable depends on both the value of the di-
screte variable Ht (describing the current hand posture)
and the subset of parameters from the continuous variable
Xt (in particular hand position, size and orientation).

The experiments for this proposed control model
used two inference methods common for DBNs: a particle
filter (Arulampalam et al., 2002) and a switching Kalman
filter (Murphy, 1998). The main critical issue identified
was the efficiency trade-offs resulting from the need for
tracking multiple hypotheses (i.e., extending words in a
letter-per-letter manner) while using these two inference
methods. This problem becomes especially apparent when
using larger vocabularies of available hand postures and
gestures.
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7. Implementation and experiments

Fig. 20. Testing environment.

7.1. Implementation. The system was implemented as
a desktop application in the Java language (Fig. 20). The
image sequences were acquired by a low cost digital ca-
mera Logitech QuickCam Pro 9000, with a sensor ma-
trix resolution of 1600 × 1200 pixels and the following
settings: automatic white balance, autofocus and automa-
tic exposure time; however, the automatic white balance
is kept turned off in the phase of recognition. To satisfy
the on-line processing conditions, a low-resolution ima-
ge sequence was acquired frames with the resolution of
320 × 240 pixels, 24 bits RGB pixel and 30 frames per
second.

7.2. Experiments. Some constraints were posed on
the lighting conditions—although either natural or syn-
thetic lighting were applied, highlighting and dark con-
ditions have been avoided. The scene was constrained,
too, to contain only one human skin region, e.g., a single
hand and no face, etc. There could be a nonhomogeneous
background that contains only small skin-color elements
unless they are part of the static background and can be
removed by background subtraction.

The recognition quality is expressed by the percenta-
ge of properly recognized signs or gestures related to the
total number of analyzed frames or sequences.

The training set consisted of 160 test sequences for 5
gestures (words), i.e., 32 sequences per word each (loca-
ted in 40 AVI files). These gestures corresponded to follo-
wing words: ‘TAK’, ‘NIE’, ‘KĄT’, ‘NIC’, ‘PIES’. In the
testing stage other 160 sequences, acquired on-line, were
recognized. It appeared that the system works nearly per-
fectly if the poses are accurately shown, otherwise some
misclassifications of single poses are possible (Fig. 21).
In the left part of the figure, the fingers are not proper-
ly separated from each other. The inner contour did not

sufficiently “deeply” move between the fingers, leading to
insignificant local maxima of the two-contour-difference
function. In the right part of the figure (b) the thumb is
inside the palm area, thus leading to a misinterpretation of
the thumb and the small finger.

Obviously, the number of gestures was small compa-
red with the potential total number of gestures that can be
represented by 4-character words (= 304). Many other ge-
stures could be wrongly accepted if the recognition quality
was considered. For this reason, a “do not know” answer
was added to the gesture recognition stage. If the best so-
lution sentence has a relatively low quality score, then a
“no recognition” result is reported.

We studied only a small set of short-length gestures,
but where the individual characters repeatedly appear, li-
ke: ‘N’ in ‘NIE’ and ‘NIC’, ‘K’ in ‘KĄT’ and ‘TAK’, or
‘I’ in ‘NIE’, ‘NIC’ and ‘PIES’. Hence, these gestures we-
re not far apart from each other in the large coding spa-
ce, and so this situation is mimicking the conditions of a
much larger gesture set. Only 10 static postures appear in
these sentences. However, the selection of postures used
in the experiments implies that the use of a modified set
(providing that hand posture order in the sequence allows
smooth transitions during the gesture, making the gesture
easy to perform) should give comparable results.

Fig. 21. Examples of single pose errors.

Fig. 22. Examples of measured letter sequences for the word
‘PIES’ (‘dog’). Every row represents one sequence.
The letter errors are given in bold. All the words are
properly recognized.

The worst recognition rate of single characters (po-
ses) was from around 75% (for such letters as ‘K’, ‘T’,
‘O’, ‘D’, break) to around 90% for the best recognized
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letters (e.g., ‘N’, ‘I’, ‘E’, ‘P’, ‘S’, ‘A’, ‘C’). To a large
extent these single letter errors were compensated by the
final gesture recognition stage as the word recognition rate
reached nearly 95% (Fig. 22).

The frequent source of hand pose misclassifications
was confusing the “side” and “front” views of the palm in
the case of side-like postures with a significant side pro-
file width. In this way the character ‘K’ was sometimes
falsely classified as the character ‘C’ or ‘Z’. Other errors
originated from mistaking the frontal hand pose with all
five fingers together (like the character ‘O’) with the fron-
tal hand position with a single finger visible (the character
‘D’) or all fingers folded (the “break” sign). A similar me-
chanism was also responsible for taking the “break” sign
for the characters ‘D’, ‘A’ or ‘Z’.

Mistaking frontal and side hand pose or detection of
additional fingers were due to the errors in fitting of the
inner contour, while other inaccuracies in the counting fin-
gers were the result of an improper fit of the outer contour
(e.g., ‘T’ was mistaken for ‘S’, ‘N’, ‘W’ or ‘E’).

Another source of errors was unknown transient po-
stures that appear at the moment of transition between
known hand postures. Some problems were also due to
an inaccurate hand orientation with respect to the model
orientation (e.g., tilted hand).

Since the “break” sign is fundamental in temporal
segmentation of gestures, it received a special treatment
in our system. In order to make the system robust to occa-
sional misclassifications, we imposed a condition concer-
ning the ratio of appearance of the “break” sign in a sub-
sequence required to make the decision concerning word
ending.

The system proved to be robust to different lighting
and background conditions. The system achieved compa-
rable results both in natural and artificial light. Also, a
complex but static background (including hand-color-like
objects) was well handled due to background subtraction.
Most of the problems were observed when the hand was
artificially back-lit.

The processing time of a single frame depends on
the content—on our PC with Sempron 3000+, 1.8 GHz,
the processing times were within the range from 200 ms
(letter ‘I’) to 400 ms (letter ‘T’). The gesture recognition
stage with 5 words in our dictionary needs only a few ms
per frame.

8. Summary

In this paper our previous approach to hand sign recogni-
tion (Kasprzak and Skrzyński, 2006) was modified to han-
dle hand pose sequences with the speed of several frames
per second on a typical PC. A trade-off between single po-
se recognition quality and computational speed was achie-
ved. At the price of increased single-pose errors, we mana-
ged to speed up the application to work in real-time. Much

effort was spent reliably on recognizing the “break” sign.
The drawback of introducing larger pose classification er-
rors is compensated with the help of context information
induced by the gesture model. The modules for short-time
hand tracking and for gesture recognition were added. A
bi-driven control of the word and letter-recognition stages
was designed. The proposed approach is quite universal,
and different letters and words can be assigned to hand
poses and gestures, depending on the application domain.
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