
Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 2, 449–459
DOI: 10.2478/v10006-012-0034-5

BACKPROPAGATION GENERALIZED DELTA RULE FOR THE SELECTIVE
ATTENTION SIGMA–IF ARTIFICIAL NEURAL NETWORK

MACIEJ HUK

Institute of Informatics
Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

e-mail: maciej.huk@pwr.wroc.pl

In this paper the Sigma-if artificial neural network model is considered, which is a generalization of an MLP network with
sigmoidal neurons. It was found to be a potentially universal tool for automatic creation of distributed classification and
selective attention systems. To overcome the high nonlinearity of the aggregation function of Sigma-if neurons, the training
process of the Sigma-if network combines an error backpropagation algorithm with the self-consistency paradigm widely
used in physics. But for the same reason, the classical backpropagation delta rule for the MLP network cannot be used. The
general equation for the backpropagation generalized delta rule for the Sigma-if neural network is derived and a selection
of experimental results that confirm its usefulness are presented.

Keywords: artificial neural networks, selective attention, self consistency, error backpropagation, delta rule.

1. Introduction

In nature, selective attention is a mechanism which pro-
vides living organisms with the possibility to sift incom-
ing data to extract information which is most important
at a given moment and which should be processed in
detail (Broadbent, 1982; Treisman, 1960). When lim-
ited processing capabilities do not allow rapid analysis
of the whole scene of visual and other senses, selec-
tive attention can be viewed as a strategy of dynami-
cal input space selection for gaining predefined goals by
the system (e.g., an organism) interacting with a very
complicated environment (Noton and Stark, 1971; Tsot-
sos et al., 2001; Vanrullen and Koch, 2003). Accord-
ingly, selective attention systems are found to be very
interesting from a theoretical point of view, and also as
tools for many practical applications, such as analysis of
large data sets, real time route planning for autonomic
robots in dynamical environments, and dispersed sen-
sor networks control (Desimone and Duncan, 1995; Ol-
shausen et al., 1993; Houghton and Tipper, 1996; Hager
and Toyama, 1999; Stark et al., 2000; Körding and
König, 2001; Gupta, 2008; Indiveri, 2008; Ferguene and
Toumi, 2009; Pedro and Dahunsi, 2011).

As most of the selective attention systems observed
in nature use neuronal control mechanisms, many re-
searchers try to realize selective attention solutions by us-

ing artificial neural networks. Unfortunately, networks
that use higher-order neuron models, such as Sigma-Pi
(Feldman and Ballard, 1982; Rumelhart et al., 1986; Mel,
1990; Olshausen et al., 1993), Power Unit (Durbin and
Rumelhart, 1990) or Clusteron (Mel, 1992), realize only
a very limited set of attentional mechanisms (Neville and
Eldridge, 2002; Weber and Wermter, 2007).

Thus it can be very interesting that selective at-
tention functionality, which seems to effectively mimic
low-level attentional processes observed in humans, was
found in a recently developed simple generalization of the
well-known MLP network called Sigma-if (Huk, 2004;
2006; 2009). However, the Sigma-if neural network
model to be trainable with use of the backpropagation al-
gorithm (typical for MLP) needs a new, generalized form
of the delta rule that will take care of the noncontinuous
character of the aggregation functions of the Sigma-if neu-
rons.

2. Preliminaries

The Sigma-if neural network is a type of synchronous,
feedforward multilayer Artificial Neural Network (ANN)
and possesses selective attention abilities (Niebur et al.,
2002; Huk, 2004; 2006). Such a neural network does not
use separate centralized attention guidance modules. Its
ability to realize low-level selective attention functional-

maciej.huk@pwr.wroc.pl

450 M. Huk

ity emerges as an effect of synergy between its hidden,
Sigma-if neurons. Each Sigma-if neuron is a special direct
generalization of a sigmoidal neuron which implements
basic selective attention functionality via input connec-
tions grouping and stepwise conditional input signal ac-
cumulation. This is due to the new neuron’s aggregation
function (Duch and Jankowski, 1999; Huk, 2004).

Formally speaking, N dendrites of the Sigma-if neu-
ron are divided into K distinct groups, by complementing
each i-th input connection with an additional integer pa-
rameter θi ∈ {0, 1, . . . , K − 1}, determining membership
in one of the groups. This allows us to divide the process
of signal accumulation into K steps, where K is a function

of the neuron’s grouping vector θ
T

=[θ1, θ2, . . . , θN]:

K(θ) =
N

max
i=1

(θi). (1)

During each step k (from 0 to K − 1), the neuron accu-
mulates data belonging to one selected group, such that

θi = k. (2)

Within each k-th group, partial activation Δϕ(k) is
determined as a weighted sum of input signals and the ap-
propriate Kronecker delta:

Δϕk(w, x, θ) =
N∑

i=1

wixiδ(k, θi), (3)

where wi and xi are coefficients of the neuron’s weight
vector w and an input vector x. This process is repeated
until the activation derived from respective groups ex-
ceeds a preselected aggregation threshold ϕ∗. It can be
described by the following recursive formula (vectors w,
x and θ are omitted for clarity):

ϕk =
{

ΔϕkH(ϕ∗ − ϕk−1) + ϕk−1 if k ≥ 0,
0 if k < 0 ,

(4)
where H is Heaviside’s function. This sum is then treated
as the neuronal activation value. The input from remain-
ing (heretofore unconsidered) groups is neglected. Thus,
the form of the aggregation function ϕSigma-if is

ϕSigma-if(w, x, θ) = ϕK(w, x, θ). (5)

In the final stages of determining the output value Y
of the neuron, the function (5) serves as a parameter of the
nonlinear threshold (e.g., sigmoidal) function F :

Y (w, x, θ) = F (ϕSigma-if(w, x, θ)). (6)

It is worth noting that the described model assumes
that the state graph used during signal aggregation is al-
ways a simple directed path of nonterminal nodes corre-
sponding to the accumulation procedure of neural activa-
tion. In a general case, the Sigma-if neuron, besides the

vector of weights w, includes one real parameter for the
aggregation threshold ϕ∗, and an additional vector θ̄ col-
lecting connections with only one nominal coefficient for
each neuronal input connection.

In comparison with MLP neural network training,
searching for a globally optimal set of the Sigma-if net-
work parameters would be very computationally chal-
lenging. This is due to the noncontinuous character of
the Sigma-if neuron grouping vector. While there is no
quick and effective method of global searching for net-
work weights and grouping vectors, one can assume that,
at each Sigma-if neuron, coefficients of the grouping vec-
tor θ are in fact direct functions of the weight vector. In the
work of Huk (2004) the proposed solution is to sort inputs
of a given Sigma-if neuron by their weights, and assign
�N/K� connections with the highest weights to the most
significant group θ1, next �N/K� connections to group
θ2, and so on.

In the above solution, the mutual relationship be-
tween connection weights and grouping vectors allows
an improvement of the backpropagation algorithm by
the application of the self-consistency idea widely used
in physics (Noh et al., 1991; Fonseca et al., 1998;
Raczkowski et al., 2001). To realize that, Sigma-if net-
work training begins with random values of connection
weights and with all connections assigned to the single
group. This assures that at the beginnig of the training
process the network behaves as a multilayer ANN with
sigmoidal neurons, and all of the connections between
neurons are treated as equally important. Then Sigma-if
network connection weights are changed by an error
backpropagation algorithm for ω training epochs without
changes in grouping vectors. After ω training epochs, ac-
tual grouping vectors are computed for all Sigma-if neu-
rons and then connection weights are changed again by
the error backpropagation algorithm for the next ω train-
ing epochs. This process is repeated until the resulting
network meets the stop condition of the backpropagation
method.

Such alternate changes of two mutually dependant
sets of parameters of the Sigma-if model can lead to op-
timization of both weights and grouping vectors even if
changes of only one of these sets (e.g., weights) are di-
rectly guided by a known optimization algorithm. Thus
the only element needed to implement such a process for
a Sigma-if neural network is to know the generalized delta
rule for this model.

3. Backpropagation delta rule for the
multilayer feedforward neural network

It is convenient to show the derivation of a generalized
delta rule for Sigma-if neural network in comparison with
a backpropagation generalized delta rule for the MLP net-
work. Thus, regardless of common knowledge about the

Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network 451

backpropagation algorithm, first we need to recall ele-
ments of this method (Rumelhart et al., 1986; Korbicz
et al., 1994). This will simplify further parts of the deriva-
tion and will serve as a definition of a common set of sym-
bols.

Let us consider the general case of a multilayer feed-
forward neural network with a full network of connections
between neurons in adjacent layers, and a nondecreasing
and differentiable activation function in individual neu-
rons. To establish the symbols, we assume that every μ-th
learning pattern is a pair containing the input vector xzµ

and the corresponding output vector yzµ. Simultaneously,
consecutive layers of the network are numbered with in-
dex m and values from 1 to M , where layer m consist
of nm neurons. Consequently, the weight of the connec-
tion between the j-th neuron in the m-th layer and the
i-th neuron of the previous layer is written as wm

ji (in the
case of double lower indices, the left subscript is the num-
ber of the neuron in the layer of the number indicated in
the superscript, while the right subscript is the index of
the neuron input). Similarly, the values of the aggrega-
tion function ϕ and the activation function F (ϕ) for the
j-th neuron of the m-th layer are denoted, respectively, by
ϕmµ

j and umµ
j , while for the i-th neuron of the input layer,

which by definition realizes an identity transfer function,
u1µ

i is equal to xzµ
i .

Using the above notation and assuming that all neu-
rons of network hidden layers are sigmoidal (with the ag-
gregation function being a linear combination of input val-
ues and weights connections), we get the output values of
neurons in the form

umµ
j = F (ϕmµ

j) = F

(
nm∑

i=1

wm
j,iu

(m−1)µ
i

)
. (7)

Operation of the backpropagation algorithm comes
down to a cyclic repetition of four main phases. Using
the designations made above, we can write that in each
t-th cycle of the training process the phases for each μ-th
training vector are as follows:

1. Provide the μ-th training vector for the network in-
puts and determine the value umµ

j of the output of
each j-th neuron, in all layers of the network—from
inputs to outputs (for m = 1,2, . . . ,M).

2. Calculate the value of the error δMµ
j for each of nM

output neurons and the sum ξµ of their squares.

3. Propagate the output error backward from outputs to
inputs with calculation of errors δmµ

j for all neurons
in hidden layers (for m = M, M − 1, . . . , 2).

4. Modify connection weights, starting from the output
layer and ending in the input layer, according to the
generalized delta rule for sigmoidal neurons and with

the formula

w
m(t+1)
ji = w

m(t)
ji + Δwm

ji . (8)

After presenting all the training vectors the stopping con-
dition of the algorithm is checked and, if it is not met, all
the above steps are repeated in the next training cycle.

Leaving aside the question of the maximum allow-
able number of algorithm cycles, a typical backpropaga-
tion stopping condition is to determine whether the neural
network output error for all vectors is lower than a given
threshold. The network output error for a given μ-th train-
ing vector is a sum of squares of output neuron error val-
ues, given by the formula

ξµ =
1
2

nM∑

j=1

(yzµ
j − uMµ

j)2. (9)

We can thus define an error created in the j-th neuron of
the m-th layer as

δmµ
j = − ∂ξµ

∂ϕmµ
j

, (10)

which can be converted to the form

δmµ
j = − ∂ξµ

∂umµ
j

∂umµ
j

∂ϕmµ
j

= − ∂ξµ

∂umµ
j

F ′(ϕmµ
j). (11)

For the output layer we can directly write

∂ξµ

∂uMµ
j

= −(yzµ
j − uMµ

j). (12)

In the case of hidden layers, an analogous partial
derivative is, however, a bit more troublesome to calculate,
due to the complexity of the dependence of ξµ on umµ

j .
To perform necessary transformations, one should use the
dependence of the neuron aggregation function ϕ

(m+1)µ
l

in layer m + 1 on the value of umµ
j . But by taking into

account all contributions of the corresponding changes in
aggregation functions to the change in the network error,
and by using the chain rule of differentiation of composite
functions, we obtain

∂ξµ

∂umµ
j

=
nm+1∑

l=1

∂ξµ

∂ϕ(m+1)µ
l

∂ϕ
(m+1)µ
l

∂umµ
j

. (13)

Recalling now (10) and performing the differentiation of
(7) with respect to umµ

j , we can finally write

∂ξµ

∂umµ
j

= −
nm+1∑

l=1

δ
(m+1)µ
j w

(m+1)µ
lj . (14)

On the basis of Eqns. (11), (12) and (14), we can as-
sign each neuron of a multilayer network a suitable output

452 M. Huk

error value. For the output layer, the error of the neuron
output is given by

δMµ
j = F ′(ϕMµ

j)(yzµ
j − uMµ

j), (15)

and in the case of hidden neurons their output error has
the form

δmµ
j = F ′(ϕmµ

j)
nm+1∑

l=1

δ
(m+1)µ
j w

(m+1)µ
lj . (16)

However, to specify the relevant rule of changing
connection weight wm

ji in the direction of the error gra-
dient in the space of weights, which would provide im-
proved network operation in the next step of the training
algorithm, we have to determine the value of the expres-
sion

Δwm
ji = −η

∂ξµ

∂wm
ji

= −η
∂ξµ

∂ϕmµ
j

∂ϕmµ
j

wm
ji

. (17)

Equation (7) shows that the second partial deriva-
tive occurring on the right-hand side of (17) is equal to
u

(m−1)µ
i . Moreover, its first partial derivative on the basis

of (11) can be written as

∂ξµ

∂ϕmµ
j

=
∂ξµ

∂umµ
j

∂umµ
j

∂ϕmµ
j

= −δmµ
j . (18)

Thus, we finally get a generalized form of the delta rule:

Δwm
ji = ηδmµ

j u
(m−1)µ
i , (19)

while for the output neurons it is expressed as

ΔwM
ji = ηu

(M−1)µ
i F ′(ϕMµ

j)(yzµ
j − uMµ

j) (20)

and for hidden neurons as

Δwm
ji = ηu

(m−1)µ
i F ′(ϕmµ

j)
nm+1∑

l=1

δ
(m+1)µ
j w

(m+1)µ
lj .

(21)
As the effect of the use of the above set of expres-

sions, in each cycle of the backpropagation algorithm the
neural network parameters are changed in the direction of
the largest possible decrease in the error function. As a re-
sult, repeated presentation of all training vectors (at each
cycle, if possible, in different order) leads to local mini-
mization of the error function, while the size of the opti-
mization steps is steered by the parameter η, often called
the learning factor.

4. Generalized delta rule for the Sigma-if
neural network

For a multilayer Sigma-if neural network, the first two
phases of the backpropagation algorithm—computation

of the network output values and determination of neu-
rons’ output errors—almost do not change in compari-
son with a multilayer ANN with sigmoidal neurons. The
method of calculating the error components δMµ

j for the
output layer and the μ-th training vector remains un-
changed as a result of the independence of the derivative
of (10) of the form of aggregation functions of network
output neurons. As a result, the function (9), determin-
ing the mean square error over all outputs of the neural
network, remains unmodified. In turn, the main differ-
ence in Sigma-if network training is the need to memorize
for each j-th Sigma-if neuron in the m-th layer the num-
ber k∗mµ

j of groups of input connections activated during
its output computation for the μ-th training vector. Thus,
looking one more time at the definition (5) we can for-
mally write that in an interesting case of low-level selec-
tive attention, when not all input connections are used to
compute neuron output value,

∃ k∗mµ
j < K : ϕk∗mµ

j
(w, x, θ) ≥ ϕ∗. (22)

The values k∗ are also essential for proper execu-
tion of the error backpropagation procedure, as they keep
information about which input connections of the given
neuron influenced its output for the given training vec-
tor. These values also allow rewriting the definition of
the Sigma-if aggregation function (5) in the non-recursive
form:

ϕSigma-if(w, x, θ) =
k∗∑

k=1

Δϕk(w, x, θ)

=
k∗∑

k=1

N∑

i=1

wixiδ(k, θi),

(23)

which is useful in practical implementations and, which
is more important, it will be needed during further formal
transformations.

Due to the use of the aggregation function ϕSigma-if

during the error backpropagation phase, the method of de-
termining the errors in the output neurons undergoes a for-
mal change. It can be shown for the aggregation function
given by the expression (23), by replacing the number of
neuron inputs N and neuron input values xi with the num-
ber nm of neurons in the previous layer m and their out-
put values umµ

j , respectively, and by calculating again the
derivative (13) (in the case of double lower indices, the
left subscript is the number of a neuron in the layer of the
number indicated in the superscript, while the right sub-
script is the number of the neuron input; for simplicity, the
‘Sigma-if’ subscript of the aggregation function is further

Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network 453

omitted):

∂ϕ
(m+1)µ
l

∂umµ
j

=
∂

∂umµ
j

k
∗(m+1)µ
l ∑

k=1

nm∑

i=1

(
wm+1

l,i umµ
i δ(k, θm+1

l,i)

)
.

(24)

Hence, after expanding the sum over k and perform-
ing the differentiation of the right-hand side, the above
equation takes the form

∂

∂umµ
j

(
nm∑

i=1

wm+1
l,i umµ

i δ(1, θm+1
l,i) + . . .

+ · · · +
nm∑

i=1

wm+1
l,i umµ

i δ(k∗(m+1)µ
l , θm+1

l,i)

)

= wm+1
l,j δ(1, θm+1

l,j) + wm+1
l,j δ(2, θm+1

l,j) + . . .

+ · · · + wm+1
l,j δ(k∗(m+1)µ

l , θm+1
l,j).

(25)

Then, by factoring out the common weight terms, we can
write

∂ϕ
(m+1)µ
l

∂umµ
j

=wm+1
l,j

k
∗(m+1)µ
l ∑

k=1

δ(k, θm+1
l,j). (26)

However, the sum of Kronecker deltas appearing on
the right-hand side of (26) may take only two values: one
when the j-th input of the l-th neuron belongs to one of
the groups active during signal aggregation for the vector
μ, and zero otherwise. In the first case, the component
of the θm+1

l,j grouping vector assigned to the j-th input
connection is less than or equal to the number of active
groups k

∗(m+1)µ
l , and in the second one it is greater than

this value. This allows us to conclude that

∂ϕ
(m+1)µ
l

∂umµ
j

= wm+1
l,j H(k∗(m+1)µ

l − θm+1
l,j). (27)

Finally, by applying the derivative calculated in this
way to (13), one can determine the formula for the out-
put error of j-th neuron in the m-th hidden layer of the
Sigma-if neural network (based on (11)):

δmµ
j = F ′(ϕmµ

j)

·
nm+1∑

l=1

(
δ
(m+1)µ
l wm+1

l,j H(k∗(m+1)µ
l − θm+1

l,j)

)
,

(28)

where the parameter l enumerates consecutive neurons in
layer m + 1.

The above expression differs from the corresponding
formula (16) for the multilayer feedforward network with

sigmoidal neurons only by the appearance of the Heavi-
side function. Due to this change, when not all inputs of
the Sigma-if neuron are involved in determining its output
value, during the backpropagation phase the error is prop-
agated only by the connections that were used. However,
this is fully consistent with the idea of the backpropaga-
tion algorithm. Neuron connections inactive during the
aggregation of the input signals, despite non-zero weights
and availability of signals, do not make any contribution
to the activation of a neuron, and consequently, they do
not influence the Sigma-if neurons output error values.
Thus the weights of inactive connections should not be
changed.

To determine the general rule of weight modification
in the network of Sigma-if neurons, one should calculate
the expression (17) with the use of Eqn. (28). Therefore,
the following derivative requires consideration:

∂ϕmµ
j

∂wm
j,i

=
∂

∂wm
j,i

k∗mµ
j∑

k=1

nm∑

i=1

wm
j,iu

(m−1)µ
i δ(k, θm

j,i). (29)

However, it is easy to note the similarity between the
above expression and the formula (24). By analogy, with-
out unnecessary transformations, we get

∂ϕmµ
j

∂wm
j,i

=u
(m−1)µ
i H(k∗mµ

j − θm
j,i). (30)

As a result, the generalized delta rule specifying the
change in the weight value of the i-th input of the j-th
neuron in the m-th Sigma-if network layer takes the form

Δwm
j,i =ηδmµ

j u
(m−1)µ
i H(k∗mµ

j − θm
j,i), (31)

where u
(m−1)µ
i is the output value of the i-th neuron in

m-1 layer for training vector μ, and η is a learning factor.
Finally, after taking into account the relevant formu-

las for errors of different elements of the Sigma-if net-
work, the generalized delta rule for the output layer of its
neurons is given by

ΔwM
j,i

= ηu
(M−1)µ
i H(k∗Mµ

j − θM
j,i)F

′(ϕMµ
j)(yzµ

j − yµ
j),

(32)

while its counterpart for the hidden layers of Sigma-if neu-
rons is

Δwm
j,i

= ηu
(m−1)µ
i H(k∗mµ

j −θm
j,i)F

′(ϕmµ
j)

·
nm+1∑

l=1

(
δ
(m+1)µ
l wm+1

l,j H(k∗(m+1)µ
l − θm+1

l,j)

)
.

(33)

The Heaviside function appearing in the expression
(31) can be viewed as a mechanism that counteracts un-
necessary modifications of the network structure in those

454 M. Huk

parts which are not used for determining the output values
of individual neurons for a given training vector. Thus,
both in the hidden and the output layer, the weights of
connections that were inactive during the process of input
signals accumulation are not modified.

5. Results of experiments

The generalized delta rule for the Sigma-if neuron and its
conditional aggregation function presented above was ad-
ditionally examined by verification of the whole Sigma-if
network properties using example classification tasks of
selected benchmark problems of the UCI Machine Learn-
ing Repository. During tests, simulated Sigma-if neural
networks were compared with MLP networks with the
same architectures (one hidden layer, the number of neu-
rons in layers dependent on the solved problem—see fig-
ures below). Their generalization abilities were addition-
ally analysed against the best results of other machine
learning classification methods (see, e.g., Huk, 2006). As
the sigmoidal neuron is a special case of a Sigma-if neu-
ron, multilayer networks with sigmoidal neurons were
simulated by Sigma-if networks with the number of in-
puts groups K of all Sigma-if neurons set to one. In all
cases, standard input signal coding was used, output cod-
ing was bipolar and answers of the neural network were
computed in the winner-takes-all manner.

Along with classification accuracies u for training
and γ for test data, properties such as the neural network
data processing time τ as well as hidden connections and
network input activity (designated by hca and nia, re-
spectively) were considered. Hidden connections activ-
ity hca and network inputs activity nia were used to rep-
resent the percentage ratio of the number of hidden and
input connections used during data processing, compared
with all of the network’s hidden and input connections,
respectively. These parameters allowed checking if hid-
den Sigma-if neurons use their selective attention ability
in practice. For the completeness of the analysis, for each
given problem and trained network, the percentage of all
inputs used to classify all test vectors niu was calculated.
This was important in order to determine if selective atten-
tion functionality is also realized at the level of the whole
Sigma-if network. All measured values were calculated as
averaged outcomes of ten independent 10-fold cross vali-
dations.

To precisely check how selective attention abilities
of the Sigma-if network influence the properties of the re-
sulting models, beside generalization γ of the networks
that were final results of each training, classification per-
formance was measured also for each network model gen-
erated in each step of backpropagation during validation
steps. This allowed finding out how selective attention
changes maximal classification accuracy of test data (γm)
reachable by the networks generated during one average

training. For networks with the greatest γm, also clas-
sification accuracy for training data (um) was measured.
Again, to reduce the influence of initial network weights
selection on the results, all classification accuracies were
averaged for all steps of ten independent 10-fold cross
validations. It must be stressed that classification perfor-
mance of networks measured during backpropagation was
not used to control the training process. The reason to col-
lect additional data was checking for possible unpredicted
influence of using Sigma-if neurons on the course of the
training process.

During experiments, also the average data process-
ing time τ of the input vector for all trained networks was
measured to check relative data processing costs of MLP
and Sigma-if networks. All time measurements were con-
ducted on a single dedicated computer with a 2.6 GHz
processor. Regardless of the very precise time measure-
ment procedure used, actual timings on other hardware
setups may vary considerably. But the presented results
can still be used to show the order of possible gains for
time-critical applications if the Sigma-if network is used.

Other parameters, such as the aggregation thresh-
old ϕ∗ and the grouping vector actualization interval ω,
were set to 0.6 and 25, respectively, following prelimi-
nary tests. During those tests, also the number of hidden
neurons for each problem was preselected to the value
for which a multilayer feedforward neural network with
sigmoidal neurons achieved the lowest average general-
ization error during ten independent 10-fold cross valida-
tions. The backpropagation stop condition, identical in all
experiments, was using two constant thresholds to check
if the training algorithm reached given the classification
accuracy of training data or the maximal number of 8000
training epochs.

The obtained results indicate that increasing the num-

78

80

82

84

86

88

90

92

94

96

98

100

35

40

45

50

55

60

65

70

75

1 2 3 5 7 9 11 16 21 26 31 51 61 91 121

K

[%
]

[
s
]

�u ��������

���� �s

� ���m um ���

Fig. 1. Time of Sigma-if network output signal generation τ , the
classification accuracies of training and test data for the
final (u and γ) and for the best networks obtained (um

and γm) for the Sonar problem vs. the number of hidden
neuron input connections groups K (network architec-
ture: 60 inputs, 30 hidden neurons, 2 outputs).

Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network 455

77

79

81

83

85

87

89

91

93

95

97

99

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

K

1 2 3 5 7 9 11 16 21 26 29 41 61

[%
] [
s
]

�

u ��������

���� �s

� ���m um ���

Fig. 2. Time of Sigma-if network output signal generation τ ,
the classification accuracies of training and test data for
the final (u and γ) and for the best networks obtained
(um and γm) for the HeartC problem vs. the number of
hidden neuron input connections groups K (networks ar-
chitecture: 28 inputs, 10 hidden neurons, 2 outputs).

ber of Sigma-if neuron input groups K to more than one
results in an increase in generalization γ and classifica-
tion accuracy of test data γm of the best networks obtained
during trainings. At the same time one can observe a si-
multaneous decrease in the overall data processing time τ .
The drawback here is a decrease in the classification accu-
racy of training data u also visible in the case of the best
generated networks (parameter um). Typical examples of
such dependencies, for small and medium size benchmark
problems such as Wine, Votes, Crx or Wisconsin Breast
Cancer, can be observed for the Sonar and HeartC prob-
lems, which are presented in Figs. 1 and 2 (as the number
of input connections groups K is discrete, values in the
presented figures are connected with lines only to ease the
analysis of the results). For larger problems, e.g., Adult
and Mushroom (Figs. 3 and 4), the increase in γ and γm

for given parameters is at most small and can be observed

80

81

82

83

84

85

86

1 2 3 5 7 9 11 21 31 51 81 101

12

14

16

18

20

22

24

26

K

[%
]

[
s]

�

u ��������

���� �s

� ���m um ���

Fig. 3. Time of Sigma-if network output signal generation τ , the
classification accuracies of training and test data for the
final (u and γ) and for the best networks obtained (um

and γm) for the Adult problem vs. the number of hidden
neuron input connections groups K (networks architec-
ture: 105 inputs, 4 hidden neurons, 2 outputs).

92

93

94

95

96

97

98

99

100

1 2 3 5 7 9 11 21 31 51 81 101 125 181 251

6

7

8

9

10

11

12

K

[%
]

[
s
]

�

u ��������

���� �s

� ���m um ���

Fig. 4. Sigma-if network activity of hidden connections hca,
the classification accuracy of test data for the final (γ)
and the best networks obtained (γm) for the Mushroom
problem vs. the number of hidden neuron input con-
nections groups K (network architecture: 125 inputs, 2
hidden neurons, 2 outputs).

only for numbers of input groups K less than five. The ob-
served decrease in the classification accuracy of training
data is most probably caused by the fact that it is harder
to learn when the neuron’s input space is changed every
ω epoch. It should also be remembered that, especially
for neural networks with a larger number of inputs, a low
value of the aggregation threshold ϕ∗ can have significant
influence on the network performance both on training
and test data, indirectly setting a strong limit on the num-
ber of network inputs being processed for greater values of
K . In the case of the Mushroom data set for K = 11, the
increase of ϕ∗ from 0.6 to 1.8 resulted in an increase of the
average values of u, γ and γm to 99.3±0.9%, 99.4±0.7%
and 99.8±0.7%, respectively, while average values of the
activity of hidden connections hca, the activity of network
inputs nia and the number of inputs niu used were still as
low as 11 ± 4%, 20 ± 7% and 52 ± 9% (cf. Figs. 4 and
9). Thus by tuning parameters of the Sigma-if network to
the problem size one can achieve very good results also
for big data sets.

However, and more importantly, for all benchmark
problems considered, the obtained increase in the classi-
fication accuracy of test data (γ and γm) is a result of re-
jecting redundant or noisy signals from processed data and
the consequence of the reduction of problem complexity
by decreasing its dimensionality. Another source of such
properties of the Sigma-if network is splitting the initial
problem into a set of K subproblems due to multi-step,
conditional generation of neurons outputs. In turn, a de-
crease in the network’s outputs generation time τ is caused
by reduction of the network’s hidden connections activity
hca (see Fig. 5 for Sonar and Fig. 6 for Votes problems).

It is also worth noting that the visible increase in the
HeartC data processing time τ , for K greater than seven
inputs groups, is the effect of a linear increase in the time
cost connected with the existence of additional instruc-

456 M. Huk

tions for processing the grouping vector θ. This factor can
be easily seen for all benchmark problems considered for
the numbers of groups K greater than the given number
of network inputs. Without it, the data processing time
would semi logarithmically decrease with rising K . This
reflects the character of the changes of Sigma-if network
hidden hca and input connection activities nia as a func-
tion of K , which can be observed for the Votes problem
in Figs. 6 and 8. Therefore the obtained strong reduction
of hidden connections activities confirms earlier conclu-
sion that the data processing time reduction is connected
with Sigma-if neurons’ selective attention abilities, which
can be observed also for large problems in Figs. 7 and 9
(Adult and Mushroom problem, respectively). All this is
clear evidence that Sigma-if neurons use selective atten-
tion, and that this can reduce the generalization error level
as well as data processing costs.

The conducted experiments disclose also that for a
Sigma-if model generated with the use of the presented
training method, selective attention can be observed on the
level of the whole Sigma-if network. The analysis of re-
sults indicates (Figs. 7–9) that, when a significant decrease
in network input activity nia occurs, one can expect a
simultaneous reduction in the number (niu) of Sigma-if
network inputs used to classify data, without a notable
decrease in classification accuracy in comparison to the
analogous multilayer feedforward network with sigmoidal
neurons.

The above results form strong evidence that the pre-
sented generalized delta rule for the Sigma-if neural net-
work can be effectively used to generate valuable classifi-
cation models with selective attention functionality. But it
is also interesting how such a method influences the length
of the training process. As can be seen in Fig. 10 for cho-
sen benchmark classification problems such as Sonar, Crx,
Wine, HeartC and Breast Cancer Wisconsin, the training

90

92

94

96

98

100

1 2 3 5 7 9 11 16 21 26 31 51 61 91 121

K

0

20

40

60

80

100

�m

um

avg hca

min hca

max hca

h
c
a

[%
]

u
,

[%
]

�
m

m

Fig. 5. Sigma-if network activity of hidden connections hca,
the classification accuracy of training um and test γm

data for the best networks obtained for the Sonar prob-
lem vs. the number of hidden neuron input connections
groups K (network architecture: 60 inputs, 30 hidden
neurons, 2 outputs).

92

94

96

98

100

1 2 3 5 7 9 11 16 21 31 41 49 81 101

0

10

20

30

40

50

60

70

80

90

100

K

�
�

,
[%

]
m

h
ca

[%
]

�m

avg hca

min hca

max hca

�

Fig. 6. Sigma-if network activity of hidden connections hca,
the classification accuracy of test data for the final (γ)
and the best networks obtained (γm) for the Votes prob-
lem vs. the number of hidden neuron input connections
groups K (network architecture: 48 inputs, 2 hidden
neurons, 2 outputs).

of the Sigma-if neural network (for K greater than 1 and
less than 9) takes 20–25% fewer training epochs than the
training of the MLP network (K = 1). In connection
with observed 25–40% reduction of the computation time
for the Sigma-if network outputs, this can accelerate the
training process even more than twice.

6. Summary and future work

In this work the generalized delta rule for the Sigma-if
neural network was formally presented. Its detailed
derivation was shown on the basis of an analogous deriva-
tion for the MLP network. For completeness, the back-
propagation algorithm combined with the self-consistency
idea was discussed, as the training method which can use
the derived equation to train Sigma-if neural networks.

In the second part of this article, results of ex-
periments that demonstrate the usability of the derived

80

81

82

83

84

85

86

87

1 2 3 5 7 9 11 21 31 51 81 101

0

10

20

30

40

50

60

70

80

90

100

K

u
,

[%
]

�
m

m

n
ia

,
n
iu

[%
]

�m
avg nia
min nia

max nia

niu

Fig. 7. Sigma-if network inputs activity nia, the number of
network inputs used niu, the classification accuracy of
training um and test γm data for the best networks ob-
tained for the Adult problem vs. the number of hidden
neuron input connections groups K (network architec-
ture: 105 inputs, 4 hidden neurons, 2 outputs).

Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network 457

40

50

60

70

80

90

100

1 2 3 5 7 9 11 16 21 31 41 49 81 101

K

0

20

40

60

80

100

�m

um avg nia

min nia

max nia

niu

u
,

[%
]

�
m

m

n
ia

,
n

iu
[%

]

Fig. 8. Sigma-if network inputs activity nia, the number of
network inputs used niu, the classification accuracy of
training um and test γm data for the best networks ob-
tained for the Votes problem vs. the number of hidden
neuron input connections groups K (network architec-
ture: 48 inputs, 2 hidden neurons, 2 outputs).

equation were shown. For selected classification bench-
mark problems of the UCI Machine Learning Repository,
trained Sigma-if networks were able to achieve better clas-
sification results than the best MLP networks. But what
is more important, the obtained Sigma-if neural networks
possessed also the selective attention ability. It was shown
how it increases neural network classification properties
and how it reduces the time of data processing by the net-
work. The resulting effect of training epochs number re-
duction was also discussed.

While the Sigma-if network has no specialized or
separate attention guiding unit, all observed attentional
activities can emerge only as an effect of synergy be-
tween individual neurons. Thus the Sigma-if model ac-
companied with the presented training method can be a
very promising solution for applications such as remote
sensing in dispersed sensor networks as well as automatic

92

93

94

95

96

97

98

99

100

1 2 3 5 7 9 11 21 31 51 81 101 125 181 251

0

10

20

30

40

50

60

70

80

90

100

K

u
,

[%
]

�
m

m

n
ia

,
n

iu
[%

]

�m

um avg nia
min nia

max nia

niu

Fig. 9. Sigma-if network inputs activity nia, the number of
network inputs used niu, the classification accuracy of
training um and test γm data for the best networks ob-
tained for the Mushroom problem vs. the number of hid-
den neuron input connections groups K (network archi-
tecture: 125 inputs, 2 hidden neurons, 2 outputs).

200

400

600

800

1000

1200

1 3 7 11 16 26 31 48 61 91 121

K

N
u
m

b
e
r

o
f
tr

a
in

in
g

e
p
o
c
h
s

Sonar

Crx

Wine

HeartC

BrcW

Fig. 10. Number of training epochs of the backpropagation al-
gorithm for the Sigma-if network for selected UCI Ma-
chine Learning Repository problems vs. the number of
hidden neuron input connections groups K.

robot navigation and control. This is because the selective
attention feature introduces new possibilities in the area of
analyzing the network decision process via its inputs ac-
tivity interpretation. This can point at features of given
data sets that are most important for classification, and
help to identify features that are irrelevant, redundant or
contaminated by noise. All this makes the Sigma-if neu-
ral network a very useful tool in the data acquisition and
analysis domain.

Due to very interesting theoretical and practical prop-
erties, the Sigma-if model and the presented training
method should be further tested on benchmark and real-
life data. Also, the whole idea of synchronized condi-
tional signals aggregation should be further explored, as
aggregation functions other than the one considered in this
work can be proposed, and for many of them derivation of
the generalized delta rule can be challenging. Preliminary
experiments show that there exist at least a few of such
aggregation functions which allow achieving even better
results than presented in this work.

Another issue worth exploring is examina-
tion if the Sigma-if network could be success-
fully trained with use of fast converging methods
such as Broyden–Fletcher–Goldfarb–Shanno and
Levenberg–Marquardt. Those methods use local approx-
imates of Hessian matrix of the neural network error
function, which can fail as the Sigma-if network in each
training step operates potentially in a different subspace
of initial set of parameters. All this makes a wide and
promising direction of research on neuronal models of
low-level selective attention, and is presently a subject of
continuous investigation.

References

Broadbent, D. (1982). Task combination and selective intake of
information, Acta Psychologica 50(3): 253–290.

458 M. Huk

Desimone, R. and Duncan, J. (1995). Neural mechanisms of
selective visual-attention, Annual Review of Neuroscience
18(1): 193–222.

Duch, W. and Jankowski, N. (1999). Survey of neural transfer
functions, Neural Computing Surveys 2(1): 163–212.

Durbin, R. and Rumelhart, D. (1990). Product units: A com-
putationally powerful and biologically plausible exten-
sion to backpropagation networks, Neural Computation
1(1): 133–142.

Feldman, J. and Ballard, D. (1982). Connectionist models and
their properties, Cognitive Science 6(3): 205–254.

Ferguene, F. and Toumi, F.F. (2009). Dynamic external force
feedback loop control of a robot manipulator using a neu-
ral compensator—Application to the trajectory following
in an unknown environment, International Journal of Ap-
plied Mathematics and Computer Science 19(1): 113–126,
DOI: 10.2478/v10006-009-0011-9.

Fonseca, L., Jimenez, J., Leburton, J. and Martin, R. (1998).
Self-consistent calculation of the electronic structure and
electron-electron interaction in self-assembled InAs-GaAs
quantum dot structures, Physical Review B 57(7): 4017–
4026.

Gupta, M. (2008). Correlative type higher-order neural units
with applications, IEEE International Conference on Au-
tomation and Logistics, ICAL 2008, Qingdao, China,
pp. 715–718.

Hager, G. and Toyama, K. (1999). Incremental focus of attention
for robust visual tracking, International Journal of Com-
puter Vision 35(1): 45–63.

Houghton, G. and Tipper, S. (1996). Inhibitory mechanisms
of neural and cognitive control: Applications to selec-
tive attention and sequential action, Brain and Cognition
30(1): 20–43.

Huk, M. (2004). The sigma-if neural network as a method of
dynamic selection of decision subspaces for medical rea-
soning systems, Journal of Medical Informatics & Tech-
nologies 7(1): 65–73.

Huk, M. (2006). Sigma-if neural network as a use of selective
attention technique in classification and knowledge dis-
covery problems solving, Annales UMCS Informatica AI
5(2): 121–131.

Huk, M. (2009). Learning distributed selective attention strate-
gies with the Sigma-if neural network, in M. Akbar and
D. Hussain (Eds.), Advances in Computer Science and IT,
In-Tech, Vukovar, pp. 209–232.

Indiveri, G. (2008). Neuromorphic VLSI models of selective
attention: From single chip vision sensors to multi-chip
systems, Sensors 8(9): 5352–5375.

Korbicz, J., Obuchowicz, A. and Uciński, D. (1994). Unidi-
rectional networks, in L. Bolc (Ed.), Artificial Neural Net-
works: Foundations and Applications, Akademicka Ofi-
cyna Wydawnicza PLJ, Warsaw, pp. 35–58.

Körding, K. and König, P. (2001). Neurons with two sites of
synaptic integration learn invariant representations, Neural
Computation 13(12): 2823–2849.

Mel, B. (1990). The sigma-pi column: A model of associative
learning in cerebral cortex, Technical report, CNS Memo
6, Computation and Neural Systems Program, California
Institute of Technology, Pasadena, CA.

Mel, B. (1992). The clusteron: Toward a simple abstraction for a
complex neuron, in J. Moody, S. Hanson and R. Lippmann
(Eds.), Advances in Neural Information Processing Sys-
tems, Vol. 4, Morgan Kaufmann, San Mateo, CA, pp. 35–
42.

Neville, R. and Eldridge, S. (2002). Transformations of sigma-
pi nets: Obtaining reflected functions by reflecting weight
matrices, Neural Networks 15(3): 375–393.

Niebur, E., Hsiao, S. and Johnson, K. (2002). Synchrony: A neu-
ronal mechanism for attentional selection?, Current Opin-
ion in Neurobiology 12(2): 190–194.

Noh, T., Song, P. and Sievers, A. (1991). Self-consistency condi-
tions for the effective-medium approximation in composite
materials, Physical Review B 44(11): 5459–5464.

Noton, D. and Stark, L. (1971). Scanpaths in saccadic eye move-
ments while viewing and recognizing patterns, Vision Re-
search 11(9): 929–942.

Olshausen, B., Anderson, C. and Van Essen, D. (1993). A neu-
robiological model of visual attention and invariant pattern
recognition based on dynamic routing of information, The
Journal of Neuroscience 13(11): 4700–4719.

Pedro, J. O. and Dahunsi, O.A. (2011). Neural network based
feedback linearization control of a servo-hydraulic vehi-
cle suspension system, International Journal of Applied
Mathematics and Computer Science 21(1): 137–147, DOI:
10.2478/v10006-011-0010-5.

Raczkowski, D., Canning, A. and Wang, L. (2001). Thomas-
fermi charge mixing for obtaining self-consistency in
density functional calculations, Physical Review B
64(12): 121101–121105.

Rumelhart, D., Hinton, G. and McClelland, J. (1986). A
general framework for parallel distributed processing, in
D. Rumelhart and J. McClelland (Eds.), Parallel Dis-
tributed Processing: Explorations in the Microstructure
of Cognition: Foundations, Vol. 1, The MIT Press, Cam-
bridge, MA, pp. 45–76.

Stark, L., Privitera, C. and Azzariti, M. (2000). Locating
regions-of-interest for the mars rover expedition, Interna-
tional Journal of Remote Sensing 21(17): 3327–3347.

Treisman, A. (1960). Contextual cues in selective listening,
Quarterly Journal of Experimental Psychology 12(4): 242–
248.

Tsotsos, J., Culhane, S. and Cutzu, F. (2001). From foundational
principles to a hierarchical selection circuit for attention, in
J. Braun, C. Koch and J. Davis (Eds.), Visual Attention and
Cortical Circuits, MIT Press, Cambridge, MA, pp. 285–
306.

Vanrullen, R. and Koch, C. (2003). Visual selective behavior can
be triggered by a feed-forward process, Journal of Cogni-
tive Neuroscience 15(2): 209–217.

Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network 459

Weber, C. and Wermter, S. (2007). A self-organizing map of
sigma-pi units, Neurocomputing 70(13–15): 2552–2560.

Maciej Huk works at the Institute of Informat-
ics of the Wrocław University of Technology,
Poland. He received the M.Sc. degree in 2001
and the Ph.D. in 2007, both in computer science.
His current research interests within the scope
of artificial intelligence are the theory and ap-
plications of artificial neural networks in selec-
tive attention systems, efficient crossover opera-
tors for genetic algorithms and multiple classifier
systems. He also works on distributed sensor net-

works and contextual data analysis. He is the coordinator of the Selec-
tive attention in data analysis research group within the Polish Cluster
on Knowledge and Innovation Community for Information and Commu-
nication Technologies. Currently he also works as a software architect
for the Gigaset software development center.

Received: 22 November 2010
Revised: 14 June 2011
Re-revised: 19 October 2011

	Introduction
	Preliminaries
	Backpropagation delta rule for the multilayer feedforward neural network
	Generalized delta rule for the Sigma-if neural network
	Results of experiments
	Summary and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

