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Our aim is to adapt Fletcher’s filter approach to solve optimal control problems for systems described by nonlinear Partial
Differential Equations (PDEs) with state constraints. To this end, we propose a number of modifications of the filter
approach, which are well suited for our purposes. Then, we discuss possible ways of cooperation between the filter method
and a PDE solver, and one of them is selected and tested.
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1. Introduction

In a series of papers (Chin and Fletcher, 2003; Chin, 2007;
Fletcher and Leyffer, 2002; Fletcher et al., 2002a; 2002b;
Audet and Dennis, 2004; Fletcher, 2010; Ulbrich, 2004;
Su and Yu, 2009), Fletcher and coworkers developed a fil-
ter approach to nonlinear programming problems. This
approach is a breakthrough in constructing optimization
solvers, because it clearly puts an emphasis on the fact
that coping with nonlinear constraints is as difficult and
as important as finding the minimum of an objective func-
tion. A filter contains pairs: penalty for constraints vi-
olation and a value of the objective function, which are
not dominated by each other in the same sense as used
in multi-objective optimization. It determines a taboo re-
gion for searching. This way of reasoning is of importance
for solving optimal control problems with pointwise state
constraints, because they have to be approximated by a
large number of inequalities. Their number is magnified
when we consider state constrained Distributed-Parameter
Systems (DPSs), i.e., systems with spatial and temporal
dynamics described by nonlinear PDEs.

The history of research on DPS control started about
50 years ago (see the work of Butkovskiy (1969) and the
bibliography cited therein) by investigating problems for
linear, time-invariant and spatially homogeneous systems.
The fundamental theoretical results, obtained by the
end of the twentieth century, can be found in the works
of Fattorini (1999), Nettaanmaki and Tiba (1994), and
Troltzsch (2010). At present, optimal control problems

for nonlinear DPSs with state constraints are an area of
intensive research (see the works of Burger and Pogu
(1991), Aschemanna et al. (2010), Christofides (2001),
Demetriou and Kazantzis (2004), El-Farra and Armaou
(2003) as well as Skowron and Styczeń (2009) for an
excerpt of different approaches to these problems). We
are able to test whether a system is (non-)homogeneous or
(non-)linear (Rafajłowicz, 2008; Rafajłowicz and
Rafajłowicz, 2010) and to solve difficult problems of
identification of systems described by PDEs (see Schit-
tkowski, 2002; Uciński, 2005). Additionally, a substantial
progress has been attained in the theory and practice of
solving nonlinear optimization problems with a huge
(about 200,000,000) number of nonlinear constraints
(see Schittkowski, 2002). As proposed by Schittkowski
(2009), this technique can be used for optimal control
problems with discretized PDEs as constraints.

In this paper we discuss the filter approach as a tool
for solving optimal control problems with nonlinear PDEs
and state constraints. The idea of using the filter approach
together with Sequential Quadratic Programming (SQP)
for solving optimal control problems may seem to be ob-
vious. For example, in the work of Betts (2010) the filter
SQP is mentioned in this context as one of the approaches
for globalization. We can add one more argument for us-
ing filter SQP in addition to that stated by Betts (2010),
namely, constraints in optimal control problems are in
practice not always hard in the sense that we can slightly
move their boundaries when this leads to an essential de-
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crease in the value of the objective function. In such cases
the analysis of the filter contents provides necessary infor-
mation on the trade off between the constraints violation
and the goal function increase.

In our opinion, it is worth elaborating on the details
of using the filter approach for solving optimal control
problems for DPSs, because this general idea can be re-
alized in many ways, as discussed in Section 3. Addition-
ally, it is useful to consider some modifications of the filter
approach (see Section 2) dedicated to solving such prob-
lems. We refer the reader to the work of Turco (2010)
and to the bibliography cited therein for recent attempts to
improve the filter approach. In Section 2 we also provide
a general outline of the filter approach, which indicates a
vast field of possible modifications, while a discussion on
its convergence is deferred to Appendix. In Section 4 we
summarize the results of testing the modified filter method
when specialized to control problems for DPSs.

2. Modified filter method

In this section we describe the filter approach to Non-
Linear Programming (NLP) tasks in a skeletal form, trying
to avoid as many details as possible, in order to point out
our modifications. We shall keep the notation typical to
NLP.

2.1. Filter approach in a skeletal form.

2.1.1. Preliminary assumptions. Let f(x) be a real
valued function of d-dimensional vector x, which is de-
fined in a compact set X ⊂ R

d. Later, we shall not invoke
the set X explicitly, treating it as a large set, inside which
we are searching for a minimum of f . It can be even as
large as the largest hypercube which can be represented
in the floating point arithmetic of our computer. In this
section, f is our objective function, which is continuous
in X .

Remark 1. In fact, the continuity of f is a minimal re-
quirement, because for approximating f we need it to be
once or twice continuously differentiable.

Let c(x) be an m-dimensional vector of functions,
c : R

d → R
m. They impose inequality constraints of

the form c(x) ≤ 0, which is a shorthand notation for the
following set:

C def= {x : c(1)(x) ≤ 0, c(2)(x) ≤ 0, . . . , c(m)(x) ≤ 0},
where c(j)(x) is the j-th component of vector c(x). We
assume that C ⊂ X is nonempty. At least the continuity of
c(j)(x)’s is required (Remark 1 applies correspondingly).

We consider the following optimization problem:

min
x

f(x) subject to c(x) ≤ 0. (1)

Our aim is to discuss variants of filter based methods, it-
eratively generating sequences xk ∈ X , k = 1, 2, . . .,
which are expected to be convergent to a minimizer x∗ of
f over C.

We confine to c(x) ≤ 0 for simplicity of the ex-
position, because equality constraints can be handled by
adding two inequality constraints.

2.1.2. Filter. Before describing the notion of a filter, as
introduced by Fletcher and his co-workers (see Fletcher
and Leyffer, 2002; Fletcher et al., 2002a; 2002b), we have
to define a special penalty function, denoted further by h,

h(c(x)) =
m∑

j=1

max
(
0, c(j)(x)

)
. (2)

Clearly, for x ∈ C we have h(c(x)) = 0, while for x �∈ C
h(c(x)) > 0 is a measure of the constraint violation.

For given xk we shall denote by (hk, fk) a pair of the
form (h(c(xk)), f(xk)). In the k-th iteration a filter Fk

is a list of pairs (hk, fk), which were generated according
to the rules described below.

We say that a pair (hk, fk) dominates (hl, fl) iff

fk ≤ fl AND hk ≤ hl (3)

and at least one of these inequalities is strict. This defi-
nition differs slightly from the one given by Fletcher and
Leyffer (2002), by adding the last requirement, but—in
fact—we shall need even a more demanding notion of a
dominance between such pairs. The following rules are
applied to filter Fk:

R1: Filter Fk contains only pairs (hl, fl), which were
generated up to the k-th iteration and such that no
pair dominates any other.

R2: A pair (hl, fl) is allowed to be included to Fk, if it is
not dominated by any point already contained in Fk.

R3: If a pair (hl, fl) is acceptable for inclusion in the
filter Fk, i.e., R2 holds, then all entries dominated
by this pair are removed from Fk (in agreement with
R1).

An example of a filter which fulfills the above rules
is shown in Fig. 1 by dots. The lines and the shaded area
indicate taboo regions, which are defined by the union of
north-east orthants of the points included in the filter list at
the k-th iteration. Desirable points for inclusion to Fk are
as close as possible to (0, fmin), where fmin = f(x∗).
The role of the filter is to decide whether or not a new
point, generated by a search algorithm should be accepted.
Note that the rules R1–R3 allow a new point to be included
into a filter, even if the corresponding value of the objec-
tive function is worse than that found so far. However,
this may happen only if the penalty for constraints viola-
tion decreases.
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Fig. 1. Example of a filter. Dots indicate points included in the
filter.

Remark 2. An important additional role of the filter
content, especially after stopping the search, is that it pro-
vides valuable information on the trade off between at-
tainable values of the objective function and the degree of
constraint violation (see Fig. 6 in Section 4).

The rule R2 is frequently replaced by a stronger
condition.

R2a: A pair (h, f) is allowed to be included to Fk if for
every hl, fl from Fk the following conditions hold:

h ≤ β hl OR f ≤ fl − γ h, (4)

where constants β, γ ∈ (0, 1).
In practice, one can use β = 0.9 and γ = 0.01 or

similar values. The conditions (4) extend a taboo region
coded in Fk by adding thin strips (an envelope), as illus-
trated in Fig. 1 for one filter entry by the dashed lines.
Note that the second condition f ≤ fl − γ h contains the
same h for each filter entry (in contrast to earlier papers
on filter methods, in which f ≤ fl − γ hl).

We refer the reader to the works of Fletcher and Leyf-
fer (2002) as well as Fletcher (2010) for many details con-
cerning more technical aspects of filter handling, such as
bounds in the north-west and south-east corners of the
taboo region and removing blocking entries. We also refer
the reader to variants of the SQP-filter method (Li, 2006;
Shen et al., 2010; 2009; Biegler, 2010; Su and Che, 2007;
Nie and Ma, 2006; Byrd et al., 2010).

2.1.3. Skeletal algorithm based on the filter approach.
Having xk, we approximate f(xk + d) in its vicinity by a
function which is denoted as ap(f, xk, d), where d ∈ R

d

is a direction of the next search. Thus,

ap(f, xk, d) ≈ f(xk + d), (5)

without explicitly specifying the way of approximation.
Chin and Fletcher (2003) used a linear approximation,
while in the work of Fletcher and Leyffer (2002) and sub-
sequent papers the following quadratic approximation was
applied:

ap(f, xk, d) =
1
2

dT Wk d + dT gk, (6)

where gk is the gradient of f , calculated at xk, while Wk

is a d× d matrix, which approximates the Hessian matrix,
e.g., by the BFGS formula (see Broyden, 1970). In fact,
for filter-like methods, one may use any other reasonable
approximation instead of linear or quadratic (6), e.g., a
mixture of the linear one, if we are far from optimum and
the quadratic one when we are closer to it.

Similarly, by ap(c, xk, d) we denote an approxima-
tion of c(x) in a vicinity of xk , i.e.,

ap(c, xk, d) ≈ c(xk + d), (7)

again, without specifying approximating functions. A typ-
ical approximation is the linear one:

ap(c, xk, d) = c(xk) + AT
k d, (8)

where Ak is the Jacobian matrix of c(x), calculated at
xk. However, one may also consider locally quadratic ap-
proximations of constraints or switching between the lin-
ear and the quadratic one.

Filter methods for the problem (1) are based on solv-
ing the following subproblems:

min
d

ap(f, xk, d), subject to ap(c, xk, d) ≤ 0. (9)

The selection of d is usually additionally constrained.
The most popular approach is the trust-region method,
in which ||d||∞ ≤ ρ, where ||d||∞ = maxi |d(i)| and
ρ > 0 is the radius of the trust-region (see, e.g., the work
of Nocedal and Wright (2006) for a discussion on trust re-
gions). As usual, the inequalities in ap(c, xk, d) ≤ 0
are understood component-wise. Clearly, one can se-
lect any reasonable method for solving (9), but in prac-
tice different variants (see, e.g., Fletcher et al., 2002a;
2002b; Chin, 2007) of Quadratic Programming (QP) are
used when ap(f, xk, d) is a quadratic approximation and
ap(c, xk, d) is a linear one. If also ap(f, xk, d) is lin-
ear, then Linear Programming (LP) solvers are applied
for (9). However, we emphasize that—in principle—any
reasonable optimization method which is compatible with
approximations used for f(x) and c(x) can be used for
solving the subproblems (9) within the filter methodology
framework.

The next important ingredient of this methodology
is the so-called Feasibility Restoration Phase (FRP). Its
utilization is necessary when it happens that

{d : ap(c, xk, d) ≤ 0} ∩ {d : ||d||∞ ≤ ρ} = ∅. (10)
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The typical reason for (10) to occur is that ρ is too small. It
can also happen that approximations (e.g., linearizations)
of c(x) near xk may lead to inconsistent constraints.

As proposed by Fletcher and Leyffer (2002), FRP is
accomplished by solving the following subproblem:

min
x

∑

j∈Jk+

max
(
0, c(j)(x)

)
(11)

subject to the constraints

c(j)(x) ≤ 0, j ∈ Jk−, (12)

starting from xk, where Jk+ is the set of those indices, for
which constraints at xk are violated, while Jk− contains
indices for which c(j)(xk) ≤ 0 holds. In practice, (11) is
minimized under approximated constraints. We shall not
describe a way of solving (11) and (12), because one can
use any sufficiently efficient optimization method, taking
into account that the objective function in (11) is formally
non-differentiable.

The main modifications that are proposed in this pa-
per are directed to improvements in the restoration phase,
retaining its main goal. In order to point out our modifica-
tions, we provide an outline of the filter approach in a way,
which is close in spirit to the presentation in (Fletcher and
Leyffer, 2002).

Skeletal filter method. Select a starting point x0 and
ρ > 0 as well as β, γ ∈ (0, 1). Select ε > 0 and η > 0
for stopping conditions imposed on ||d|| and h(c(x)), re-
spectively, where || · || is the Euclidean norm. Select a
sequence of numbers γk > 0, k = 0, 1, . . ., used in the
second stopping condition, which are such that

lim
k→∞

γk = 0,

∞∑

k=0

γk = ∞. (13)

This sequence can be as simple as γk = c/(k + 1), where
c > 0 is not too large a constant.

Step 0. Set k = 0 and calculate f0 = f(x0), h0 =
h(c(x0)). Initialize the filter F0 by introducing a pair
(H, −∞) to it, where H > 0 is a (large) constant,
preventing too large values of h(c(x)). If x0 ∈ C,
then add to the filter F0 a pair 0, f0). Otherwise, add
(0, Fmax) to F0, where Fmax is a crude upper bound
to f . Alternatively, one can solve (11), (12) and treat
the result as new x0.

Step 1. Verify the feasibility of the subproblem (9). If (9)
is feasible, then go to Step 4. If it is not feasible,
solve the FRP subproblem (11), (12), starting from
xk. Denote its solution by xk+1.

Step 2. Calculate fk+1 = f(xk+1) and then hk+1 =
h(c(xk+1)). If for (hk+1, fk+1) the condition (4)

holds, then enter (hk+1, fk+1) to Fk, remove all
pairs dominated by the new one from Fk and go to
Step 7. Otherwise, go to Step 3.

Step 3: Emergency step. Try to solve the FRP subprob-
lem (11), (12), starting from a point different from
xk . If, after several trials, the condition (4) does not
hold, then STOP, suspecting that the original prob-
lem does not have a solution.

Step 4. Solve (9) and denote its solution by dk. Calculate
fk+1 = f(xk + dk) and hk+1 = h(c(xk + dk)). If
hk+1 < η and at least one of the following conditions
holds:

4a. ||dk|| < ε OR

4b. fk+1 ≥ fk − γk,

then STOP—xk +dk is a solution close to optimum.

Step 5. If (hk+1, fk+1) is acceptable for the filter Fk,
then include this pair and clean the filter from domi-
nated entries. Accept also xk+1 = xk + dk, consider
an increase in ρ and go to Step 7.

Step 6. If (hk+1, fk+1) is not acceptable for Fk, then re-
duce ρ, keep xk+1 = xk as a starting point for a new
search.

Step 7. Set k = k + 1 and go to Step 1.

Several remarks are in order, concerning the above
skeletal algorithm.

Remark 3. In Step 0 we put bounds on the search re-
gion in (h, f) coordinates. They preclude that sequences
(hk, fk) with hk decreasing to zero and fk increasing to
infinity are added to the filter. They also do not allow se-
quences with decreasing fk and hk growing to infinity to
be entered into the filter.

Remark 4. After Step 6 we cannot directly solve the sub-
problem (9), because a decrease in ρ may cause that (10)
holds. Hence, we are forced to check feasibility again.

Remark 5. We do not describe the so-called Second Or-
der Correction (SOC) steps, which are used by Fletcher
and Leyffer (2002), because they rely on the second or-
der approximation of f and the linear approximation of c.
They are useful when (hk+1, fk+1) is not acceptable to
Fk, because they bend a search direction to C and try to
retain a fast local convergence in a vicinity of optimum,
stemming to avoid the Maratos effect.

Remark 6. The stopping condition ||dk|| < ε is a stan-
dard one. Note, however, that xk can be outside C and it
is necessary to check also whether h(c(xk)) is sufficiently
small. If the stopping condition 4b does not hold, then we
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can be sure that the convergence is not very slow, because
in this case

fk+1 < fk − γk, k = 0, 1, . . . . (14)

On the other hand, this condition is not too restrictive, be-
cause it means that we require less than a Q-linear conver-
gence rate (see the work of Nocedal and Wright (2006),
Appendix A2) for a discussion on convergence rates).
In practice, the condition 4b can even be simplified to
fk+1 ≥ fk − ζ, where ζ > 0 is a small constant. It is
added in a more complicated form merely for the discus-
sion of the convergence of the skeletal algorithm.

Remark 7. It may happen that a sequence xk, k =
0, 1, 2 . . ., converges to xc, say, which is infeasible
h(c(xc)) > 0. For fast detection of an infeasible sta-
tionary point for the FRP subproblem, the exact penalty
approach is applicable (Byrd et al., 2010).

Remark 8. We allow entries (0, fk) in the filter. There are
variants of the filter algorithms that preclude such cases
(Fletcher, 2010).

2.2. Convergence of the skeletal filter algorithm.
Our aim in this subsection is to discuss sufficient condi-
tions for the convergence of the skeletal algorithm. The
framework provided by the skeletal algorithm is very
wide. In our discussion on its covergence we use many
arguments that appeared earlier in many papers cited in
Introduction for more specific versions of filter type SQP
or SLP. We shall try to catch their most important features,
which are important for their convergence.

2.2.1. Additional assumptions. This cannot be done
without imposing additional, but hopefully still general
and nonvoid conditions on f(x), c(x), their approxima-
tions, and on the efficiency of solving the subproblems (9)
and (11), (12).

A1. The admissible set C is nonempty and compact.
Thus, by continuity, f(x) attains its minimum, de-
noted as fmin. It is bounded from above by (attain-
able) fmax. f(x) is also bounded from below in X ,
by (attainable) fMIN ≤ fmin.

A2. If xk ∈ C and f(xk) > fmin, then there exists a
direction d̂k �= 0 such that

f(xk + d̂k) < f(xk) − γk. (15)

It is allowed that (xk + d̂k) is not in C.

A3. Furthermore, we assume that approximations that
are used in ap(f, xk, d) and ap(c, xk, d) are suffi-
ciently accurate so that we can get d̂k mentioned in
A2 as a result of solving the subproblem (9).

A4. The solver that is used for solving the FRP (11) and
(12) is sufficiently efficient so as to ensure that FRP
is always successful when needed. Thus, the emer-
gency step (Step 3) is not necessary and we skip it in
the algorithm (for the discussions on convergence),
retaining the numeration of other steps unchanged.

The requirements imposed by the assumptions A2
and A3 on the approximations of f(x), c(x) and implic-
itly on the solver of (9) are fulfilled, e.g., if these functions
are twice continuously differentiable in X , a quadratic ap-
proximation of f(x) and linear approximations of c(x)
are used in conjunction with a QP solver. The only dif-
ficulty can arise when f(x) is very flat (or constant) in a
vicinity of optimum. Therefore, we additionally assume
that

A5. C is a convex set and f(x) is strictly convex. Denote
by x∗ ∈ C the point where a minimum of f(x) is
attained.

The assumption A4 describes an ideal solver. Its use
simplifies the discussion of convergence. If we allow that
A4 does not hold, then we have to discuss separately the
case described in Remark 7.

The outline of the proof of the following result is de-
ferred to Appendix.

Corollary 1. Under the additional assumptions A1–A5
the skeletal algorithm either generates

1. a finite sequence xk, k = 1, 2, . . . , K and f(xK) =
fmin, or

2. an infinite sequence, which contains a subsequence
convergent to x∗ and f(x∗) = fmin.

If A4 does not hold, then we have to take into ac-
count that the algorithm stops outside C, because FRP fails
(see the works of Fletcher and Leyffer (2002) as well as
Fletcher (2010) for a discussion).

We cannot establish the rate of convergence of the
skeletal algorithm, because that would require imposing
smoothness assumptions on f . Note, however, that the
goal of constructing algorithms that are based on a filter is
mainly to assure that they are convergent when a starting
point is far from an optimum. On the contrary, the Newton
method provides the second order rate of convergence, but
only when the starting point is located sufficiently close
to x∗.

2.3. Our modifications. Our experience gathered so
far regarding using the filter algorithm indicates that the
following modifications are useful:

Modification 1. If x0 �∈ C, solve the problem

min
x

h(c(x)) (16)
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without constraints (or imposing only reasonable con-
straints preventing overflows) and plug the resulting
(h, f) into the filter.

Modification 2. One of the reasons for deriving filter-like
algorithms was to avoid using penalty function methods,
because they require a subtle choice of penalty increase
(see Fletcher and Leyffer, 2002). Nevertheless, our exper-
iments indicate that in FRP it is expedient to minimize

f(x) + ν h(c(x)) (17)

instead of h(c(x)) only. This modification reduces sudden
jumps of xk+1’s to the regions where f(xk+1) is large
(see the second example in Section 4). The motivation
for minimizing (17) in FRP is similar to the one which
motivates the minimization of h(c(x)) only (see the work
of Conn et al. (2000) for a discussion).

Here ν > 0 is selected according to a simple rule
of thumb: choose ν so that f(x) and ν h(c(x)) are of
comparable magnitudes. Then ν can be updated in subse-
quent iterations, but it is not necessarily growing to infin-
ity. Thus, difficulties typical for penalty function methods
are to some extent reduced. On the other hand, for suffi-
ciently large ν the minimization of (17) improves the in-
feasibility of the QP subproblem for the same reasons as
the minimization of h(c(x)) does.

Modification 3. Formally, h(c(x)) is not differentiable,
even if c(x) is. Note, however, that the lack of differen-
tiability occurs on the boundary of C only. On the other
hand, FRP is invoked only when xk �∈ C and in its vicin-
ity h(c(x)) is as smooth as c(x) itself. Thus, in FRP one
can safely use a conjugate gradient algorithm or a quasi-
Newton method, depending on whether c(x) is once or
twice differentiable, respectively.

The lack of differentiability can also be avoided by
reinterpreting the FRP subproblem as a bound-constrained
least-squares one or a bound-constrained system of non-
linear equations. Then, one can use a projected conjugate
gradient algorithm or an affine scaling trust region algo-
rithm (Bellavia et al., 2004).

Modification 4. The standard way of solving (9) is a vari-
ant of quadratic programming with the Hessian update,
which can be inaccurate for large problems. For this rea-
son it is expedient to modify Step 4 as follows: Select the
number of internal iterations I > 1 (in our tests I was
selected between 6 and 12).

Step 4.0. Set i = 0 and xk(i) = xk.

Step 4.1. Solve (9) for xk(i) with ||d||∞ ≤ ρ and de-
note this intermediate solution solution as dint. Set
xk(i+1) = xk(i) + dint.

Step 4.2. Verify the feasibility of (9) for xk(i+1). If it is
feasible and i < I , set i = i + 1 and go to Step 4.1.

Step 4.3. If it is feasible, but i = I , then go to Step 5 of
the main algorithm, setting xk+1 = xk(i+1).

Step 4.4. If it is not feasible, go to Step 5 of the main al-
gorithm, setting xk+1 = xk(i), i.e., with the previous
feasible solution.

Note that we solve (9) several times, if FRP is not
necessary, without confronting intermediate results with
the filter contents. However, we stress that the final result
of such sub-iterations is then compared with the filter con-
tent. It seems that the above modification does not spoil
the convergence of the filter algorithm, because it is deter-
mined by the rules governing the filter, independently of
the method of generating trial points, providing that this
method is able to produce points with smaller values of f
or h.

It follows from our experience, partly reported at the
end of this paper, that they allow an increase in the com-
putational efficiency.

3. Interactions of a filter method with a PDE
solver in optimal control problems

3.1. Framework for optimal control problems for
DPSs. To fix ideas, we shall use the following simple
model:

∂q(χ, t)
∂t

=
∂

∂χ

(
a(q)

∂q(χ, t)
∂χ

)
+ F (q, u(χ, t)),

t ∈ (0, Tc), χ ∈ (0, 1), (18)

where q(χ, t) is the system state at a spatial point χ ∈
(0, 1) at time t > 0. Tc > 0 is a time horizon. Equa-
tion (18) is accompanied by initial and boundary condi-
tions. u(χ, t) is a control, while a(q) and F (q, u) are
known functions, which may depend on q(χ, t) as well as
on qχ(χ, t), where qχ denotes the partial derivative with
respect to χ.

In order to formulate an optimal control problem, we
also have to specify the set U of admissible control actions
u(·), which is usually a subset of the space L2((0, 1) ×
(0, Tc)) of square integrable functions.

C1. We assume that for any control u(·) ∈ U and appro-
priate initial and boundary conditions the solution of
(18) exists and is unique.

Particular sets of sufficient conditions for C1 depend on
F (·), a(·), boundary conditions and the required smooth-
ness of q(·).

Additional constraints can be imposed on the system
state q(). The set of admissible states will be denoted by
Cq ⊂ L2((0, 1)× (0, Tc)). The last ingredient is the per-
formance index (criterion), which serves as an indicator to
what extent the objective of a control action is achieved.
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A standard example of a performance criterion, further de-
noted by J(u, q), is the following one:

J(u, q) =
∫ 1

0

(q∗(χ) − q(χ, Tc))
2 dχ, (19)

where q∗(χ) is a desired system state at time Tc.
Our aim is to discuss possible approaches to find an

approximate solution to the following problem:

J(u∗, q∗) = min
u

J(u, q), (u, q) ∈ U × Cq, (20)

where q and u are additionally constrained by (18) and its
initial and boundary conditions. In (20), U is the set of
admissible controls, e.g.,

U = {u ∈ L2((0, 1) × (0, Tc)) :
∫ 1

0

∫ Tc

0

u2(χ, t) dt dχ ≤ 1}.

Alternatively, one can add the term

∫ 1

0

∫ Tc

0

u2(χ, t) dt dχ

penalizing excessive use of energy to the performance in-
dex.

C2. We assume that the solution of problem (20) exists
and is unique.

C2 holds for a wide class of control problems (see
the works of Lasiecka and Triggiani (2000), Lasiecka and
Chueshow (2010), Lasiecka and Chueshow (2008), Net-
taanmaki and Tiba (1994) as well as Troltzsch (2010) for
a wide range of results).

3.2. Intermediate decisions. It is usually impossible
to solve the problem (20) in closed form. Before decid-
ing how to solve (20) numerically, it is expedient to list
intermediate choices that we have to make. Our discus-
sion on these topics extends interesting deliberations of
Hinze et al. (2009) and Betts (2010). Our decisions will
be partially biased by our actual goal, i.e., testing the filter
algorithm on a moderate size, but already difficult, DPS
control problem. For this reason we decide to consider an
open loop control problem (20). In practice, optimizing
a closed loop control law can be beneficial, if we know
the structure of a controller, which is a rare case when a
system is nonlinear.

Abstract vs. R
d formulation. It is well known that op-

timal control problems can be formulated as optimization
problems in Banach spaces. Also SQP has its abstract ver-
sion (see Hinze et al., 2009). Alternatively, one can use fi-
nite dimensional, in R

d, say, approximations of u(·), q(·)

and the PDE from the beginning. In this paper we select
the latter approach.

Direct search vs. solving optimality conditions. A di-
rect search for u∗ that solves (20) will be discussed in de-
tail below. The second approach means that we have to
derive necessary optimality conditions and then search for
their solution. Such conditions are usually variants of the
maximum principle, accompanied by a pair of PDEs: the
original one (18) and the adjoint one.

Remark 9. Although searching for a maximum of the
Hamiltonian is, in principle, easier than a variational prob-
lem, solving the above mentioned pair of PDEs is a source
of severe numerical instabilities, because one of these
equations must be solved forward and the second one
backward in time. Thus, one of them must be unstable the
one which bears information about a future that is hidden
in the model. As mentioned by Betts (2010), these dif-
ficulties have been known since the 1960s and they have
been met even for systems described by ODEs.

Thus, later on we concentrate on direct methods
for (20).

Solving the PDE vs. treating it as a constraint. The
next step—within direct minimization approaches—is to
decide how to handle (18). The first choice is to solve
PDEs in each iteration. The second is to treat the PDE
as a constraint, which leads—after its discretization—to
a large number of constraints (usually hundreds or thou-
sands). Recent advances in large scale optimization tech-
niques and available computational power moved this ap-
proach from dreams to accessible reality (see the work of
Hinze et al. (2009) and the bibliography cited therein).
However, in this paper we shall follow the first choice,
which is more traditional, but also still more reliable, be-
cause the number of additionally introduced decision vari-
ables and constraints is much smaller. Thus, we can attack
more difficult nonlinear problems with a larger number of
constraints on system states that arise in practice.

An additional advantage of solving the PDE instead
of treating it as a constraint arises when the PDE is a
nonlinear one. Namely, its approximate solution is close
to the exact one, even if it was iteratively linearized in
the mean time. On the other hand, a nonlinear PDE as
a constraint must be linearized directly, increasing the
danger of obtaining an empty set of linearized constraints.

Finite dimensional representation of the PDE and con-
trol. The number of numerical methods for PDEs is so
large (finite differences, finite elements, boundary ele-
ments, etc.) that we do not even try to list them all. Our
aim is only to point out that there are relationships be-
tween the way of solving the PDE and a finite dimensional
approximation of u(χ, t). When the PDE is solved by fi-
nite differences on a grid (χi, tj), say, then it seems “nat-
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ural” to select u(χi, tj) as decision variables. Similarly, if
q(χ, t) is approximated by finite elements, then the obvi-
ous choice is to represent u(χ, t) in the same basis. Note,
however, that the number of grid points or the number of
triangles in a finite element basis is very large—usually
more than several thousands. One can reduce the number
of decision variables approximating u(χ, t) as follows:

ud(χ, t, x) =
d∑

l=1

x(l) φl(χ, t), (21)

where x = [x(1), x(2), . . . , x(d)]T , φl(χ, t)’s are selected
basis functions, e.g, splines, trigonometric functions, etc.
Now, when finite differences are used, then we insert
ud(χi, tj , x) at nodal points. Similarly, scalar products
of (21) with finite elements can be used for solving PDEs.

Optimization method. Derivative free optimization
methods are very time consuming when applied to optimal
control for PDEs. In our simulations it occurred that the
Nelder–Mead method is useful when the problem is very
irregular (steep valleys, large gradients, etc.). However, in
general, we prefer SQP-like methods. It remains to dis-
cuss the way of evaluating the gradient of J(ud(·,x), q),
taking into account that q also depends on x indirectly
through (18). We shall denote by q(χ, t, x) the solu-
tion of (18) with u replaced by ud. Let us denote by
f(x) = J(ud(·, x), q(·, x)). One can select one of the
following approaches in order to calculate gradx f(x) =
gradx J(ud(·, x), q(·, x)):

(i) Solve sensitivity equations for each
∂q(χ, t, x)/∂x(l), l = 1, 2, . . . , d. The sen-
sitivity equations are derived by taking partial
derivatives of (18).

(ii) Use adjoint equations.

(iii) Evaluate gradx q(χ, t, x) by finite differences.

The disadvantages of (2) are the same as mentioned
in Remark 9. The computational burdens of (1) and (3)
are comparable with the case when we have to solve the
PDE (d + 1)-times. We have selected the approach (3)
in our computational experiments, because it is easier to
implement.

Constraints. When ud is represented as (21), it is easy to
impose constraints on it. In particular, constraints

c(i)(x) = x(i) − υ ≤ 0, i = 1, 2, . . . , d (22)

are interpretable, where υ > 0 is an upper bound. Also
constraints on the amplitude or energy of ud can be easily
formulated.

Checking constraints imposed on q requires solving
the PDE, but this done simultaneously with evaluating the

objective function. For example, one would like to avoid
too large tensions invoked by sudden changes in the tem-
perature along a spatial variable. The corresponding con-
straints can be formulated as follows: For l = 1, 2, . . .,

c(d+l)(x) = (q(χl+1, τj ,x) − q(χl, τj ,x))2 − ω ≤ 0,
(23)

where ω > 0 is a bound for admissible changes, while
χl’s and τj’s are grid points.

3.3. Outline of a filter based algorithm searching
for optimal control. Below we provide an outline of
a filter method dedicated for searching optimal control.
We put emphasis on the most time consuming step, i.e.,
on solving the PDE. Define ej’s as the unit vectors of
orthogonal basis in R

d.

Algorithm B

Repeat
Step A. For ud(χ, t, xk) and ud(χ, t, xk + δj ej), j =
1, 2, . . . , d solve the PDE. Use the results for calculating:

(a) Jk
def= J(ud(·,xk), q(·, xk)) and ck

def= c(xk),
(b) ∇k J , which approximates

gradxJ(ud(·,x), q(·, x))|x=xk
,

(c) ∇k c, which approximates gradxc(x)|x=xk
,

(d) update the Hessian approximation by the BFGS for-
mula (denote it by Hk).
Step B. Solve the following QP problem:

min
d

[
dT ∇k J +

1
2

dT Hk d
]

, ck + dT ∇k c ≤ 0.

(24)
Step C. If (24) is infeasible, enter the FRP (again the PDE
must be solved several times). Otherwise, denote its solu-
tion by dk and consider repeating (24) (according to our
modification 4.). Perform Steps 4–6 of the skeletal algo-
rithm.
until convergence.

The results of testing the above algorithm are pro-
vided in the next section.

4. Simulation studies

The aim of our simulations is to test Algorithm B.

4.1. DPS under study. Consider the system (18)
specialized as follows:

Control F (q, u(χ, t)) = u(χ, t), where

u(χ, t) = U1(t) s1(χ) + U2(t) s2(χ) + U3(t) s3(χ).
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Fig. 2. Control signals in the left, central and right segments: final (optimal) values.

Uj(t), j = 1, 2, 3 are control actions (manipulated in-
put signals) to be selected. They act along the spatial
variable in a piecewise constant way, i.e., s1(χ) = 1
for χ ∈ (0, 1/3) and zero otherwise, s2(χ) = s1(χ −
1/3), s3(χ) = s1(χ − 2/3). Each Uj(t) was finitely
parametrized as follows:

Uj(t) =
L∑

l=1

κlj Bl(t),

where Bl(t) is a third-order B-spline. We additionally
require |κlj | ≤ Υ, where Υ > 0 is a given constant.
These constraints impose bounds on the amplitudes of
Uj(t)’s. Rearranged coefficients κlj form vector x of our
decisions.

Initial and boundary conditions q(χ, 0) = q0(χ) are
given, q(0, t) = q(1, t) ≡ 0.

Diffusion coefficient has the form

a(q) =

[
1 +

(
1
ς

∂ q(χ, t)
∂χ

)2
]−1

, (25)

where ς > 0 is a given constant. In our experiments ς =
30 was selected.

As can be noticed, a(q) given by (25) has the form
which is not typical for systems that can be met in nature
but rather in Perona–Malik filters (see Perona and Malik,
1990). Let us note that the diffusion is highly reduced
at spatial points, in which steep changes in q occur. Our
idea is to make our testing problem more interesting by
imposing also the constraints

(
∂ q(χ, t)

∂χ

)2

≤ ω, ∀t ∈ (0, Tc),

where ω > 0 is a given constant. They were implemented
as (23).

Summarizing, our aim is to select x, which deter-
mines Uj(t), j = 1, 2, 3, in such a way that our objective
function (19) is minimized subject the constraints (22),

(23) and (18) with a(q) given by (25). The initial con-
dition q0(χ) = 0.5 exp(−χ2/12.5) is given, while our
desired final state q∗(χ) = 3, χ ∈ (0, 1). Note that we
have q(0, t) = q(1, t) ≡ 0 and we allow large changes in
q near the end points, but not inside (0, 1).

The PDE (18) with a(q) given by (25) was solved
by the explicit finite difference scheme on the equidistant
grid with 52 time steps and 201 points in space. Thus, we
also have 200 constraints (23) and 30 constraints (22).

In our numerical experiments all the modifications,
described in Section 2.3, were implemented. Details of
our implementation of Algorithm B are the following: Ac-
cording to Modification 3, (16) and (17) (with ν = 4)
were minimized using the quasi-Newton method with a
cubic line search procedure and the BFGS formula for
updating the approximation of the Hessian matrix (see
Broyden, 1970).

4.2. Discussion of the results. An excerpt of our nu-
merical experiments is shown in Table 1. The results of
three runs are reported. They differ only in that the start-
ing point was different. Run I can be named an “easy
start”, while Run III is an example of a “wild start”, be-
cause it was artificially selected very far from an optimum
in order to test the ability of the algorithm to cope with
such cases. If (24) was feasible, then the quadratic pro-
gramming problem was solved at most 12 times in each
iteration. When it led to large constraints violation, then
(17) was minimized. For these reasons the number of cal-
culations of the objective function is large in comparison
with the number of global iterations. An additional reason
is that gradients were evaluated by finite differences.

The simulations were run using an Intel i7 2.67 GHz
processor, using only one of its cores. The code was writ-
ten in the Matlab language.

The results obtained after stopping Algorithm B are
shown in Fig. 3, which describes the system state evo-
lution in space and time under control signals plotted in
Fig. 2. The initial and the final state along χ axes are
shown in Fig. 5.

The behavior of the objective function in subsequent
iterations was the following: In the first two (sometimes
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Table 1. Summary of testing.

Run I Run II Run III

Start crit. 49.7 6.9 103 6.7 105

Final crit. 9.1 9.0 8.7

Start penalty 0.0 3.3 3.7 103

Final penalty 0.05 0.07 0.09

CPU (sec.) 77 170 245

Fun. eval. 1372 2237 3008

Iterations 2 4 8

three or four) iterations, the values of the goal function
were reduced from 105 to 10, say. Typical behavior in
the second phase is shown in Fig. 4. The algorithm tries
to find a compromise between the values of the objec-
tive function (top plots) and the penalty h(c(x)) (bottom
plots). As expected, lower values of the criterion corre-
spond exactly to larger penalties for constraint violation.
It is also expedient to analyze the content of the filter in the
last iteration (see Fig. 6; note that the last point (0.09, 8.7)
is not shown). The content of the filter indicates that we
can achieve 8.4 as the value of the objective function, if
we can afford the constraint violation at the level 0.36. On
the other hand, the achievable criterion value equals 8.7,
if we require h(c(x)) less than 0.1 as in Run III. Clearly,
we are able to make use of the filter content only if the
corresponding xk’s are stored, but this is not a problem
with modern computers.
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Fig. 3. Space-time evolution of the system state when optimal
control is used.

4.3. How our modification works. Our main modifi-
cation of the filter method is in minimizing (17) instead
of minimizing (11) only. In order to illustrate its perfor-
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Fig. 4. Optimality criterion (top panel) and the penalty
h(c(xk)) in subsequent iterations, the first and the sec-
ond iteration omitted.
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Fig. 5. Initial condition (left panel) and the final state (along χ)
under optimal control (right panel).

mance, we have repeated the simulations described above
with the following changes:

(i) a starting point was selected far away from the opti-
mal one;

(ii) the calculations were conducted twice: minimizing
(11) and (17), keeping the rest conditions unchanged;

(iii) in both cases the algorithms were stopped when the
PDE (18) was solved about 8000 times (indepen-
dently of the number of iterations in which they were
used) for evaluating the objective function, its deriva-
tives and in FRP.

The results (for ν = 25) are shown in Fig. 7 for the
case without our modifications and with them, the left and
the right column, respectively. As one can notice, the ob-
jective function exhibits larger variability when our modi-
fications are not used, while in the right column of Fig. 7 it
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Fig. 6. Example of the filter content.

remains monotone. We have observed a similar behavior
in many other runs, for different starting points and tuning
parameters.

5. Concluding remarks

As documented in the present paper, optimization algo-
rithms which are based on the idea of a filter can be devel-
oped to provide efficient methods for solving optimal con-
trol problems for nonlinear systems with spatio-temporal
dynamics of at least moderate size. Our modifications of
the filter approach make it even more robust to failures
when a starting point is very far from optimum and con-
straints are highly violated. One may hope that the pro-
posed approach will also be useful for solving optimal
control problems with more difficult optimality criteria,
such as arising in searching for optimal input signals for
identification of DPSs (see Uciński, 2005).
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Appendix

In order to outline the proof of Corollary 1, it is expedient
to consider the following cases.

For our discussion on convergence, we also set ε = 0
and η = 0 in Step 4.

Case 1: Finite number of steps. Let us suppose that the
skeletal algorithm stopped after a finite number of steps,
say 0 < K < ∞. We claim that xK is the optimal solu-
tion.

The condition 4b cannot hold at xK . Indeed, if dK �=
0 was found by solving (9), then by A2 and A3 we have
f(xK + dK) < f(xK) − γK , which is in contradiction
with 4b.

If 4a (with ε = 0 and η = 0) holds, then xK ∈ C.
If f(xK) > fmin then, by virtue of A2, we can find a
descent direction, but we stopped with dK = 0; this is a
contradiction, which implies f(xK) = fmin.

Let us verify whether we can point out scenarios of
stopping after a finite number of steps, which are not in
contradiction with the rules imposed on the filter opera-
tion.

1. Suppose that x0 ∈ C and also all xk ∈ C, k =
1, 2, . . . , K . In this case all pairs that are entered
to the filter have the form (0, fk). Furthermore, we
must have fk+1 < fk − γk, k = 0, 1, . . . , K and
the radius of the trust region is never reduced. Such
a simple scenario is possible, e.g., when f can be
accurately approximated by a quadratic form and its
unconstrained minimum is located in C.

2. Also the case when x0 �∈ C and the unconstrained
minimum off is located in C usually leads to stop-
ping in a finite number of steps, because then
h(c(xk)) and f(xk) are reduced in each iteration
and they can be included into the filter. When xk en-
ters into C, then the rest of the scenario is the same
as in Case 1.

The case when the unconstrained minimum is of f is lo-
cated outside C usually leads to an infinite sequence of
iterates.

Case 2: Infinite number of steps. Now, let us consider
the case that the skeletal algorithm generates an infinite
sequence xk, k = 0, 1, 2, . . ., which is contained in X
and such that the corresponding pairs (hk, fk) were ad-
missible to the filter Fk. By the compactness of X , the
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sequence xk’s contain a convergent subsequence, xk(i),
i = 1, 2, . . ., say. Denote its limit by x∞ ∈ X .

We shall use a terminology which is similar to the
one introduced by Fletcher, classifying iterations as

(i) f -improving, if condition (14) holds;

(ii) h-improving, if the FRP was invoked and the result-
ing pair (hk, fk) Fk is allowed to be included to Fk

according to R2a.

We refrain from using the terms f -type and h-type itera-
tions, because they have similar meaning, but details are
slightly different (see Fletcher, 2010).

As in the above cited papers, it is useful to distin-
guish two cases, namely, the number of h-improving steps
is infinite or finite.

Case 2a: Infinite number of steps which are only h-
improving. Let us assume that the sequence k(i), i =
1, 2, . . . contains an infinite subsequence of steps in which
only h was improved and f was not. Abusing the notation,
we denote this subsubsequence by k′(i), i = 1, 2, . . ..
Clearly, xk′(i) → x∞.

We claim that

lim
i→∞

h(c(xk(i))) = h(c(x∞)) = 0. (26)

For the proof we can use directly arguments from Fletcher
and Leyffer (2002, Lemma 3.3), because the proof is
based solely on the rules which are used for handling the
filter.

Our next step is to infer that f(x∞) = fmin. For
deriving a contradiction, assume that f(x∞) > fmin.

From (26) we have x∞ ∈ C. Thus, according to
A2, for a certain xk′(i′), which is selected sufficiently

close to x∞, there exists d̂k′(i′), say, such that f(xk′(i′) +
d̂k′(i′)) < f(xk′(i′)) − γk′(i′). Thus, this step is f-
improving, which is in contradiction to the fact our sub-
subsequence contains only steps that improve only h.

Case 2b: Finite number of only h-improving steps. We
return to the subsequence selected at the beginning of our
deliberations. Now, we assume that the sequence k(i), i =
1, 2, . . . contains a finite subsequence of steps in which
only h was improved and f was not. Let I = k(i∗) be the
first step starting from which h is no longer improved. It
is convenient to renumber this subsequence in such a way
that steps k(i∗ + 1), k(i∗ + 2), . . . are now numbered as
I + 1, I + 2, . . ..

Firstly, we have to prove that also in this case x∞ ∈
C. If it is not true, h-improving iterations would start when
xI+m is sufficiently close to x∞ and ρ is reduced to a suf-
ficiently small number, but this is in contradiction with our
assumption that after I-iteration there are no h-improving
iterations.

To prove that limI→∞ f(xI) = fmin, let us note
that all the steps I, I + 1, . . . must be f -improving and
f(xI+1) < f(xI) − γI . Iterating this inequality we ob-
tain

fI+m < fI −
I+m∑

m=I

γm. (27)

Hence, we have a strictly monotone sequence fI+m, m =
1, 2, . . ., which is bounded from below by fmin. Thus,
this sequence is convergent and its limit equals fmin. If it
had a limit fG, say, larger than fmin, then—due to (27)—
we obtain a contradiction, because for m sufficiently large
the left hand side of (27) is smaller than fG by (13).
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