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Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware
of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present
an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial
time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose
membership functions are complex-valued and characterized within the unit disc of the complex plane. The application of
CFSs to the CNFS can augment the adaptive capability of nonlinear functional mapping, which is valuable for nonlinear
forecasting. Moreover, to optimize the CNFS for accurate forecasting, we devised a new hybrid learning method, called the
HMSPSO-RLSE, which integrates in a hybrid way the so-called Hierarchical Multi-Swarm PSO (HMSPSO) and the well-
known Recursive Least Squares Estimator (RLSE). Three examples of financial time series are used to test the proposed
approach, whose experimental results outperform those of other methods.
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1. Introduction

Financial time series forecasting is an interesting research
issue that has received growing attention in recent years.
Accurate and reliable forecasting of future trends is
a crucial undertaking in investment decision making.
However, financial markets are complex and dynamic
with high risk, because several complex forces affect them
frequently. For the cases of financial time series, they are
usually non-stationary, hence the mean, the variance and
the covariance change over time. Due to many influential
factors, it is hard to explore a closed form for the relation
between historical data and future trends in the financial
markets. Since accurate prediction of financial time series
is regarded as a difficult nonlinear problem, traditional
approaches that require mathematical models are not able
to attack such problems with satisfactory performance.

To deal with time series forecasting problems,
various intelligent approaches have been presented (Rojas
et al., 2008; Graves and Pedrycz, 2009; Brdyś et al.,
2009; Simiński, 2010; Khashei and Bijari, 2011; Vo et al.,
2011; Smetek and Trawinski, 2011; Tung and Quek, 2011)
where fuzzy systems and neural networks have been

widely investigated. Rojas et al. (2008) investigated
a hybrid methodology that combines ANN and ARMA
models for the problem of time series forecasting. Graves
and Pedrycz (2009) developed a fuzzy rule based time
series prediction model which builds upon an architecture
of Takagi–Sugeno (T–S) rule-based models to investigate
and evaluate the proposed rule-based model against
commonly used time series models.

Khashei and Bijari (2011) proposed a hybridization
of artificial neural networks and AutoRegressive
Integrated Moving Average (ARIMA) models, in
which the latter are used to identify the existing
linear structure in data, and then a neural network is
employed to determine a model to capture the underlying
data-generating process. Tung and Quek (2011) presented
a self-organising neural-fuzzy semantic network named
the evolving Fuzzy Semantic Memory (eFSM) model to
forecast the volatility levels of the Hang Seng Index.

Although neural networks have an excellent learning
ability, it is not easy to create a meaningful explanation by
human knowledge. For fuzzy systems, human experience
and knowledge can be extracted with fuzzy If-Then rules,
which can be easily mapped into practical application
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domains. Moreover, neural networks and fuzzy systems
have proved to be universal approximators (Hornik et al.,
1989; Castro, 1995). By combining the flexible learning
capability and the link-type distributed structure of neural
networks and the fuzzy inference ability of a fuzzy
system, Jang (1993) presented the Adaptive Network
based Fuzzy Inference System (ANFIS), where the
backpropagation method and the recursive least squares
estimator are integrated to train the ANFIS predictive
model.

Hybrid neural fuzzy models have demonstrated great
performance in time series forecasting (Jang, 1993;
Kim and Kasabov, 1999; Paul and Kumar, 2002; Gao
and Er, 2005; Mousavi et al., 2007; Deng and Wang,
2009; Graves and Pedrycz, 2009; Boyacioglu and Avci,
2010; Li and Cheng, 2011). For example, Gao and
Er (2005) focused on the modeling and prediction
using the Nonlinear AutoRegressive Moving Average
with eXogenous inputs (NARMAX) model with the
Fuzzy Neural Network (FNN) methodology for time
series forecasting. Mousavi et al. (2007) used Fuzzy
Regression (FR) and an ANFIS for an reservoir operations
optimization problem. Boyacioglu and Avci (2010)
investigated the predictability of stock market return with
an ANFIS to determine whether an ANFIS algorithm
is capable of accurately predicting stock market return.
Li and Cheng (2011) presented a self-organizing neural
fuzzy system to forecast the S&P 500 time series.

In the past decade, Ramot et al. (2002; 2003)
proposed the novel concept of Complex Fuzzy Sets
(CFSs). In general, a CFS is an advanced fuzzy
set whose membership function is complex-valued and
defined within the unit disc of the complex plane. The
complex-valued membership of a CFS is characterized
by both an amplitude function and a phase function.
This complex-valued property is in contrast with that
of a traditional type-1 fuzzy set, whose membership
function is normally defined in the unit real-valued
interval [0, 1]. CFSs are not fuzzy complex numbers
developed by Buckley (1989), which are ordinary type-1
fuzzy sets, whose members are complex-valued. From
the perspective of the membership degree, CFSs have
more degrees of freedom than standard type-1 fuzzy
sets, and they can expand the capability for adaptation
of an adaptive system because of their complex-valued
memberships which enable novel nonlinear mappings.
Although preliminary study of CFSs has been presented
(Ramot et al., 2002; 2003; Dick, 2005; Man et al., 2007),
it is still interesting to construct intuitively understandable
complex-fuzzy-set based systems for applications. Zhang
et al. (2009) focused on discussing operation properties
for CFSs without conferring on complex fuzzy reasoning
procedures. Chen et al. (2011) presented the Adaptive
Neuro-Complex Fuzzy Inferential System (ANCFIS) for
the problem of time series forecasting, where they

implemented CFSs based on the equivalence of the CFSs
phase to their support. In our previous work (Li et al.,
2010; Li and Chiang, 2011a; 2011b; 2011c), neuro-fuzzy
computing models using complex fuzzy sets have been
presented for real-world applications, with an excellent
mapping ability and learning adaptability.

In this paper, with CFSs we present a Complex
Neuro-Fuzzy System (CNFS) as a new computing
paradigm for the problem of time series forecasting.
The CNFS can extend the adaptability of traditional
NFS models that use ordinary type-1 fuzzy sets (Jang,
1993; Li and Priemer, 1997; 1999; Li and Lee, 2003;
Li et al., 2004). We designed complex Gaussian
fuzzy sets for the premises of fuzzy If-Then rules in
the CNFS. For parameter learning, we devised a novel
Hierarchical Multi-Swarm Particle Swarm Optimization
(HMSPSO) algorithm in the way that multiple PSO
swarms are arranged in a hierarchical structure to enhance
the searching multiplicity and efficiency. Then, using
the concept of divide-and-conquer, we developed a new
hybrid learning method, called the HMSPSO-RLSE,
which combines HMSPSO and the Recursive Least
Squares Estimator (RLSE) algorithm in a hybrid way.

Our idea for fast learning is to separate the parameter
space into two smaller ones, so that the algorithm
can quickly approach an optimal (or near optimal)
solution for the proposed CNFS. For the HMSPSO-RLSE
learning method, HMSPSO is used to update the premise
parameters of the CNFS and the RLSE is used to adjust
the consequent parameters. Three examples of financial
time series are used to test the proposed approach. The
experimental results are compared with those of other
approaches (Lu et al., 2009; Tung and Quek, 2011)
in terms of performance. The study has three major
contributions. First, we developed the CNFS computing
paradigm, where new complex Gaussian fuzzy sets are
designed for fuzzy If-Then rules. Second, for fast learning
we introduced the HMSPSO-RLSE hybrid method and
applied it successfully to CNFS prediction models for
accurate forecasting. Third, we successfully employed
the proposed approach in the applications of real-world
financial time series with excellent performance.

We organize the rest of the paper as follows. In
Section 2, the proposed complex neuro-fuzzy system
with complex fuzzy sets is specified. In Section 3, the
HMSPSO-RLSE hybrid learning method is given. In
Section 4, three examples of financial time series are used
to test the proposed approach. In Section 5, we discuss the
experimental results and the proposed approach. Finally,
we conclude the paper.

2. Methodology

For time series forecasting, we present an adaptive
intelligent model, called the complex neuro-fuzzy system,
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which is based on the theory of Neuro-Fuzzy Systems
(NFSs) and that of complex fuzzy sets. Inheriting the
property of universal approximation of the NFS (Hornik
et al., 1989; Castro, 1995), the proposed CNFS can
approximate highly nonlinear functions with excellent
accuracy and provide an outstanding mapping capability
for time series forecasting. A CFS is an advanced
fuzzy set whose membership function is characterized
within the unit disc of the complex plane. That is, a
CFS can be contrasted with an ordinary type-1 fuzzy set
because of its complex-valued membership description
in the two-dimensional unit disc of the complex plane.
Therefore, a CFS can provide more degrees of freedom
for learning adaptation than a traditional fuzzy set.

2.1. Complex fuzzy sets. The theory of complex fuzzy
sets (Moses et al., 1999; Ramot et al., 2002; 2003; Dick,
2005) has provided a new perspective in fuzzy theory
research and application. Suppose we have a complex
fuzzy set, S, whose membership function μs(h) is given
as follows:

μs(h) = rs(h)exp(jωs(h))
= Re(μs(h)) + jIm(μs(h))
= rs(h) cos(ωs(h)) + jrs(h) sin(ωs(h)),

(1)

where j =
√−1; h is the base variable for the

complex fuzzy set; rs(h) is the amplitude function of the
complex-valued membership; ωs(h) ∈ R is the phase
function; Re(·) and Im(·) indicate the real and imaginary
parts of μs(h), respectively. The property of sinusoidal
waves is embodied in the definition of the complex fuzzy
set. For the special case when ωs(h) equals zero, a
complex fuzzy set degenerates to a traditional type-1
fuzzy set. This fact indicates that the phase term is the key
that distinguishes the CFS from its regular counterpart.
We present a class of complex Gaussian fuzzy sets whose
membership function, denoted by cGaussian(h, m, σ, λ),
is

cGaussian(h, m, σ, λ)
= rs(h, m, σ, λ) exp(jωs(h, m, σ, λ)),

(2a)

rs(h, m, σ) = Gaussian(h, m, σ)

= exp

[
− 0.5

(h − m

σ

)2
]
,

(2b)

ωs(h, m, σ, λ) = − exp
[
− 0.5

(h − m

σ

)2]
×

(h − m

σ2

)
λ,

(2c)

where {m, σ, λ} are the parameters for the mean, spread
and phase frequency factor, respectively. An illustration
for a complex Gaussian fuzzy set is shown in Fig. 1.

2.2. Complex neuro-fuzzy system. In the section,
we specify the proposed complex neuro-fuzzy system,
which possesses the merits of a neuro-fuzzy system and
complex fuzzy sets. The proposed CNFS can achieve high
performance for nonlinear functional mappings because
CFSs can provide more degrees of freedom for learning
adaption than ordinary type-1 fuzzy sets. It has an
excellent nonlinear mapping capability for modeling and
forecasting. Suppose we have a CNFS whose knowledge
base is composed of K first-order Takagi–Sugeno fuzzy
rules with M inputs and one output, given as follows:

Rule i : If(x1 is A
(i)
1 (h1)) and (x2 is A

(i)
2 (h2))

. . . and (xM is A
(i)
M (hM )),

Then z(i) = a
(i)
0 + ΣM

j=1a
(i)
j hj ,

(3)

for i = 1, 2, . . . , K , where i indicates the i-th fuzzy
rule; xj and hj are the j-th linguistic and base variables,

respectively; A
(i)
j (hj) is the complex fuzzy set for the

j-th premise condition of the i-th rule; z(i) is the nominal
output of the i-th rule; {a(i)

j , j = 0, 1, . . . , M} are the
consecutive parameters of the i-th rule.

A grid partition for the input space of the proposed
CNFS is used. Each input linguistic variable has few
linguistic values that are characterized by complex fuzzy
sets. For the proposed CNFS, we use a six-layered
feed-forward neural network to realize the process of
complex fuzzy inference. The explanation of the six
layers is specified as follows.

Layer 1: The input layer receives the inputs and sends
them directly to the next layer. The input vector at time t
is given as

H(t) = [h1(t) h2(t) . . . hM (t)]T. (4)

Layer 2: The layer is called the complex-fuzzy-set
layer, whose each node represents a linguistic value
characterized by a CFS for the premises of the CNFS
and calculates a complex-valued membership degree. The
class of complex Gaussian fuzzy sets in (2a)–(2c) is used
for the design of these CFSs.

Layer 3: This layer is called the fuzzy-rule layer, whose
each node is used to calculate the firing strength of a fuzzy
rule. In the paper, the operator of the fuzzy-product is used
for t-norm calculation. For the i-th rule, the firing strength
is expressed as follows:

β(i)(t) =
M∏

j=1

μ
(i)
j (hj(t)),

=
M∏

j=1

r
(i)
j (hj(t))exp(jω(i)

j (hj(t))),

(5)
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Fig. 1. Illustration of a complex Gaussian fuzzy set: 3-D view with the coordinates of the base variable, real-part membership and
imaginary-part membership (a), 2-D view in the complex plane composed by the real and imaginary parts of the complex-
valued membership function (b).

where μ
(i)
j (·) is the complex-valued membership function

of A
(i)
j (·) whose amplitude and phase functions are r

(i)
j (·)

and ω
(i)
j (·), respectively.

Layer 4: This layer is for the normalization of the firing
strengths of fuzzy rules. For the i-th rule, the normalized
firing strength is expressed as

λ(i)(t) =
β(i)(t)

K∑
i=1

β(i)(t)
,

=

M∏
j=1

r
(i)
j (hj(t))exp(jω(i)

j (hj(t)))

K∑
i=1

M∏
j=1

r
(i)
j (hj(t))exp(jω(i)

j (hj(t)))
.

(6)

Layer 5: The layer is called the consequent layer, which
is used for calculating normalized consequents. For the
i-th rule, the normalized consequent is given as follows:

ξ(i)(t) = λ(i)(t)z(i)(t),

=

M∏
j=1

r
(i)
j (hj(t))exp(jω(i)

j (hj(t)))

K∑
i=1

M∏
j=1

r
(i)
j (hj(t))exp(jω(i)

j (hj(t)))

× (a(i)
0 +

M∑
j=1

a
(i)
j hj).

(7)

Layer 6: This layer is called the output layer, to which
the normalized consequents from Layer 5 are aggregated

to produce the proposed CNFS output, given as

ξ(i)(t) = λ(i)(t)z(i)(t),

=

M∏
j=1

r
(i)
j (hj(t))exp(jω(i)

j (hj(t)))

K∑
i=1

M∏
j=1

r
(i)
j (hj(t))exp(jω(i)

j (hj(t)))

× (a(i)
0 +

M∑
j=1

a
(i)
j hj).

(8)

Generally, owing to the nature of CFSs, the output of the
CNFS is complex-valued

ξ(t) = ξRe(t) + jξIm(t)
= |ξ(t)|exp(jωξ)
= |ξ(t)| cos(jωξ) + j|ξ(t)| sin(jωξ),

(9)

where ξRe(t)and ξIm(t) are the real and imaginary parts
of the CNFS output, respectively. Based on (9), the CNFS
can be viewed as a complex-valued function,

ξ(t) = F(H(t), W)
= FRe(H(t), W) + jFIm(H(t), W),

(10)

where FRe(·) and FIm(·) are the real and imaginary
parts of the CNFS complex-valued function, respectively;
H(t) is the input vector to the CNFS; W denotes the
set of the CNFS parameters, including the subset of the
premise parameters (denoted by WIf ) and the subset of
the consequent parameters (denoted by WThen). The set
of the CNFS parameters is expressed by

W = WIf ∪ WThen. (11)
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3. Hybrid learning

Based on the principle of divide-and-conquer, we
spiritually separate the parameters of the CNFS into two
smaller sets of parameters: the premise parameters (or
the If-part parameters) and the consequent parameters
(or the Then-part parameters). For fast learning, we
devised the HMSPSO-RLSE hybrid learning method,
where HMSPSO is used to update the premise parameters
(WIf ) and the RLSE is used to update the consequent
parameters (WThen).

HMSPSO is based on the method of particle swarm
optimization (Eberhart and Kennedy, 1995; Kennedy and
Eberhart, 1995), motivated by the food searching behavior
of bird flocking or fish schooling.

There are many particles in a PSO swarm. For a
particle, the best location during the search process is
denoted by pbest. The particles in the swarm compete
with one another to become the best particle, whose
location is denoted by gbest. Although PSO is a superb
global search method, it converges easily towards the
gbest in the first few iterations of the search process, and
thus sinks into the trap of a local optimum (Niu et al.,
2007).

Several approaches in the literature have been
proposed to improve the easily-trapped problem at the
local minimum by the original PSO and its variants
(Yuhui and Eberhart, 2001; Mansour et al., 2007; Niu
et al., 2007), for example, through increasing the diversity
of the population (Niu et al., 2007) or via adjusting
the parameters of PSO (Yuhui and Eberhart, 2001).
In this paper, we propose HMSPSO to be a new
multi-swarm-based PSO method that involves multiple
PSO swarms. HMSPSO is with a multi-level hierarchical
architecture to balance both the independent search
by each swarm and the cooperative search among the
swarms. Suppose that HMSPSO involves m particles
in total, which comprise a battalion with an n-level
structure. At the bottom of the multi-level structure, we
create several swarms with the m particles. For each of
these swarms, we can select the best in the swarm, and
thus create several swarm-best particles, which form the
first level. Similarly, the second level can be created.
The process goes on until the battalion-best particle is
placed on the top of the multi-level structure. In general,
the proposed HMSPSO is described by the following
equations:

Vi(k + 1)
= wVi(k) + c0ζ0(pbesti(k) − Li(k))

+
n∑

j=1

r(j)∑
q=1

cjζj(gbestj,q(k) − Li(k)),

(12a)

Li(k + 1)) = Li(k)) + Vi(k + 1)), (12b)

where Vi(k) = [vi,1(k) vi,2(k) · · · vi,Q(k)]T is the
velocity of the i-th particle in the k-th iteration for i =
1, 2, . . . , m; Li(k)) = [li,1(k) li,2(k) . . . li,Q(k)]T is
the location of the i-th particle in the k-th iteration; w
is the inertia weight; {cj, j = 0, 1, . . . , n} are the
acceleration factors; {ζj , j = 0, 1, . . . , n} are random
numbers between 0 and 1; pbesti indicates the best
position of the i-th particle during the search process;
gbestj,q indicates the best in the q-th PSO swarm on the
j-th level for j = 1, 2, . . . , n; r(j) indicates the number
of swarms on the j-th level of the PSO battalion. Note
that the battalion best is in the set of {gbestn,q(k), q =
1, 2, . . . , r(n)} and so it is already involved in (12a).

To update the consequent parameters of the CNFS,
we apply the well-known RLSE method, which is good
at optimization of linear models. The algorithm of RLSE
stems from the Least Squares Estimation (LSE) problem,
whose model is

y = θ1f1(u) + θ2f2(u) + · · · + θmfm(u) + ε, (13)

where y is the target; u is the input to the model;
{fi(u), i = 1, 2, . . . , m} are known functions of u;
{θi, i = 1, 2, . . . , m} are the model parameters to be
estimated; ε is the model error. Note that the parameters
{θi, i = 1, 2, . . . , m} can be viewed as the consequent
parameters of the CNFS. To model an unknown target
system, samples for the input-output behavior of the
unknown system are collected to be the Training Data
(TD), denoted by

TD = {(μi, yi), i = 1, 2, . . . , N}, (14)

where (μi, yi) is the i-th pair in the form of (input, target).
Substituting these data pairs into (13), we have a set of N
linear equations in matrix notation,

y = Aθ + ε, (15)

where θ = [θ1 θ2 . . . θm]T; y = [y1 y2 . . . yN ]T; ε =
[ε1 ε2 . . . εN ]T; A is the matrix formed by {fi(uj), i =
1, 2, . . . , m and j = 1, 2, . . . , N}. The optimal estimator
for θ can be obtained recursively by the following RLSE
equations:

Pk+1 = Pk − Pkbk+1(bk+1)TPk

1 + (bk+1)TPkbk+1
, (16a)

θk+1 = θk + Pk+1bk+1(yk+1 − (bk+1)Tθk), (16b)

where [bT
k+1, yk+1] is the (k + 1)-th row of [A,y] for

k = 0, 1, . . . , (N − 1). To start the RLSE algorithm, we
set θ0 to be a zero vector and P0 = αI, where α must be
a large positive value and I is the identity matrix.

For parameter learning, the proposed CNFS is
trained by the HMSPSO-RLSE hybrid learning method
iteratively. In general, the training process goes on until
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any of stopping conditions is satisfied. Such stopping
conditions can include the accuracy of performance better
than some preset threshold and the amount of learning
iterations used up. We only consider the latter as the
termination condition, because the former is impractical
to set in this study. The training procedure is given as
follows.

Step 1. Collect sample data. Some portion of them is used
for training, and the rest is for testing.

Step 2. Update the premise parameters by HMSPSO.
Step 3. Update the consequent parameters by the RLSE,

in which the row vector b and the vector θ are
arranged as follows. Note that λ(i) in (18) can be
obtained by (6).

bk+1 = [bb(1)(k + 1) bb(2) · · ·bb(K)(k + 1)],
(17)

bb(i)(k + 1) = [λ(i) h1(k + 1)λ(i)

· · ·hM (k + 1)λ(i)], (18)

θk = [τ (1)
k τ

(2)
k · · · τ (K)

k ], (19)

τ
(i)
k = [a(i)

0 (k) a
(i)
1 (k) · · · a

(i)
M (k)]. (20)

Step 4. Calculate the CNFS output.

Step 5. Calculate the cost in the MSE, defined as

MSE =
1
N

N∑
t=1

(e(t))2

=
1
N

N∑
t=1

(y(t) − Re(ξ(t)))2.

(21)

Note that we involve only the real-part of the CNFS output
in (21), because the time series forecasting problem is in
the real-valued domain.

Step 6. Compare the costs from all the HMSPSO
particles. Update pbest and gbest in the multiple
swarms. If any stopping condition is satisfied,
stop the algorithm and the battalion best is used
for the optimal premise parameters of the CNFS.
Otherwise, go back to Step 2 and continue the
procedure.

4. Experiments

In the section, we use three examples of financial time
series to test the proposed approach, whose results are
compared with those other approaches (Lu et al., 2009;
Tung and Quek, 2011).

Example 1. (Time series of the Nikkei 225 Index)
The Nikkei 225 (N225) Index is the most generally
quoted average of Japanese equities, similar to the Dow

Table 1. Settings of the HMSPSO-RLSE method.
HMSPSO

Dimensions of PSO particles 18
Number of swarms 3
Number of particles per swarm 100
Number of levels 1
Particle velocity initialization Random in [0, 1]18

Particle position initialization Random in [0, 1]18

Acceleration factors, (c0, c1, c2, c3) (2, 2, 2, 2)
Inertia weight, w 0.8
Maximum number of iterations 300

RLSE

Number of consequent parameters 27
θ0 27 × 1 zero vector
P0 αI
α 108

I 27 × 27 identity
matrix

Table 2. If-part parameters of the CNFS after learning (Nikkei
225 Index).

Fuzzy set m σ λ

x1

A1,1(h1) 0.2522 0.9198 0.1148
A1,2(h1) 0.9365 0.0582 0.2597
A1,3(h1) 0.8811 0.0480 0.8046

x2

A2,1(h2) 0.6727 0.1220 0.4751
A2,2(h2) 0.8583 0.1914 0.5930
A2,3(h2) 0.4030 0.3710 0.6384

1 50 100 150 200 250 300
10

−3.72271

10
−3.72269

10
−3.72267
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Fig. 2. Learning curve of the proposed CNFS by the HMSPSO-
RLSE (Nikkei 225 Index.)

Jones Industrial Average in the United States. N225
is the most frequently used and reliable indicator to
investigate fluctuation of stocks in the Japanese market.
From 4 October 1999 to 30 September 2004, the 1227
observations with the daily opening-price index of N225
were collected (Yahoo Finance for Nikkei 225 Index,
2011). The range of the dataset was normalized to the
interval [−1, 1], as was done by Lu et al. (2009).
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After the normalization, the dataset is denoted by
{y(t), t = 1, 2, . . . , 1227}, where t is the time index.
For the preparation of training data, the dataset is arranged
into the form of (input, target) for 1225 data pairs, which
are denoted by {(H(i), d(i)), i = 1, 2, . . . , 1225}, where
H(i) = [y(t− 1) y(t)]T; d(i) = y(t+1); t = i+1. Note
that H(i) is the input vector to the CNFS prediction model
and d(i) is the corresponding target. The first 850 data
pairs were used for training and the rest for testing. For the
proposed CNFS, we designed 9 T–S fuzzy rules, whose
premises are characterized by complex Gaussian fuzzy
sets. There are 18 premise parameters and 27 consequent
parameters. For the parameter learning of the CNFS, we
applied the HMSPSO-RLSE hybrid learning method, in
which the premise parameters are tuned by HMSPSO and
the consequent parameters are updated by the RLSE.

The settings for the HMSPSO-RLSE method are
given in Table 1. The cost function was designed with the
MSE. The learning curve for the proposed CNFS model is
shown in Fig. 2, and the If-part and Then-part parameters
of the CNFS after learning are listed in Tables 2 and 3,
respectively. After learning, the prediction response in the
real range and the prediction error that is the difference
between the actual index and its forecast by the proposed
CNFS are shown in Figs. 3(a) and 3(b), respectively.
For performance comparison, two indices are used: the
Root Mean Square Error (RMSE) and Mean Absolute
Difference (MAD). The RMSE is the square root of the
MSE and the MAD is given below:

MAD =
1
N

N∑
t=1

|y(t) − Re(ξ(t))|. (22)

In terms of performance the proposed approach is
compared with other approaches (Lu et al., 2009). The
performance comparison is shown in Table 4, where
the proposed approach shows superior performance to
the other approaches. Moreover, in Table 4, we also
compare the proposed approach to the CNFS and its
neuro-fuzzy system counterpart which is designed with
ordinary Gaussian fuzzy sets in (2b). Both of them were
trained by the PSO-RLSE method, which is a hybrid
method combining a single-swarm PSO algorithm and the
RLSE algorithm (Li and Chiang, 2011b). �

Example 2. (Time series of TAIEX) In the second exam-
ple, we used the Taiwan Stock Exchange Capitalization
Weighted Stock Index (TAIEX), which is a stock
market index for companies traded on the TaiWan Stock
Exchange (TWSE). From 2 January 2003 to 27 February
2006, the daily closing-price data of TAIEX were
collected (Yahoo Finance for Taiwan Stock Exchange
Capitalization Weighted Stock Index, 2011). There are
781 samples in total. They were normalized into the
range of [−1, 1], denoted by {y(t), t = 1, 2, . . . , 781},

where t is the time index. Then, these data were arranged
in the form of (input, target) for 780 data pairs, which
are denoted as {(H(i), d(i)), i = 1, 2, . . . , 780}, where
H(i) = [y(t− 1) y(t)]T ; d(i) = y(t+1); t = i+1. The
first 546 data pairs were used for training and the rest for
testing.

For the proposed CNFS prediction model, nine
first-order T–S fuzzy If-Then rules with two inputs and
one output were designed. Each input has three complex
Gaussian fuzzy sets. The cost function was designed with
the MSE. The HMSPSO-RLSE method, whose settings
are given in Table 1, was used for the parameter learning
of the CNFS. The If-part and Then-part parameters of
the CNFS after learning are listed in Tables 5 and 6,
respectively. The prediction response and the prediction
error by the proposed CNFS are shown in Figs. 4(a) and
4(b), respectively. The learning curve for the CNFS is
shown in Fig. 5.
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Fig. 5. Learning curve of the CNFS (TAIEX Index).

The proposed approach is compared with other
approaches. It is also compared with the CNFS that was
trained by the PSO-RLSE method and its NFS counterpart
that was also trained by the PSO-RLSE method. The
performance comparison in the RMSE and the MAD
is shown in Table 7, in which the proposed approach
outperforms the others (Lu et al., 2009). Through the
experimental results, the proposed approach has shown
remarkable performance for the forecasting of TAIEX.

�

Example 3. (Volatility time series of the daily Hang Seng
Index) The Hang Seng Index (HSI) is the main indicator
of the overall market performance in Hong Kong and it
covers about 63% of the capitalization of the Hong Kong
Stock Market. In this example, we test the proposed
approach against the volatility of the HSI. For the five-year
span from 3 January 2002 to 29 December 2006, the
daily closing-price data of the HSI were collected (Yahoo
Finance for Hang Seng Index, 2011). There are 1241
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Table 3. Then-part parameters of the CNFS after learning (Nikkei 225 Index).
Rule no. a0 a1 a2

1 0.0098 + 0.0159j −0.0875 + 0.0068j 1.0688 − 0.0303j
2 0.0084 − 0.0148j −0.0366 + 0.0187j 1.0224 − 0.0023j
3 0.0002 + 0.0002j −0.0776 + 0.0040j 1.0745 − 0.0048j
4 −6.8106 − 6.3199j 1.0620 − 0.9738j 7.0414 + 8.7280j
5 6.2642 − 0.6098j 0.0151 − 0.2226j −5.7874 + 1.8436j
6 16.5681 + 1.1824j −0.8273 + 1.7113j −16.3044 − 5.7277j
7 0.8021 − 3.2256j −2.0056 − 0.2184j 1.8280 + 3.8855j
8 1.4662 + 1.3968j −0.0598 + 0.3556j −0.7867 − 1.6339j
9 2.5999 + 5.8397j 1.1766 − 1.7399j −2.2758 − 5.3130j

Note that after learning the Then-part parameters become complex-valued.
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Fig. 3. Prediction response by the CNFS with the HMSPSO-RLSE method (a), prediction error (Nikkei 225 Index) (b).
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Fig. 4. Prediction response by the CNFS with the HMSPSO-RLSE method (a), prediction error (TAIEX Index) (b).

trading days in total. The daily stock returns are generated
by taking the logarithmic difference of the daily stock
index, expressed as follows:

R(t) = ln(P (t)) − ln(P (t − 1)) × 100%, (23)

where t is the time index; P is the daily closing-price
index; R is the daily stock return. The daily stock returns
of the HSI are shown in Fig. 6.

Then, with the daily stock returns, the Historical
Volatility (HV) is given as

HV(t) =

√∑N
t=1 R(t) − R̄

N − 1
×
√

T × 100%, (24)

where R̄ denotes the average daily stock returns of the past
N trading days; T is a normalizing factor which transfers
the daily historical standard deviation into a yearly one.
In this example, the 30-day (N = 30) historical standard
deviation and the annualized normalizing factor with T =
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Table 4. Then-part parameters of the CNFS after learning (Nikkei 225 Index).
Rule no. a0 a1 a2

1 −0.6113 + 0.3605j 0.6884 + 1.2963j 1.1378 − 2.3062j
2 0.4360 − 0.3342j −0.5600 − 1.1051j 1.1383 + 3.8616j
3 −12.6125 − 3.4865j 13.5670 − 11.1452j −3.4185 + 8.6284j
4 2.0269 + 1.2375j −0.3034 − 1.7860j −1.4133 + 0.9111j
5 −1.4655 − 1.2695j −0.5814 + 1.6826j 2.8811 − 5.0030j
6 15.0455 − 14.8307j −8.7080 + 44.4367j −1.2253 − 11.7603j
7 −0.3636 − 0.1676j 0.1200 + 0.1723j 1.2466 + 0.0380j
8 −0.3077 + 0.7500j 0.5477 − 2.1092j 1.8564 + 1.3990j
9 1.9702 + 6.7749j 1.7707 − 12.6058j −1.2757 − 2.8104j

Note that after learning the Then-part parameters become complex-valued.
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Fig. 7. Prediction response by the CNFS with the HMSPSO-RLSE method (a), prediction error (Hang Seng Index) (b).
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Fig. 6. Daily returns of the Hang Seng Index.

252 were set in order to make a comparison with the work
of Tung and Quek (2011). There are 1211 volatility data,
which are calculated from the original 1241 daily trading
observations. These volatility data were then normalized
into the range of [0, 1], denoted as y(t), t = 1, 2, . . .1211,
where t indicates the time index. The volatility data of
the first three years (Jan 2002 to Dec 2004) were used
for training and the data of the remaining two years (Jan
2005 to Dec 2006) were used for testing. The data were
arranged in the form of (input, target) for 1209 data pairs,

Table 5. If-part parameters of the CNFS after learning (TAIEX
Index).

Fuzzy set m σ λ

x1

A1,1(h1) 0.4098 0.6756 0.2041
A1,2(h1) 0.5692 0.4346 0.7296
A1,3(h1) 0.7253 0.1628 0.9802

x2

A2,1(h2) 0.5374 0.9876 0.2041
A2,2(h2) 0.0359 0.3464 0.2265
A2,3(h2) 0.3782 0.0591 0.8105

Table 6. Performance comparison (TAIEX Index).
Method RMSE MAD

Random walk (Lu et al., 2009) 53.21 39.88
SVR (Lu et al., 2009) 46.60 34.63
ICA-SVR (Lu et al., 2009) 41.09 31.70
NFS (by the PSO-RLSE) 7.46 5.05
CNFS (by the PSO-RLSE) 5.45 4.20
CNFS (by the HMSPSO-RLSE)

5.39 4.17
(proposed)

which are denoted by {(H(i), d(i)), i = 1, 2, . . . , 780},
where H(i) = [y(t − 1) y(t)]T ; d(i) = y(t + 1); t =
i + 1. For the proposed CNFS model, nine first-order T–S
fuzzy If-Then rules with two inputs and one output were
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Fig. 8. Learning curve of the CNFS (Hang Seng Index).

designed. Each input has three complex Gaussian fuzzy
sets.

The cost function was designed with the MSE. For
parameter learning, the HMSPSO-RLSE method was
used to update the free parameters of the CNFS. The
settings for the HMSPSO-RLSE are the same as in
Table 1. After learning, the prediction response for the
volatility of HSI and the predictive error are shown in
Figs. 7(a) and 7(b), respectively. The learning curve of
the proposed model is shown in Fig. 8. The If-part and
Then-part parameters of the CNFS after learning are listed
in Tables 8 and 9, respectively. In terms of performance
the proposed CNFS approach was compared with other
approaches in the literature: the back-propagation neural
network FFNN-BP, the Radial Basis Function (RBF)
network (Moody and Darken, 1989), the Cerebellar Model
Articulation Controller (CMAC) (Albus, 1975) neural
network, HyFIS (Kim and Kasabov, 1999), the ANFIS
(Jang, 1993), and the evolving fuzzy semantic memory
(Tung and Quek, 2011).

The models that are compared with the proposed
approach in this example were implemented by Tung
and Quek (2011). Three performance indices are used,
including the MSE, Average Relative Variance (ARV),
and the Mean Absolute Percentage Error (MAPE). The
ARV and the MAPE are described below:

Table 7. Performance comparison (Nikkei 225 Index).
Method RMSE MAD

Random walk (Lu et al., 2009) 137.85 105.77
SVR (Lu et al., 2009) 60.53 43.71
ICA-SVR (Lu et al., 2009) 56.76 40.86
NFS (by the PSO-RLSE) 14.65 11.18
CNFS (by the PSO-RLSE) 13.25 10.52
CNFS (by the HMSPSO-RLSE)

13.12 10.19
(proposed)

Table 8. If-part parameters of the CNFS after learning (Hang
Seng Index).

Fuzzy set m σ λ

x1

A1,1(h1) 0.7076 0.1559 0.0117
A1,2(h1) 0.5455 0.0231 0.7770
A1,3(h1) 0.3126 0.9272 0.6648

x2

A2,1(h2) 0.3236 0.6395 0.2252
A2,2(h2) 0.7654 0.5014 0.9305
A2,3(h2) 0.8082 0.0643 0.8986

ARV(t) =

N∑
t=1

y(t) − Re(ξ(t))2

N∑
t=1

(y(t) − ȳ)2
, (25)

MAPE(t) =
1
N

N∑
t=1

∣∣∣y(t) − Re(ξ(t))
y(t)

∣∣∣ × 100%, (26)

where ȳ = (1/N)
∑N

t=1 y(t). The performance
comparison is shown in Table 10, where the proposed
approach shows much better performance than the other
approaches (Tung and Quek, 2011) in the testing phase.
The proposed approach is also compared with the CNFS
that was trained by the PSO-RLSE method and the NFS
that was also trained by the PSO-RLSE method. As shown
in Table 10, the proposed approach outperforms the CNFS
trained by the PSO-RLSE and the NFS.

5. Discussion

A novel complex fuzzy computing paradigm applying
complex fuzzy sets to the problem of time series
forecasting has been presented in this paper. With
the synergistic merits of complex fuzzy inference and
neural-network based adaptive capability, the CNFS
has shown outstanding nonlinear forecasting capability
through the experimental results. Based on the
divide-and-conquer concept, the problem space is
spiritually divided into two smaller spaces: the If-part
subspace and the Then-part subspace. For the purpose
of fast learning to fine tune the CNFS, we have devised
the HMSPSO-RLSE hybrid learning method, which has
been successfully applied to the problem of time series
forecasting with three examples of financial time series.

The proposed approach has shown good results in
experiments for both the learning convergence (as shown
in Figs. 2, 5 and 8) and the prediction performance
(as shown in Tables 4, 7 and 10). The experimental
results show that the proposed approach outperforms the
compared approaches in the literature (Lu et al., 2009;
Tung and Quek, 2011). For instance, for Example 1 (time
series of the Nikkei 225 Index), as shown in Table 4, the
proposed approach has the prediction performance 13.12



Intelligent financial time series forecasting: A complex neuro-fuzzy approach. . . 797

Table 9. Then-part parameters of the CNFS after learning (Hang Seng Index).
Rule no. a0 a1 a2

1 −0.2518 + 0.2199j −0.2155 + 0.8574j 1.4812 − 0.7546j
2 −0.6646 − 0.3928j −1.0824 − 0.1470j 2.9048 + 0.2852j
3 −0.4580 + 3.8483j 0.6791 + 0.1423j 0.2826 − 4.5508j
4 13.1515 + 1.8947j 2.8715 + 7.8316j −9.1240 − 0.1960j
5 −14.9904 + 24.8028j −8.4406 − 2.7863j 16.7598 − 37.0894j
6 46.7548 − 36.3650j −121.90 − 1.0158j 28.1925 + 51.1853j
7 0.1518 + 0.0656j −0.0109 − 0.6614j 0.8988 + 0.8336j
8 −0.3380 + 0.1717j 1.1900 + 0.3128j 0.1590 − 0.6342j
9 2.4196 − 2.9736j −1.4731 − 0.4107j 0.0583 + 3.8774j

Note that after learning the Then-part parameters become complex-valued.

Table 10. Performance comparison (volatility of the Hang Seng Index).
Method Rules Training phase Testing phase

MSE ARV MAPE MSE ARV MAPE

FFNN-BP (Tung and Quek, 2011) 20 6.287 0.644 8.145 4.351 0.331 9.305
RBF (Tung and Quek, 2011) 40 0.718 0.074 3.601 3.780 0.288 13.424
CMAC (Tung and Quek, 2011) 93036 0.387 0.042 2.112 12.539 0.474 37.212
HyFIS (Tung and Quek, 2011) 154 0.734 0.075 3.476 3.971 0.302 14.114
ANFIS (Tung and Quek, 2011) 11 0.351 0.036 2.298 5.371 0.409 14.725
eFSM (Tung and Quek, 2011) 97 0.699 0.072 3.343 1.059 0.081 4.989
NFS (by the PSO-RLSE) 9 0.405 0.031 1.784 0.279 0.036 1.355
CNFS (by the PSO-RLSE) 9 0.404 0.031 1.765 0.262 0.033 1.280
CNFS (by the HMSPSO-RLSE) (proposed) 9 0.380 0.029 1.756 0.246 0.032 1.273

in the RMSE for the testing phase. Such performance is
90% better than that of the random walk (Lu et al., 2009),
which is 137.85 in the RMSE, 78% better than that of the
SVR (Lu et al., 2009), which is 60.53 in the RMSE, 76%
better than that of the ICA-SVR (Lu et al., 2009), which is
56.76 in the RMSE, and 10% better than that of the NFS,
which is 14.65 in the RMSE.

For Example 2 (time series of the TAIEX Index),
as shown in Table 7, the proposed approach has the
prediction performance 5.39 in the RMSE for the testing
phase. This performance is 89% better than that of the
random walk (Lu et al., 2009), which is 53.21 in the
RMSE, 88% better than that of the SVR (Lu et al., 2009),
which is 46.60 in the RMSE, 86% better than that of the
ICA-SVR (Lu et al., 2009), which is 41.09 in the RMSE,
and 27% better than that of the NFS, which is 7.46 in the
RMSE.

For Example 3 (volatility time series of the daily
Hang Heng Index), as shown in Table 10, the proposed
approach has the prediction performance 0.246 in the
MSE for the testing phase. This performance is 94%
better than that of the FFNN-BP (Tung and Quek, 2011),
which is 4.351 in the MSE, 93% better than that of the
RBF (Tung and Quek, 2011), which is 3.780 in the MSE,
97% better than that of the CMAC (Tung and Quek, 2011),
which is 12.539 in the MSE, 93% better than that of
the HyFIS (Tung and Quek, 2011), which is 3.971 in
the MSE, 95% better than that of the ANFIS (Tung and

Quek, 2011), which is 5.371 in the MSE, 76% better than
that of the eFSM (Tung and Quek, 2011), which is 1.059
in the MSE, and 11% better than that of the NFS, which is
0.279 in the MSE.

We think the excellent performance of the proposed
approach mainly comes from two factors. First,
the complex-valued membership property of CFSs can
enrich and augment the functional mapping ability
of the CNFS for accurate forecasting. Second, the
hybrid learning method can successfully search for the
optimal or near-optimal solution quickly. Moreover, for
the HMSPSO-RLSE hybrid learning method, we have
presented HMSPSO as a new multi-swarm-based scheme
for optimization. It can help avoid being trapped into a
local minimum and so enhance the search ability for the
optimal solution. Through the combination of HMSPSO
and the RLSE, the hybrid learning method has shown very
successful results. For instance, in Example 3, where the
time series shows more fierce fluctuation than those in the
other examples, the CNFS trained by the HMSPSO-RLSE
hybrid learning method has the prediction performance
of 0.246 in the MSE in testing phase, while the CNFS
trained by the PSO-RLSE has 0.279 in the MSE, as shown
in Table 10. With the same CNFS, the HMSPSO-RLSE
shows better performance than the PSO-RLSE hybrid
learning method. For ARV and the MAPE in Table 10,
we observed similar results. This has illustrated that the
proposed HMSPSO-RLSE hybrid learning method can
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efficiently increase forecasting performance.

6. Conclusion

We conclude the paper by describing two main
advantages. First, the proposed CNFS approach
using CFSs has been successfully presented as a new
computing paradigm with good adaptation for modeling
and forecasting. With the practical implementation of
complex fuzzy sets into the CNFS, we have opened a
new window to intelligent-system based research and
applications. Second, the novel HMSPSO-RLSE hybrid
learning method for fast learning has been demonstrated
successfully with three examples of financial time series
forecasting, where the proposed approach has shown
superior performance compared to other approaches. The
experimental results show that the proposed approach
outperforms the compared approaches. For future work,
the computing approach with complex fuzzy sets can
be applied to other areas, such as modeling, controls,
classification, and signal processing.
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Adaptive prediction of stock exchange indices by state
space wavelet networks, International Journal of Applied
Mathematics and Computer Science 19(2): 337–348, DOI:
10.2478/v10006-009-0029-z.

Buckley, J.J. (1989). Fuzzy complex numbers, Fuzzy Sets and
Systems 33(3): 333–345.

Castro, J.L. (1995). Fuzzy logic controllers are universal
approximators, IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans 25(4): 629–635.

Chen, Z., Aghakhani, S., Man, J. and Dick, S. (2011). ANCFIS:
A neurofuzzy architecture employing complex fuzzy sets,
IEEE Transactions on Fuzzy Systems 19(2): 305–322.

Deng, X. and Wang, X. (2009). Incremental learning of dynamic
fuzzy neural networks for accurate system modeling, Fuzzy
Sets and Systems 160(7): 972–987.

Dick, S. (2005). Toward complex fuzzy logic, IEEE Transac-
tions on Fuzzy Systems 13(3): 405–414.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using
particle swarm theory, Proceedings of the 6th International
Symposium on Micro Machine and Human Science, MHS
1995, Nagoya, Japan, pp. 39–43.

Gao, Y. and Er, M.J. (2005). Narmax time series
model prediction: Feedforward and recurrent fuzzy
neural network approaches, Fuzzy Sets and Systems
150(2): 331–350.

Graves, D. and Pedrycz, W. (2009). Fuzzy prediction
architecture using recurrent neural networks, Neurocom-
puting 72(7–9): 1668–1678.

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer
feedforward networks are universal approximators, Neural
Networks 2(5): 359–366.

Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy
inference system, IEEE Transactions on Systems, Man,
and Cybernetics 23(3): 665–685.

Kennedy, J. and Eberhart, R. (1995). Particle swarm
optimization, IEEE International Conference on Neural
Networks, Perth, Australia, pp. 1942–1948.

Khashei, M. and Bijari, M. (2011). A novel hybridization
of artificial neural networks and ARIMA models
for time series forecasting, Applied Soft Computing
11(2): 2664–2675.

Kim, J. and Kasabov, N. (1999). HYFIS: Adaptive neuro-fuzzy
inference systems and their application to nonlinear
dynamical systems, Neural Networks 12(9): 1301–1319.

Li, C. and Cheng, H.-H. (2011). Intelligent forecasting of
S&P 500 time series—A self-organizing fuzzy approach,
in N.T. Nguyen, C.-G. Kim and A. Janiak (Eds.), Intel-
ligent Information and Database Systems, Lecture Notes
in Artificial Intelligence, Vol. 6592, Springer-Verlag,
Berlin/Heidelberg, pp. 411–420.

Li, C. and Chiang, T.-W. (2011a). Complex fuzzy computing
to time series prediction—A multi-swarm PSO learning
approach, in N.T. Nguyen, C.-G. Kim and A. Janiak (Eds.)
Intelligent Information and Database Systems, Lecture
Notes in Artificial Intelligence, Vol. 6592, Springer-Verlag,
Berlin/Heidelberg, pp. 242–251.

Li, C. and Chiang, T.-W. (2011b). Complex fuzzy model
with PSO-RLSE hybrid learning approach to function
approximation, International Journal of Intelligent Infor-
mation and Database Systems 5(4): 409–430.

Li, C. and Chiang, T.-W. (2011c). Function approximation
with complex neuro-fuzzy system using complex fuzzy
sets—A new approach, New Generation Computing
29(3): 261–276.

Li, C., Chiang, T.-W., J.-W., H. and Wu, T. (2010).
Complex neuro-fuzzy intelligent approach to function
approximation, 3rd International Workshop on Advanced
Computational Intelligence, IWACI 2010, Suzhou, China,
pp. 151–156.



Intelligent financial time series forecasting: A complex neuro-fuzzy approach. . . 799

Li, C. and Lee, C.-Y. (2003). Self-organizing neuro-fuzzy
system for control of unknown plants, IEEE Transactions
on Fuzzy Systems 11(1): 135–150.

Li, C., Lee, C.-Y. and Cheng, K.-H. (2004). Pseudoerror-based
self-organizing neuro-fuzzy system, IEEE Transactions on
Fuzzy Systems 12(6): 812–819.

Li, C. and Priemer, R. (1997). Self-learning general
purpose PID controller, Journal of the Franklin Institute
334(2): 167–189.

Li, C. and Priemer, R. (1999). Fuzzy control of unknown
multiple-input-multiple-output plants, Fuzzy Sets and Sys-
tems 104(2): 245–267.

Lu, C.-J., Lee, T.-S. and Chiu, C.-C. (2009). Financial time
series forecasting using independent component analysis
and support vector regression, Decision Support Systems
47(2): 115–125.

Man, J.Y., Chen, Z. and Dick, S. (2007). Towards inductive
learning of complex fuzzy inference systems, Annual
Meeting of the North American Fuzzy Information Pro-
cessing Society, NAFIPS 2007, San Diego, CA, USA,
pp. 415–420.

Mansour, M.M., Mekhamer, S.F. and El-Kharbawe, N.-S.
(2007). A modified particle swarm optimizer for the
coordination of directional overcurrent relays, IEEE Trans-
actions on Power Delivery 22(3): 1400–1410.

Moody, J. and Darken, C.J. (1989). Fast learning in networks
of locally-tuned processing units, Neural Computation
1(2): 281–294.

Moses, D., Degani, O., Teodorescu, H.N., Friedman, M. and
Kandel, A. (1999). Linguistic coordinate transformations
for complex fuzzy sets, IEEE International Fuzzy Systems
Conference Proceedings, FUZZ-IEEE 1999, Seoul, Korea,
pp. 1340–1345.

Mousavi, S.J., Ponnambalam, K. and Karray, F. (2007).
Inferring operating rules for reservoir operations using
fuzzy regression and ANFIS, Fuzzy Sets and Systems
158(10): 1064–1082.

Niu, B., Zhu, Y., He, X. and Wu, H. (2007). MCPSO: A
multi-swarm cooperative particle swarm optimizer, Ap-
plied Mathematics and Computation 185(2): 1050–1062.

Paul, S. and Kumar, S. (2002). Subsethood-product fuzzy
neural inference system (SUPFUNIS), IEEE Transactions
on Neural Networks 13(3): 578–599.

Ramot, D., Friedman, M., Langholz, G. and Kandel, A. (2003).
Complex fuzzy logic, IEEE Transactions on Fuzzy Systems
11(4): 450–461.

Ramot, D., Milo, R., Friedman, M. and Kandel, A. (2002).
Complex fuzzy sets, IEEE Transactions on Fuzzy Systems
10(2): 171–186.

Rojas, I., Valenzuela, O., Rojas, F., Guillen, A., Herrera,
L.J., Pomares, H., Marquez, L. and Pasadas, M. (2008).
Soft-computing techniques and ARMA model for time
series prediction, Neurocomputing 71(4–6): 519–537.
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