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This paper presents a series of new results in finite and infinite-memory modeling of discrete-time fractional differences.
The introduced normalized finite fractional difference is shown to properly approximate its fractional difference original, in
particular in terms of the steady-state properties. A stability analysis is also presented and a recursive computation algorithm
is offered for finite fractional differences. A thorough analysis of computational and accuracy aspects is culminated with
the introduction of a perfect finite fractional difference and, in particular, a powerful adaptive finite fractional difference,
whose excellent performance is illustrated in simulation examples.
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List of abbreviations

AFFD Adaptive Finite Fractional Difference

FD Fractional Difference

FFD Finite Fractional Difference

FIR Finite Impulse Response

IIR Infinite Impulse Response

LS Least Squares

NFFD Normalized Finite Fractional Difference

OBF Orthonormal Basis Functions

PFFD Perfect Finite Fractional Difference

1. Introduction

Non-integer or fractional-order dynamic models have
recently attracted considerable research interest. Their
specific properties can make them more adequate in the
modeling of selected industrial systems (Riu et al., 2001;
Zaborowsky and Meylaov, 2001; Petráš and Vinagre,
2002; Delavari et al., 2010). A number of discrete-time
fractional difference systems have been modeled via both
a transfer function or difference equation models (Lubich,

1986; Ortigueira, 2000; Ostalczyk, 2000; Petráš et al.,
2000) and state space ones (Sierociuk and Dzieliński,
2006; Dzieliński and Sierociuk, 2008; Kaczorek, 2008).

Various approximations to fractional differences
have been pursued. Since an FD represents in fact
(a sort of) an infinite impulse response filter, one
solution has been to least-squares fit an impulse/step
response of a discrete-time integer-difference IIR filter
to that of the associated FD (Vinagre et al., 2000;
Chen et al., 2003; Barbosa and Machado, 2006). The
problem here is to propose a “good” structure of the
integer-difference filter, possibly involving a low number
of parameters. On the other hand, an LS fit of the FIR
filter to FD has been analyzed in the frequency domain
(Tseng et al., 2000), with the high-order optimal filter
providing a good approximation accuracy, at the cost
of a remarkable computational effort, though. Another
approach behind that research direction has been the
employment of an approximating filter incorporating
orthonormal basis functions (Maione, 2006). That
promising solution has, however, suffered from the
necessity to select dominant OBF pole(s), which may
significantly affect the approximation accuracy. It is
finally worth mentioning about yet another, numerical
approach to the approximation of fractional systems in the
context of integral equations (Momani and Odibat, 2007;
Bandrowski et al., 2010; Saeedi et al., 2011), the approach
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suffering, again, from a computational burden.
Apart from the computational aspects to be covered

later on, our reservation against the above approximation
approaches results form the fact that the proposed
approximating IIR/FIR/OBF filters are quite arbitrary
in that they do not use any a priori knowledge about
the mathematical (not to say physical) structure of
FD. Therefore we advocate an alternative approach
relying on the approximation of the FD filter with
its truncated, finite-memory version (Podlubny, 1999;
Dzieliński and Sierociuk, 2008; Monje et al., 2010). In
analogy to finite impulse response the term finite FD,
or FFD, has been coined (Stanisławski, 2009). FFD
may, however, suffer from (remarkable) steady-state
errors as compared to FD. To cope with this, we have
introduced what is here referred to as normalized FFD,
or NFFD (Stanisławski and Latawiec, 2010; 2011). This
paper presents a number of new results concerning an
efficient approximation of FD by (various versions of)
NFFD. In particular, the results concern the steady-state
error analysis, (preliminary) stability analysis, recursive
computation, variable-order and robustness issues for
NFFD modeling.

Having introduced the FD modeling problem, the
Grünwald–Letnikov fractional discrete-time difference
is recalled, together with its NFFD approximation, in
Section 2. That section also includes the steady-state
error analysis for NFFD, thus resulting in the introduction
of a specific normalizing factor whose properties are
summarized in a series of lemmas and theorems. Finally,
Section 2 provides tools for recursive computation of
NFFD, which appears an order faster than its off-line
counterpart. Variable-order NFFD is covered in Section 3.
In particular, a recursive computation algorithm provides
a linear time complexity design. An application of
NFFD in modeling of state-space systems is presented
in Section 4, with stability and steady-state accuracy
results yielded. In Section 5, the results are illustrated
in the first series of simulations, which show the need for
improvement of NFFD. Accordingly, NFFD is modified in
Section 6, yielding a sort of an adaptive version of NFFD,
or AFFD. Finally, another new modification of NFFD,
called perfect FFD, or PFFD, is introduced in Section 7.
The two modifications, that is, AFFD and PFFD, are
presented in the variable-order framework in Section 8,
with the superiority of AFFD indicated. The second
series of simulation examples of Section 10 confirms the
theoretical yieldings of Sections 6 to 9. Conclusions of
Section 11 summarize the achievements of the paper.

2. Fractional discrete-time difference

A simple generalization of the familiar
Grünwald–Letnikov difference (Miller and Ross, 1993) is
the fractional difference in discrete time t, described by

the equation (Oldham and Spanier, 1974; Sierociuk and
Dzieliński, 2006; Kaczorek, 2008; Guermah et al., 2010)

Δαx(t) =
t∑

j=0

Pj(α)x(t)q−j

= x(t) +
t∑

j=1

Pj(α)x(t)q−j , t = 0, 1, . . . ,

(1)

where α ∈ (0, 2) is the fractional order, q−1 is the
backward shift operator and

Pj(α) = (−1)jCj(α), (2)

with

Cj(α) =
(

α

j

)
=

⎧
⎪⎨

⎪⎩

1, j = 0,

α(α − 1) . . . (α − j + 1)
j!

, j > 0.

(3)

Remark 1. It is well known that
∑∞

j=0 Pj(α) = 0 or,
equivalently,

∑∞
j=1 Pj(α) = −1.

Remark 2. Possible accounting for the sampling period
T when transferring from a continuous-time derivative
to the discrete-time difference results in dividing the
right-hand side of Eqn. (1) by T α (Monje et al., 2010).
Operating without T α as in the sequel corresponds to
putting T = 1 or to the substitution of Pj(α) for
Pj(α)/T α, j = 0, . . . , t.

Note that each element in Eqn. (1) from time t
back to 0 is non-zero, so that each incoming sample of
the signal x(t) increases the complication of the model
equation. In the limit, as t → +∞, we end up with
computational explosion.

2.1. Finite fractional difference. Stanisławski (2009)
considered truncated or finite fractional differences (in
analogy to FIR) for practical, feasibility reasons, with
the convergence to zero of the series Cj(α) enabling to
assume Cj(α) ≈ 0 for some j > J , where J is the
number of backward signal samples used to calculate the
fractional difference. We will further proceed with FFD,
to be formally defined below.

Definition 1. Let the fractional difference be defined as
in Eqns. (1)–(3). Then the finite fractional difference is
defined as

Δαx(t, J) = x(t) +
J∑

j=1

Pj(α)x(t)q−j , (4)

where J = min(t, J) and J is the upper bound to j when
t > J .
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FFD has been analyzed in some papers under the
heading of a practical implementation of FD (Kaczorek,
2008; Busłowicz and Kaczorek, 2009), or a finite
difference (Dzieliński and Sierociuk, 2008; Monje et al.,
2010) or a short-memory difference (Podlubny, 1999).

An important problem encountered in FFD-based
modeling is an incorrect steady-state gain of the model,
with its discrepancy with respect to the corresponding FD
one being dependent on J . This can be illustrated in the
step signal x(t) = x01(t) whose FFD with α = 0.5
and J = 20 produces limt→∞ Δαx(t, J)|x(t,J)=x01(t) ≈
0.12x0, whereas the limit is zero for FD, that is,

lim
t→∞Δαx(t)|x(t)=x01(t) = 0. (5)

This may cause a (considerable) difference between
steady-state outputs of a plant and its FFD model.
Also, this may affect a stability condition for FFD.
Therefore, some special means must be applied to provide
steady-state error-free FFD modeling with reasonably
low J.

2.2. Normalized finite fractional difference. Here we
propose an effective tool to cope with the problem of a
steady-state error in FFD modeling. In order to provide
limt→∞ Δαx(t, J)|x(t,J)=x01(t) = 0, it its sufficient to
incorporate a normalization factor N = N(J) into FFD
to obtain normalized FFD.

Definition 2. Let the fractional difference be defined
as in Eqns. (1)–(3) and the finite fractional difference be
defined as in Definition 1. Then the normalized finite frac-
tional difference is defined as

Δα
Nx(t, J) = x(t) +

1
N

J∑

j=1

Pj(α)x(t)q−j , (6)

where N = N(J) is the normalizing factor.

Lemma 1. Let NFFD be defined as in Definition 2. Then
the steady-state error-free modeling of FD with Eqn. (6)
can be provided by the selection

N = −
J∑

j=1

Pj(α). (7)

Proof. We assume that the steady state xss for NFFD is
reached for a sufficiently high t, that is, t > J . In order
to satisfy the steady-state error-free condition, one must
have (cf. Eqn. (5))

lim
t→∞Δα

Nx(t, J)|x(t,J)=xss

= xss +
1
N

J∑

j=1

Pj(α)xss = 0. (8)

This ends up with Eqn. (7). �

Lemma 2. Let N = N(J) as in Eqn. (7). Then

lim
J→∞

N(J) = 1. (9)

Proof. It follows immediately from Remark 1 and
Eqn. (7). �

The asymptotic properties of NFFD as t → ∞ and
J → ∞ are summarized in the following two theorems.

Theorem 1. Let N = N(J) be selected as in Eqn. (7).
Then

lim
t→∞Δα

Nx(t, J) = lim
t→∞Δαx(t). (10)

Proof. It follows immediately from Definition 2 and
Lemma 1. �

Theorem 2. Let N = N(J) be selected as in Eqn. (7).
Then

lim
J→∞

Δα
Nx(t, J) = Δαx(t). (11)

Proof. It follows immediately from Definition 2 and
Lemma 2. �

We will jointly describe FD, FFD and NFFD as

Δα
Nx(t, J) = x(t) + X(t, J), (12)

with

X(t, J) =
1
N

J∑

j=1

Pj(α)x(t)q−j

and J → ∞ (implying N → 1) for FD, N = 1 for FFD
and N = N(J) as in Eqn. (7) for NFFD.

The NFFD as in Eqn. (6) with the normalizing factor
as in Eqn. (7) will sometimes be referred to as an “off-line
NFFD”.

2.3. Recursive computation of NFFD. Essential
computational savings can be obtained when computing
(some elements of) finite fractional differences in a
recursive way.

We consider an NFFD with the normalizing factor
N = N(J) selected as in Lemma 1, with J substituted
for J ,

Δα
Nx(t, J) = x(t) + X(t, J), ∀t = 0, 1, . . . , (13)

where

X(t, J) =
1

N(J)
B(t, J), (14)
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with N(J) = −
∑J

j=1 Pj(α), Pj(α) defined in Eqns. (1)

and (2) and B(t, J) =
∑J

j=1 Pj(α)x(t − j). Then N(J)
in Eqn. (14) can be computed recursively as

PJ (α) =
(
1 − α + 1

J

)
PJ−1(α), (15)

N(J) = N(J − 1) − PJ(α), (16)

with P0(α) = 1, N(0) = 0 and J = 1, 2, . . . , J .
In fact, Eqns. (15) and (16) can be immediately

obtained if we note that

Pj(α) = (−1)J−1CJ−1(α)
(
1 − α + 1

J

)

and

N(J) = −
J−1∑

j=1

Pj(α) − PJ (α).

Remark 3. Observe that each recursion (15) and (16)
with respect to J is executed only once at time t = J =
1, . . . , J .

Remark 4. Note that the recursive computation of NFFD
is started (at J = 1) from the regular difference Δx(t) =
x(t) − x(t − 1) and it converges to the off-line computed
NFFD for J = J .

The recursive NFFD will sometimes be referred to as
an “on-line NFFD”.

2.3.1. Computational efforts for off-line vs. recursive
NFFDs. Time complexity Toff (J) for one step of the
simulation process for off-line NFFD can be easily shown
to be equal to

Toff (J) = 2J
2 − 1

2
J + 1 ∈ O(J

2
). (17)

In contrast, time complexity Ton(J) for one step of the
simulation process for on-line NFFD is as low as

Ton(J) = 2J + 6 ∈ O(J). (18)

Clearly, the on-line NFFD algorithm runs in the order of
J , which is an order faster than its off-line counterpart.

3. Variable-order NFFD

Variable-order fractional differences, or fractional
differences with time-varying order αt = α(t), were
studied by Ostalczyk (2010), or, more generally, by Sun
et al. (2009), as well as Valério and Sá da Costa (2011),
with a high computational burden experienced. Here we
present a computationally effective, recursive algorithm
for NFFD with a time-varying (state-independent) order.

Remark 5. It is interesting to note that Lemmas 1
and 2 as well as Theorems 1 and 2 are still valid for
a time-varying order αt. This results from the fact that
limj→∞ Pj(αt) = 0.

We consider an NFFD with a time-varying order
αt = α(t) and the normalizing factor selected as in
Lemma 1, with J substituted for J ,

Δαt

N x(t, J) = x(t) + X(t, J), ∀t = 0, 1, . . . , (19)

where

X(t, J) =
1

Nt(J)
B(t, J), (20)

with Nt(J) = −
∑J

j=1 Pj(αt), Pj(αt) being defined
in Eqns. (1) and (2) (with αt substituted for α), and
B(t, J) =

∑J
j=1 Pj(αt)x(t − j). Then Nt(J) in Eqn.

(20) can be computed recursively as

PK(αt) =
(
1 − αt + 1

K

)
PK−1(αt), (21)

Nt(K) = Nt(K − 1) − PK(αt), (22)

∀K = 1, . . . , J, with P0(αt) = 1, Nt(0) = 0 and J
defined as in Definition 1.

Equations (21) and (22) are the extensions of Eqns.
(15) and (16), respectively, with the reindexing with K
being necessary due to the time-varying αt.

Remark 6. Note that the recursions (21) and (22) are
now calculated J times at each time instant t = 0, 1, . . ..

3.1. Computational effort revisited: Part 1. Time
complexity Tvar(J) for one step of the simulation process
for recursive NFFD with a time-varying order is now

Tvar (J) = 6J + 1 ∈ O(J). (23)

Again, the linear time algorithm is thus obtained.

3.2. Round-off errors. It is well known that long-term
recursive computations may be affected with propagation
of computer round-off errors (Verhaegen, 1989; Liavas
and Regalia, 1999). A simple remedy is to occasionally
reset the recursive algorithm, while maintaining an old
“frozen” model until a new stationary state of the restarted
algorithm has been reached. However, in the long run,
FD/NFFD models are becoming “saturated”, even for a
time-varying order (cf. Remark 5), so that long-term
(steady-state) computations for such models cannot take
us any further. In fact, the (steady-state) gain of such
models is independent of the order α.
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4. State space model description

Consider a discrete-time state space system described by
the (constant-order) fractional model

Δαx(t + 1) = Adx(t) + Bu(t), x(0) = x0, (24)

y(t) = Cx(t) + Du(t), (25)

where x(t) ∈ R
n,u(t) ∈ R

nu and y(t) ∈ R
ny are the

state, input and output vectors, respectively, Ad ∈ R
n×n,

B ∈ R
n×nu , C ∈ R

ny×n and D ∈ R
ny×nu . Without loss

of generality we will assume in the sequel that the initial
vector x0 is zero, the more so that we will operate on
finite-memory FD approximations that do not trace back
to x0.

Accounting that the FD is calculated by the formula
(1), Eqn. (24) can be presented in the following form (cf.
Monje et al., 2010):

x(t + 1) =
(
Ad + αI

)
x(t)

−
t+1∑

j=2

Pj(α)x(t − j + 1) + Bu(t). (26)

Using Definitions 1 and 2, we can jointly present
FD/FFD/NFFD-based discrete-time state equations as

x(t + 1) =
(
Ad +

α

N
I
)
x(t)

− 1
N

J∑

j=2

Pj(α)x(t − j + 1) + Bu(t), (27)

with J and N = N(J) defined as in Definitions 1 and 2,
respectively.

Note that Eqn. (27) can be regarded as the most
general fractional-difference state equation (within the
fractional-difference class considered here) including the
NFFD-based one, FFD-based one (for N = 1) and
FD-based one (for J → ∞ implying N → 1).

Remark 7. Possible accounting for the sampling period
T (when transferring from a continuous-time derivative
to the discrete-time difference) results in the substitutions
Ad → AdT

α and B → BT α in Eqns. (26) and (27)
(Monje et al., 2010).

4.1. Stability. Our simple NFFD stability result is now
offered as follows

Theorem 3. The NFFD-based discrete-time state equa-
tion (27), with α ∈ (0, 2) and N selected as in Lemma 1,
is asymptotically stable if

||A|| < φ(α), (28)

where || · || is a matrix norm, A = Ad + α
N I , φ(α) = α/N

for α ∈ (0, 1) and φ(α) = 2 − α/N for α ∈ (1, 2).

Proof. See Appendix A. �

Interestingly, the stability condition (28) for the
NFFD-based state space system with the normalizing
factor selected according to Lemma 1 includes that for
the FD-based one (cf. Monje et al., 2010), in which case
J → ∞ implying N → 1, and that for the FFD-based
one (N = 1) as well as that for the “regular” difference
(α = 1 and N = 1).

Remark 8. For the FFD-based system, the result of
Theorem 3 is similar to those of Dzieliński and Sierociuk
(2008) as well as Monje et al. (2010). More general
stability results for the FFD-based system were given
by Guermah et al. (2010), as well as Stojanovic and
Debeljkovic (2010).

4.2. Steady-state accuracy.

Theorem 4. Let the steady-state output error for the
FFD/NFFD-based state-space model with respect to the
FD one be defined as

εss = lim
t→∞

{
εy(t) = yNFD (t) − yFD(t)

}
, (29)

where yNFD(t) and yFD(t) are the outputs of the
FFD/NFFD-based and FD-based state-space models, re-
spectively. Then

εss = C(F − Ad)−1FA−1
d Buss, (30)

where uss is the steady state input and

F =
[
1 +

1
N

J∑

j=1

Pj(α)
]
I, (31)

with N = N(J) as in Lemma 1 for the NFFD-based sys-
tem and N = 1 for the FFD-based one.

Proof. See Appendix B. �

It is clear now that seady-state error-free output
modeling can be obtained for the NFFD-based system
only. In fact, the matrix F is zero in that case.

4.3. Variable-order state space model. For the
NFFD-based state space model with time-varying
(state-independent) order αt, t = 0, 1, . . . , we have the
following two interesting remarks.

Remark 9. Unlike FD-based and NFFD-based systems,
the FFD-based state-space model has no steady state for
a time-varying order αt. This results immediately from
Theorem 4. In fact, the matrix F is time-varying in that
case.

Remark 10. The NFFD steady-state error-free modeling
result of Theorem 4 is still valid for time-varying αt; in
fact, the matrix F is zero, even for time-varying αt.
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Fig. 1. Time plots of outputs for FD, FFD and NFFD-based
state-space systems: Example 1.

5. Simulation examples: Part 1

NFFD with N(J) selected as in Lemma 1 has been shown
to provide a good approximation accuracy with respect to
FD for high J and, in particular, for values of α being
close to unity (Stanisławski and Latawiec, 2011). Here
we demonstrate a rather poor modeling performance in
case we use NFFD for low values of J and, in particular,
low values of α. This will trigger the NFFD modification
process.

Example 1. Consider an FD-based discrete-time state
space system with

Ad =
[

−0.1 0
1 −0.4

]
, B =

[
1
0

]
,

C = [0 1] , D = [0] , α = 0.85

and its FFD-based state-space model. The steady-state
output values of the model for u = 1(t) and various values
of J are presented in Table 1. Additionally, the outputs for
FFD and NFFD (with J = 50) vs. FD-based systems are
plotted in Fig. 1. �

Table 1. Steady-state output of the FFD-based system.
J 10 50 100 500 1000 ∞

y(∞) 19.31 23.30 24.03 24.75 24.85 25

Example 2. Consider an NFFD as in (6), with N selected
according to Lemma 1 and α = 0.6, J = 40. Figure 2
presents the convergence process of X(t, J) = −X(t, J)
for the recursive version of NFFD to that for the off-line
version.

Note that we choose to plot X(t, J) here as the
(positive) values of that signal firmly illustrate the
behavior of the most important component of FFD/NFFD,
that is, the second component on the right-hand sides of
Eqns. (4) and (6). �
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rec. NFFD
off−line NFFD
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X
(t
,J
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Fig. 2. Time plots of X(t, J) for the recursive and off-line ver-
sions of the NFFD model: Example 2.
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Fig. 3. Output time plots for varying-order FD vs. FFD and (off-
line) NFFD-based state-space systems: Example 3.

Example 3. Consider a varying-order state space model
with the elements Ad, B, C, D as in Example 1, J = 50
and

αt = 0.9 + 0.0001t, t ∈ (0, 600).

Time plots of outputs for FD, FFD and NFFD-based
systems (Fig. 3) confirm our theoretical results
summarized in Remarks 9 and 10.

We have also frequency-domain analyzed the
behavior of (constant-order) FD, FFD and NFFD in an
approximate manner proposed by Tseng et al. (2000), and
the same conclusions have been drawn as those presented
here for the time-domain approach. For space-saving
reasons, we refrain from plotting the frequency-domain
characteristics, the more so as we now introduce an
effective, time-varying, FD-approximating filter.

6. Adaptive FFD

It can be concluded from our analysis and Fig. 1 that
NFFD proves to have the excellent steady-state behavior
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at the cost of possible remarkable modeling errors in
the transient state, as compared with FD. On the other
hand, poor steady-state properties of FFD are (at least
partly) compensated by the excellent behavior in the initial
transient state. In fact, for t ≤ J , FFD is identical with
FD. Now, we propose to combine FFD with NFFD so
that the advantages of the two could be retained in the
combined FFD-NFFD model.

Firstly, the combination should employ FFD until
t = J . Secondly, for t = J + 1, FFD should not
be directly switched to NFFD as the two are still much
different from each other at that time, in general. A
sort of a “bumpless transfer” between FFD and NFFD
should be rather provided. To this end, we propose to use
a filter incorporating the exponential forgetting factor λ,
with 0 < λ < 1, which is a classical memory-managing
measure often employed in adaptive estimation schemes.
Accordingly, we employ the following, time-varying
normalizing factor during the FFD-NFFD transfer:

N(t) = N − (N − 1)λt−J , t = J + 1, . . . , (32)

where N = N(J) is the normalizing factor selected
according to Lemma 1 and computed as in Eqns. (15) and
(16).

Obviously, the weight w(t) = λt−J can also be
calculated recursively,

w(t) = λw(t − 1), t = J + 1, . . . , (33)

with w(J) = 1.
In our numerous simulation experiments, we have

found that, typically, a “good” value of λ should range
from 0.95 to 0.999. An optimal λ depends on α and
J and could be obtained from, e.g., an (off-line) LS
minimization procedure, but this would involve some
computational effort.

Summing up, we introduce an adaptive (normalized)
FFD, for the calculation of Eqn. (6) in the form of

Δα
Nx(t, J) = x(t) +

1
N(t)

J∑

j=1

Pj(α)x(t)q−j ,

t = 0, 1, . . . , (34)

with the following time-varying normalizing factor:

N(t) =

⎧
⎨

⎩

1, t ≤ J (FFD),

N − (N − 1)w(t), t = J + 1, . . . ,
(35)

where N = N(J) is selected according to Lemma 1 and
computed as in Eqns. (15) and (16), w(t) is calculated as
in Eqn. (33) and λ is the exponential forgetting factor.

Note that for t = J the second equation in (35)
would reduce to the first one (bumpless transfer), whereas,

as t → ∞, the second equation in (35) converges to
N = N(J), yielding NFFD and implying that the
NFFD-related result of Theorem 4 is still valid for the
AFFD-based system.

A very accurate and robust modeling performance of
AFFD will be demonstrated in simulations.

7. Perfect FFD

Now that the advantageous effect of a time-varying
normalizing factor N(t) on FD modeling accuracy via
NFFD has been indicated, we would like to select N(t) so
as to minimize a modeling error. Surprisingly, it will be
shown that, under some circumstances, perfect modeling
of FD with NFFD (with a time-varying normalizing factor
N(t)) is achievable in that the infimum modeling error is
possible, that is, zero. We will call such an NFFD a perfect
(normalized) FFD.

Definition 3. Consider an NFFD with a time-varying
modeling factor N(t) as in Eqn. (34) and define its step
signal modeling error with respect to FD as

εN(t)(t) =
(
Δα

N(t)x(t, J) − Δαx(t)
)
|x(t)=x01(t). (36)

Then perfect FFD is defined as an NFFD that provides
εN(t)(t) = 0 ∀ t = 0, 1, . . ..

Theorem 5. Consider an NFFD desribed by Eqn. (34),
with a time-varying normalizing factor N(t). Then PFFD
is obtained if N(t) is selected as

N(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for t = 1, . . . , J,

1
1 + PJ+1(α)/N

for t = J + 1,

1
1

N(t−1) + ( 1
N(t−1) −

1
N(t−2) )

(
1 − α−1

t

)

for t = J + 2, . . .
(37)

with N = N(J) selected as in Lemma 1 and computed
as in Eqns. (15) and (16), and PJ+1(α) computed as in
Eqn. (15).

Proof. See Appendix C. �

Resulting from Theorem 5 as well as Lemma 1 and
Remark 1 is the following steady-state result.

Corollary 1. Let N = N(J) be selected as in Eqn. (7)
and N(t) be selected as in Eqn. (37). Then

lim
t→∞ N(t) = N. (38)

Clearly, as t → ∞, PFFD approaches NFFD.
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Remark 11. We have introduced the term ‘perfect’
NFFD in analogy to perfect regulation/control/signal
reconstruction problems, where ‘ideal’
modeling/control/reconstruction abilities are, like
here, apparently related to the solution of the inverse
problem (Latawiec, 2004; Hunek and Latawiec, 2011).

It is well known that ‘perfect’ solutions may
lack robustness in that they may be sensitive to
disturbances or specific properties of systems/signals
under control/modeling, e.g., time-varying conditions.

Note that the ‘perfect’ solution to the NFFD
modeling problem is in fact ‘ideal’ in that PFFD ≡ FD,
for the step signal x(t) = x01(t) only. This does not have
to necessarily mean that the zero-error modeling accuracy
will be retained for other forms of the signal x(t).

It is finally interesting to note that, in spite of
the finite-memory NFFD origin, both PFFD and AFFD
constitute infinite-memory time-varying approximations
to FD.

8. Variable-order AFFD and PFFD

8.1. Variable-order AFFD. The time-varying nature
of AFFD results in the fact that only minor modifications
are necessary to account for variable-order α = αt.
In fact, variable-order AFFD can be computed as in
Eqns. (33) and (35), with N = Nt(J) calculated as in
Eqns. (21) and (22). Note that for the FFD component
of AFFD, that is, for N(t) = 1, we employ Pj(αt),
j = 1, . . . , J .

8.2. Variable-order PFFD. Unfortunately, nothing
like in Section 8.1 can be applied for PFFD. In fact,
PFFD is the recurrence which cannot be adopted for
time-varying αt. Clearly, Eqns. (C2)–(C6) of Appendix
C are not valid for the case of α = αt. We have
tried to construct some approximations to Eqn. (C2),
but we have not succeeded to find one(s) that could lead
to something competitive to variable-order AFFD. Now,
variable-order PFFD is left for possible future research,
with our preliminary pessimistic conclusions resulting
from a number of our ‘trial-and-simulations’.

9. Computational effort revisited: Part 2

Time complexity TAFFD(J) for one step of the
simulation process for adaptive NFFD with α = const
and N(t) calculated as in (32) is

TAFFD(J) = 2J + 10 ∈ O(J), (39)

and for perfect NFFD it is

TPFFD(J) = 2J + 15 ∈ O(J). (40)
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Fig. 4. Time plots of X(t, J) for FD/FFD/NFFD/AFFD/PFFD
models: Example 4.

Time complexity TAFFDvar(J) for one step of the
simulation process for variable-order AFFD (with α =
αt) is

TAFFDvar(J) = 6J + 7 ∈ O(J). (41)

Again, linear time algorithms are obtained.

10. Simulation examples: Part 2

Example 4. Consider FD/FFD/NFFD/AFFD/PFFD
fractional differences with N selected as in Lemma 1 and
α = 0.9, J = 80, λ = 0.995. Figure 4 presents zoomed
time plots of X(t, J) = −X(t, J) for all the models, with
x(t) = 1(t). It can be seen from Fig. 4 that the best,
‘ideal’ performance is provided by PFFD, which is not
surprising under the step signal. �

Example 5. Consider FD/FFD/NFFD/AFFD/PFFD
fractional models as in Example 4, with λ = 0.9985
for the AFFD model. A time plot of the realization of
a (stochastic) signal x(t) is presented in Fig. 5. The mean
square prediction errors (MSPEs) for the analyzed models
are presented in Table 2, and zoomed time plots of X(t, J)
for all the differences are shown in Fig. 6. The highest

Table 2. MSPE for FFD/NFFD/AFFD/PFFD models.
Model FFD NFFD AFFD PFFD
MSPE 0.0211 0.0083 0.0030 0.00028

modeling accuracy can be observed here for the PFFD
model and the modeling performance for the AFFD model
is also high. Note that the MSPE represents the LS fit of
the models considered with respect to FD. �

Example 6. Consider the model specifications as in
Example 5, but for x(t) = t. The MSPE and the
normalized MSPE (NMSPE) with respect to FD for the
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els: Example 5.
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Fig. 6. Time plots of X(t, J) for FD/FFD/NFFD/AFFD/PFFD
models (one step zoom): Example 5.

analyzed models are presented in Table 3, and time plots
of X(t, J) for the differences are shown in Fig. 7. Clearly,

Table 3. MSPE and NMSPE for FFD/NFFD/AFFD/PFFD mod-
els at t = 1000.

Model FFD NFFD AFFD PFFD
MSPE 4815 2640 43.83 842.2

NMSPE 5.817e-5 3.183e-5 5.315e-7 1.016e-5

the best performance comes from the AFFD model now.
�

Example 7. Consider the AFFD model as in Example
4 and the signal x(t) depicted in Fig. 5 (note how low
J = 80 is here). The MSPE for AFFD with respect to
FD for λ = var is presented in Table 4. Selection of the
forgetting factor λ for AFFD is thus not that critical, with
the best performance obtained here for λ = 0.995. �
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Fig. 7. Time plots of X(t, J) for FD/FFD/NFFD/AFFD/PFFD

models: Example 6.
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Fig. 8. Time plots of X(t, J) for FD/AFFD models: Example 8.

Table 4. MSPE for the AFFD model with λ = var.
λ 0.98 0.99 0.995 0.998 0.999

MSPE 2.8e-3 1.8e-3 8.3e-4 1.7e-3 5.6e-3

Example 8. Consider a varying-order AFFD model as
in Example 4, αt as in Example 3 and λ = 0.9985. Time
plots of X(t, J) for FD/AFFD are presented in Fig. 8. It
is striking that even in this variable-order case the X(t, J)
signals for FD and AFFD are hardly distinguishable. On
the other hand, we could not modify PFFD to obtain
comparable results. �

Example 9. Consider FFD/NFFD/AFFD/PFFD-based
state space models with the elements Ad, B, C, D and α
as in Example 1, the time-varying αt as in Example 6,
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J = 100 and λ = 0.99 for the AFFD model. The MSPE
and the NMSPE of the models for the input signal as in
Example 6 are presented in Table 5. �

Table 5. MSPE and the NMSPE for FFD/NFFD/AFFD/PFFD-
based state-space models.

Model FFD NFFD AFFD PFFD
MSPE 7.73e+7 6.74e+7 1.89e+6 2.21e+7

NMSPE 1.53e-3 1.34e-3 3.75e-5 4.38e-4

The results of the above simulation examples for
Series 2 strongly support our theoretical achievements
of Sections 6–8. In particular, our robustness-related
reservations against (otherwise theoretically attractive)
PFFD are confirmed for non-step signals and, in
particular, for the variable-order case. Therefore, we
strongly advocate the use of our robust AFFD in the
modeling of discrete-time fractional-order systems.

11. Conclusion

This paper has offered a series of original results
in the modeling of discrete-time fractional-difference
systems using finite/infinite-memory approximations to
FD, namely, finite FD and, in particular, normalized finite
FD. The steady-state error analyses for FFD and NFFD
resulted in the introduction of a specific “normalizing
factor”, thus providing steady-state error-free modeling
of NFFD-based systems. The stability analysis for
NFFD-based state space systems revealed the stability
condition which includes those for FD and FFD-based
systems. A recursive algorithm for computation of NFFD
yielded essential computational savings as compared to its
off-line version.

Our main achievement is the presentation of various
normalizing factors for NFFD, including time-varying
ones, whose crucial influence on the quality of FD
approximations was demonstrated both analytically and
simulation-wise. In particular, an introduced adaptive
version of NFFD (AFFD), being a new infinite-memory
approximation to FD, essentially improved the modeling
accuracy for NFFD in the transient state, even in the case
of a variable fractional order. Also, we offered perfect
FFD, providing an excellent performance of modeling of
FD by means of NFFD, but only for constant signals
(or constant-component ones) and a constant fractional
order. We finally recommended robust AFFD as the
most valuable tool for the modeling of FD, which was
confirmed in numerous simulations.

Finally, we would like to stress the role of an a
priori knowledge in our FD modeling approach. Since
the original mathematical and physical nature of FD is
time-domain, we use this a priori knowledge to find a
“good” FFD-based approximation to FD. In fact, an initial
part of FFD is just FD so it “suffices” to accurately (and

robustly) model the remaining part of FFD. Therefore, a
consecution FD–FFD–NFFD–AFFD/PFFD is the natural
one, just making use of the a priori knowledge which is
FD and FFD. It should be emphasized that no such a pri-
ori knowledge has ever been used when modeling FD
with any other filters (e.g., FIR, IIR, ARX-like, OBF),
in particular, in the frequency domain. In fact, in the
latter case a filter model of FD covers the whole frequency
range, unnecessarily neglecting the a priori information
that FFD=FD in the high-frequency range. In other
words, the FFD part of our AFFD approximation to FD
covers the high-frequency range, the NFFD supplement
fits the steady state whereas the medium-frequency range
is modeled by the ‘adaptive’ part of AFFD. Well, with
PFFD constituting a nice theoretical support of the whole
FFD/NFFD involvement.

Our future research work will be concentrated on a
rigorous frequency-domain analysis of AFFD, which is
a real challenge in view of the specific structure of that
nonlinear time-varying filter.
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Appendix A

Proof of Theorem 3

Proof. According to the arguments presented by
Debeljković et al. (2002), a system described by the
equation

x(k + 1) = A0x(k) +
J∑

i=1

Aix(k − 1) (A1)

is asymptotically stable if the following condition is
satisfied:

J∑

i=0

‖Ai‖ < 1. (A2)

In our case,

Ai =

⎧
⎪⎪⎨

⎪⎪⎩

Ad +
α

N
I, i = 0,

−Pj+1(α)
N

I, i ∈ (1, J − 1),
(A3)

and so
J−1∑

i=0

‖Ai‖ = ‖Ad +
α

N
I‖ +

J∑

i=2

‖ − 1
N

Pj(α)I‖. (A4)

Since for 0 < α < 1 we have Pi(α) < 0, i =
1, . . . , J , we arrive at

J−1∑

i=0

‖Ai‖ = ‖Ad +
α

N
I‖ − 1

N

J∑

i=2

Pj(α)

= ‖Ad +
α

N
I‖ + 1 − α

N
, (A5)

with the second equality resulting from Lemma 1.
Accounting for the inequality (A2), the result follows.

For 1 < α < 2, we have Pi(α) > 0, i = 2, . . . , J ,
and

J−1∑

i=0

‖Ai|| = ‖Ad +
α

N
I|| + 1

N

J∑

i=2

Pj(α)

= ‖Ad +
α

N
I‖ − 1 +

α

N
, (A6)

which completes the proof. �

Appendix B

Proof of Theorem 4

Proof. Denote by xnfd
ss and xfd

ss steady-state values of the
state vectors for FFD/NFFD and FD, respectively. Then,
by virtue of Eqn. (27), we have

xnfd
ss = (−Ad + F )−1Buss, (B1)

where F is given by Eqn. (31) and

xfd
ss =

(
− Ad +

[
1 +

∞∑

j=1

Pj(α)
]
I
)−1

Buss

= −A−1
d Buss. (B2)

Applying the standard formula for the inverse of a sum of
two matrices, Eqn. (B1) can be written in the form of

xnfd
ss =

[
− A−1

d + (F − Ad)−1FA−1
d

]
Buss. (B3)

Accounting for the output equation (25), we arrive at (30).
�

Appendix C

Proof of Theorem 5

Proof. For x(t) = x01(t), we need to have

Δα
N(t)x(t, J) = Δαx(t)

)∣∣∣
x(t)=x01(t)

, ∀t = 0, 1, . . . ,

(C1)
that is,

x0 +
t∑

j=1

Pj(α)x0 = x0 +
1

N(t)

J∑

j=1

Pj(α)x0,

∀t = 1, . . . . (C2)

Since J = min(t, J) = t for t = 1, . . . , J , we
immediately obtain N(t) = 1 (FFD).
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For t = J + 1,

N(t) =

∑J
j=1 Pj(α)

∑t
j=1 Pj(α)

=

∑J
j=1 Pj(α)

∑J
j=1 Pj(α) + PJ+1(α)

=
N

N + PJ+1(α)
, (C3)

where N = N(J) is selected as in Lemma 1.
For t ≥ J + 2 we have

N(t) =

∑J
j=1 Pj(α)

∑t
j=1 Pj(α)

=

∑J
j=1 Pj(α)

∑t−1
j=1 Pj(α) + Pt(α)

=
N

N
N(t−1) + Pt(α)

. (C4)

For x(t) = x01(t), from Eqn. (1) we have

Pt(α) =
Δαx(t) − Δαx(t − 1)

x0
. (C5)

Since

Pt(α) = Pt−1(α)
(
1 − α − 1

t

)

=
(Δαx(t − 1) − Δαx(t − 2)

x0

)(
1 − α − 1

t

)

= N
N(t − 2) − N(t − 1)
N(t − 1)N(t − 2)

(
1 − α − 1

t

)
, (C6)

we arrive at Eqn. (37). �
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