
Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 4, 855–866
DOI: 10.2478/v10006-012-0063-0

COMBINED CLASSIFIER BASED ON FEATURE SPACE PARTITIONING

MICHAŁ WOŹNIAK, BARTOSZ KRAWCZYK

Department of Systems and Computer Networks
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

e-mail: {michal.wozniak,bartosz.krawczyk}@pwr.wroc.pl

This paper presents a significant modification to the AdaSS (Adaptive Splitting and Selection) algorithm, which was devel-
oped several years ago. The method is based on the simultaneous partitioning of the feature space and an assignment of a
compound classifier to each of the subsets. The original version of the algorithm uses a classifier committee and a majority
voting rule to arrive at a decision. The proposed modification replaces the fairly simple fusion method with a combined
classifier, which makes a decision based on a weighted combination of the discriminant functions of the individual classi-
fiers selected for the committee. The weights mentioned above are dependent not only on the classifier identifier, but also
on the class number. The proposed approach is based on the results of previous works, where it was proven that such a com-
bined classifier method could achieve significantly better results than simple voting systems. The proposed modification
was evaluated through computer experiments, carried out on diverse benchmark datasets. The results are very promising in
that they show that, for most of the datasets, the proposed method outperforms similar techniques based on the clustering
and selection approach.

Keywords: pattern recognition, combined classifier, multiple classifier system, clustering and selection algorithm, evolu-
tionary algorithm.

1. Introduction

There are a number of proposals on how to automate the
classification process (Duda et al., 2001). Nevertheless,
there is not a single pattern recognition algorithm that is
appropriate for all the tasks we are faced with, since each
classifier has its own domain of competence (Wolpert,
2001). Usually we can pool different classifiers to solve
a given problem. Therefore, methods that can exploit the
strengths of individual classifiers are currently the focus of
intense research (Jain et al., 2000). It is worth noting that
the incompetence area, i.e., the subset of the feature space
where all individual classifiers make the wrong decision,
is typically small (Polikar, 2006).

The presented approach is called a Multiple
Classifier System (MCS), a combined classifier, or a
classifier ensemble (Kuncheva, 2004), and its main
components are depicted in Fig. 1. In this concept,
the greatest effort is concentrated on combining the
outputs of elementary classifiers at our disposal for a
given classification problem. This concept was first
presented by Chow (1965) who proved that the decision of
independent classifiers with appropriately defined weights
is optimal. Here are some of the advantages of MCSs:

• The design of an MCS does not differ from that
of a classical pattern recognition (Giacinto et al.,
2000) application. In the standard approach we
select the most valuable features and choose the best
classification method from the set of those available.
The design of a classifier ensemble aims to create a
set of complementary/diverse classifiers and assign
an appropriate fusion method, which can optimally
combine the individual classifiers’ outputs.

• Some works report that MCSs can improve
the overall performance compared with the best

Fig. 1. Overview of a multiple classifier system.

{michal.wozniak, bartosz.krawczyk}@pwr.wroc.pl

856 M. Woźniak and B. Krawczyk

individual classifier, because they are able to exploit
unique strengths of each of the individual classifiers.
In some cases (e.g., the majority voting by a
group of independent classifiers) their characteristics
have been proven in an analytical way (Tumer and
Ghosh, 1996). Additionally, an MCS protects against
selection of the worst classifier for a small sample
(Marcialis and Roli, 2003).

• Many machine learning algorithms (e.g., C4.5 based
on a top-down induction decision tree concept) are
de facto heuristic search algorithms, which cannot
guarantee that an optimal model is found. Therefore,
the combined approach, which could start searching
from different points of the search space, seems to be
an attractive proposition.

• Combined classifiers could be used in efficient
computing environments such as parallel and
multithreaded computer architectures (Wilk and
Woźniak, 2011). Another attractive area of
application are distributed computing systems (P2P,
GRID) (Kacprzak et al., 2012; Walkowiak, 2010;
Chmaj et al., 2012), especially in the case of a
database that is partitioned for privacy reasons and
only the final decision is available at each node of
the computer network.

There are a number of important issues that must be
taken into consideration when building multiple classifier
systems. These can be grouped into the following
problems:

• Selecting a pool of diverse and complementary
individual classifiers for the ensemble.

• Designing a fuser, aimed at creating a mechanism
that can exploit the strengths of the selected
classifiers and combine them optimally.

• Proposing the topology, i.e., interconnections
between classifiers in the ensemble.

We do not address the last issue because most of the
combined classifiers are based on a parallel topology,
which has a good methodological background (Kuncheva,
2004) and is used in this work.

Selecting members of the committee with different
components seems interesting. Apart from increasing
the computational complexity, combining similar
classifiers should not contribute much to the MCS under
construction. An ideal ensemble consists of classifiers
with high accuracy and high diversity, i.e., mutually
complementary. First, classifiers must be selected to
obtain positive results from their fusion. Many algorithms
covering this subject were inspired by guidelines on how
to design reliable software, among which Partridge and

Krzanowski (1997), Brown and Kuncheva (2010) as well
as Smetek and Trawinski (2011) are worth mentioning. A
strategy for generating the ensemble should guarantee an
improvement in its diversity. There are several proposals
on how to enforce the diversity of an individual classifier
pool listed below:

• We could use different partitions of a dataset or
generate a number of datasets through data splitting,
a cross-validated committee, bagging, or boosting
(Kuncheva, 2004), in the hope that classifiers
trained on different inputs would be complementary.
Selected features are then used to train a pool of
classifiers to assure the diversity of the pool. There
are several propositions based on this principle such
as random subspace (Ho, 1998). It is worth pointing
out the interesting idea presented by Ting et al.
(2011), who proposed a hierarchical method of
ensemble creation, based on feature space splitting
and then assigning binary classifiers (support vector
machines) locally.

• We could train each individual classifier to recognize
a subset of only predefined classes (e.g., a binary
classifier: one class against the rest strategy) and
then choose a fusion method that can recover the
whole set of classes. Error-correcting output codes
(Dietterich and Bakiri, 1995) are a well-known
technique for such tasks.

• We could train individual classifiers based on
different models or different versions of models.

For classification tasks where the cost of acquiring
feature values (which could be interpreted as the price
for examination or time required to collect the data for
decision making) plays a key role, this must be taken into
consideration during the classifier selection step. In the
method presented by Krawczyk and Woźniak (2011), the
authors suggested a way to utilize the exploitation cost of
individual classifiers in the selection process.

Another important concept of classifier selection
assumes a local specialization of individual classifiers.
According to this proposal, a single classifier that achieves
the best results is chosen from a pool for each demarcated
partition of the feature space. Its answer is treated
as the system answer, for all objects included in the
partition. This methodology was described by Rastrigin
and Erenstein (1981). Certain proposals based on this
idea assume a local specialization of particular classifiers
and only search for locally optimal solutions (Baram,
1998; Cordella et al., 2000; Giacinto et al., 2000; Goebel
and Yan, 2004; Ruta and Gabrys, 2005), while other
methods propose dividing the feature space and selecting
(or training) a classifier for each partition (Kuncheva,
2000; Baruque et al., 2011).

Combined classifier based on feature space partitioning 857

Another important issue is the choice of the
collective decision making method. We can divide the
fusion algorithms mentioned above into two groups:

• methods that make decisions on the basis of outputs
(labels) of individual classifiers,

• methods that propose constructing new discriminant
functions based on continuous outputs (supports) of
individual classifiers.

The former group includes voting algorithms (Biggio
et al., 2007; Xu et al., 1992). Initially only majority
voting schemes were implemented, but in later works
more advanced methods were proposed. These take
the importance of decisions coming from particular
committee members into consideration (van Erp et al.,
2002; Kuncheva et al., 2001).

Many known conclusions regarding the classification
quality of MCSs have been derived analytically, but
these are typically valid only under strong restrictions,
such as particular cases of the majority vote (Hansen
and Salamon, 1990), or make convenient assumptions,
such as a classifier committee consisting only of
independent classifiers. Unfortunately, such assumptions
and restrictions are in most cases not very useful for
solving practical problems. Here, we should mention the
works that propose training the weights, which seems to
be an attractive alternative method (Woods et al., 1997;
Woźniak and Jackowski, 2009).

The second group of fusers is based on discriminant
analysis. The main form of discriminants is a posterior
probability typically associated with probabilistic pattern
recognition models, although outputs of neural networks
or other functions whose values are used to establish the
decision of the classifier (the so-called support functions)
could be considered as well. Aggregation methods that do
not require learning use simple operators, like minimum,
maximum, product, or mean. However, they are typically
subject to very restrictive conditions (Duin, 2002), which
limit their practical use. Therefore, the design of new
fusion classification models, especially trained fusers, is
currently the focus of intense research.

Assume that we have n classifiers Ψ(1),
Ψ(2), . . . , Ψ(n). For a given object x ∈ X , each
individual classifier decides whether it belongs to
class i ∈ M = {1, . . . , M} based on the values of
discriminants. Let F (l) (i, x) denote a function that is
assigned to class i for a given value of x, and that is used
by the l-th classifier Ψ(l). The combined classifier Ψ uses
the following decision rule (Jacobs, 1995):

Ψ (x) = i if F̂ (i, x) = max F̂ (k, x)
k∈M

, (1)

where

F̂ (i, x) =
n∑

l=1

w(l)F (l) (i, x) ,

n∑

i=1

w(l) = 1. (2)

Next we consider the following possibilities for the
weight assignment:

1. Weights dependent on the classifier. This is the
traditional approach where weights are connected
with a classifier and each discriminant of the l-th
classifier is weighted by the same value w(l). The
probability error of such a classifier can be estimated,
e.g., as in the work of Woźniak (2008).

2. Weights dependent on the classifier and feature vec-
tor. A weight w(l) (x) is assigned to the l-th classifier
and for a given x has the same value for each
discriminant function used by it. In this type of
model, known as a “mixture of experts”, parameter
estimation is normally used to establish the weights
(Jacobs et al., 1991).

3. Weights dependent on the classifier and class num-
ber. A weight w(l) (i) is assigned to the l-th classifier
and the i-th class. Here, the given classifier weights
assigned to different classes may differ.

4. Weights dependent on the classifier, class number,
and feature vector. A weight w(l) (i, x) is assigned
to the l-th classifier, but for a given x its value may
differ for discriminants assigned to each class.

In this work we focus on the third alternative,
because, as shown by Woźniak and Zmyślony (2010), this
type of fuser achieves fairly good quality and does not
require a priori knowledge of the weights. This is in
contrast to the case where weights are also dependent on
the feature values. If weights depend on x, they are de
facto functions and their estimation is more complicated,
usually requiring a priori knowledge about them.

We make use of the approach that tries to divide
the feature space into subspaces and then assigns a
combined classifier to such a partition. This approach
improves the AdaSS (Adaptive Splitting and Selection)
algorithm (Jackowski and Woźniak, 2009) mainly by
replacing the fuser based on the majority voting rule by
a fuser using discriminant functions. Our approach uses a
linear combination of discriminant functions of individual
classifiers.

2. Related works

Because the AdaSS algorithm and our proposition are
descendants of Kuncheva’s CS (Clustering and Selection)
algorithm, we first recall this method.

2.1. Clustering and selection algorithm. The CS
algorithm (Kuncheva, 2000) consists of three main steps:

1. Selecting individual classifiers for a pool.

858 M. Woźniak and B. Krawczyk

2. Establishing clustering algorithm parameters and
partitioning the learning set according to a given
algorithm.

3. Selecting the best individual classifier for each
cluster according to its local quality.

The most important features of the CS algorithm are
as follows:

• The CS algorithm uses clustering algorithms to
divide the feature space, a task that involves
separating some subsets of elements from the
learning set based on their similarity (Jain et al.,
1999). Partitioning does not take into account
modified clustering criteria, which find such feature
space decisions to ensure that at least one classifier
in the pool is able to achieve high accuracy in a
given subspace. So there is no restriction on allowing
cluster borders to cross the borders separating the
fields with objects from particular classes. This is
a desired effect, because the clustering considered
does not aim to double discriminant functions but
to separate fields in which these classifiers achieve
a high quality of classification. As an example,
consider the binary toy problem presented in Fig. 2.
The pool consists of two simple linear classifiers.
The output of the clustering algorithm is valid, yet
at the same time it does not exploit the full potential
of the given classifiers. This leads to a decrease
in the overall accuracy of the ensemble. Now
consider another partitioning of the feature space
presented in Fig. 3, which takes into consideration
competencies of the given classifiers, thus leading to
better exploitation of these competencies.

• Feature space partitioning and selection of the
classifiers are carried out sequentially. A natural
consequence of this is the lack of feedback between
steps. In the second step it is possible to find the
best classifiers for the previously defined clusters.
However, it is impossible to modify the shape of the
clusters to adjust to the competencies of the chosen
classifiers assigned to the clusters. Thus, there is no
guarantee that the model obtained from the proposed
partitioning is the most effective one.

• Finally, a limitation of the CS algorithm is that
only one individual classifier is assigned to each
cluster. This significantly limits the advantages of
the existing pool of classifiers, from which a set
of committees could be composed for each cluster,
which could improve the achieved results.

2.2. AdaSS. The AdaSS algorithm, proposed by
Jackowski and Woźniak (2009), fuses partitioning the
feature space and assigning classifiers to each partition

Fig. 2. Example outcome of a CS algorithm for a binary toy
problem. One can easily see that the returned clusters
do not fully exploit the possibilities offered by the two
classifiers.

Fig. 3. Modified clusters for the binary toy problem. It is easily
seen that here the competency of the classifiers is ex-
ploited more efficiently.

into one integrated process, when searching for optimal
parameters for the model. The main advantage of this
approach is that the training algorithm considers the shape
of a region to determine the content of a classifier and,
conversely, that the regions adapt to the competencies of
the classifiers. Additionally, the majority voting rule is
used to establish the decision of each area classifier. The
objective of this complex optimizing task is to minimize
the classification error. For the example binary toy
problem, in AdaSS the clustering is done simultaneously
with classifier selection. This provides feedback that
forces the optimization procedure to change the form of
the clusters.

Combined classifier based on feature space partitioning 859

In this work we adapt the AdaSS model, noting
that its major disadvantage is a fairly simple fuser model
using the majority voting rule. This does not guarantee
a quality improvement compared with the CS algorithm,
especially when there are considerable quality differences
between individual classifiers. This observation for a pool
of independent classifier was described by Kuncheva et al.
(2003) and Matan (1996), amongst others. Therefore, we
opted to replace the fuser based on majority voting by a
more promising method that allows an area classifier to be
trained instead of being selected and uses a deterministic
decision fusing rule.

2.3. Proposed modification to AdaSS. The main
difference between the original AdaSS and this
modification lies in the process of constructing the
compound classifiers that are later assigned to each
partition. We propose using the combined classifiers
based on (1), although the common discriminant function
is formulated as follows:

F̂ (i, x) =
n∑

l=1

w(l) (i)F (l) (i, x) ,

where
n∑

i=1

w(l) = 1, ∀i ∈ M. (3)

Here we focus on the problem of establishing
weights dependent only on the classifier and the class
number. Because we use an evolutionary approach to
train the classifier, we need an appropriate representation
to code the fuser parameters.

In the case under consideration, the fuser training
task leads to the problem of how to establish the following
vector W :

W =
[
W(1), W(2), . . . , W(n)

]
, (4)

which consists of weights assigned to each classifier and
each class number,

W(l) =
[
w(l) (1) , w(l) (2) , . . . , w(l) (M)

]
T . (5)

The aim is to find such a fuser with the lowest
misclassification rate of Ψ.

3. Model of a classifier

Assume that the feature space X is divided into a set of H
constituents (Kuratowski and Mostowski, 1976), i.e.,

X =
H⋃

h=1

X̂h,

X̂k ∩ X̂l = ∅, ∀k, l ∈ {1, . . . , H}, k �= l,

(6)

where X̂h denotes the h-th constituent (cluster). Ψh is
a combined classifier assigned to the h-th cluster and
decision according to (1), (3). Wh denotes its weight
vector (4).

The number of clusters, H , is an arbitrarily chosen
parameter. On the one hand, a larger number makes a
wider exploration of the local competencies of the area
classifiers possible, while on the other hand, it may lead
to the overtraining of the entire system.

Here, we present the classification rule for the
compound classifier Ψ, which returns the decision of the
classifier assigned to the cluster to which the given object
belongs:

Ψ(x) = i ⇐⇒ Ψh(x) = i and x ∈ X̂h. (7)

4. Training algorithm

The main idea of the learning procedure was based on the
AdaSS algorithm (Jackowski and Woźniak, 2009), which
uses an evolutionary approach (Ashlock, 2006; Troć
and Unold, 2010), but we introduced several important
changes such as the structure of the chromosome and
improvement of some of the steps mainly associated with
establishing mutation probabilities and protecting against
overfitting.

To simplify the presentation of the algorithm, we
assume that we are dealing with continuous features only.
If needed, the presented method can be easily adapted to
account for discrete attributes.

4.1. Representation. A chromosome Ch represents
the model for compound classifier parameters. Its
structure consists of two components. The first one
embodies a set of centroids C and represents feature
space partitioning into H clusters (5). The other includes
definitions of the combined classifiers for each of the
clusters (4),

Ch = [C,W], (8)

where
C = {C1, C2, . . . , CH}

and
W = {W1,W2, . . . ,WH}.

Each Ch is represented by a centroid,

Ch = {c(1)
h , c

(2)
h , . . . , c

(d)
h }, (9)

where d is the feature space dimension. Each Wh consists
of weights assigned to each individual classifier (4),

Wh =

⎛

⎜⎜⎜⎝

w1
h(1) w2

h(1) . . . wn
h(1)

w1
h(2) w2

h(2) . . . wn
h(2)

...
...

. . .
...

w1
h(M) w2

h(M) . . . wn
h(M)

⎞

⎟⎟⎟⎠ , (10)

860 M. Woźniak and B. Krawczyk

which is converted to a vector,

Wh = [w1
h(1), . . . , w1

h(M), w2
h(1), . . . , wn

h(M)].

Let member(C, x) denote the function that returns the
cluster index to which a given x belongs,

member(C, x) = argminH
h=1dist(x, Ch), (11)

where ‘dist’ denotes the Euclidean metric. In the case of
a tie, i.e., when x is the same distance from more than
one centroid, the lowest class number is returned. We
should point out that when dealing with discrete attributes,
a different metric should be defined. According to the
definition (11), we can reformulate Eqn. (7) as follows:

Ψ(x) = Ψ̂member(C,xn)(xn). (12)

4.2. Learning material. The classifier training
procedure requires adequate learning material, denoted as
the learning set LS. We assume that it consists of K
learning objects,

LS = {(x1, j1), (x2, j2), . . . , (xK , jK)}, (13)

where xi denotes observations described in the i-th object,
and ji denotes its correct class label.

Usually LS is divided into two subsets: T S , called
the training set, is used during training, while the second
subset VS, called the validation set, is used to protect
trained classifiers against overfitting (Alpaydin, 2010),

|T S| = N, |VS| = K − N. (14)

4.3. Criterion. As the optimization criterion, we
propose the frequency of correct decisions that Ψ̂ makes
on T S:

Q(Ψ̂) =
1
n

N∑

n=1

(δ(Ψ̂member(C,xn)(xn), jn)), (15)

where δ denotes Kronecker’s delta.

4.4. Algorithm. As mentioned in the beginning, we
use an evolutionary approach to find the best solution.
Any procedure that is performed on the chromosome must
take into account the fact that each of its parts has quite
a different nature. Therefore, we enforce the rule that
information will not be exchanged between parts of the
chromosomes processed by evolutionary operators. An
overview of the algorithm is presented as pseudocode in
Algorithm 1.

The control parameters for the algorithm are as
follows:

1. Nc: the upper limit of algorithm cycles,

Algorithm 1. Overview of the training algorithm.
input:
T S: training set
VS: validation set
H : number of clusters

Initialization;
Vc = 0
for (t = 1; t �= Nc; t + +)
{
Mutation;
Crossover;
Selection and Reproduction;

Protecting against overfitting;
if Qvs(t) < Qvs(t − 1)
{
Vc = Vc + 1;
if Vc = V ;
break;
}
else
Vc = 0;

}
Return the best chromosome;

2. Np: the population size,

3. β: the probability of mutation,

4. γ: the probability of crossover,

5. Δm: the mutation range factor,

6. V : the upper limit of algorithm iterations with
decreasing quality (V < Nc).

Given below is a detailed explanation of selected
steps of the algorithm:

• Initialization
Initialization involves setting the parameters for the
algorithm and randomly creating the first generation
of chromosomes. Each of the chromosomes
in a generation is evaluated according to its
fitness function value (15) to determine the elite
chromosomes.

• Selection and Reproduction
This step generates a set of members preserving
all the constraints and implications resulting from
the logic of the model and the values of the
input parameters. Chromosomes for the next
generation are selected using the roulette wheel
selection scheme (Goldberg, 1989) to implement
proportional random selection according to their
fitness function values (15). The training set is

Combined classifier based on feature space partitioning 861

exploited for this purpose. To avoid losing ground
in finding the highest-scoring chromosome, elitism
(Srinivas and Patnaik, 1994) has been implemented,
i.e., the highest scoring chromosome of the current
generation is placed into the descendant population,
without allowing any changes to its structure, such as
cross-over, or being subjected to mutation.

• Mutation
The mutation operator alters the member being
processed by adding some random changes to its
chromosome. Each component of the chromosome
is processed separately and can be altered with a
certain probability, that is, alteration together with an
optimization progress according to

Pc(t) = β
t

Nc
, Pw(t) = β − Pc(t), (16)

where t is the iteration index of the algorithm, Pc(t)
is the mutation probability of the centroid vector
during the t-th step, and Pw(t) is the mutation
probability of the weight vector during the t-th
step. According to the schema, in the early phases
of optimization, special emphasis is placed on
searching for a possible feature space partitioning.
Over the course of the learning progress, attention is
shifted onto the classifiers assigned to the partitions
and their fine adjustments. Mutation involves adding
a vector of numbers randomly generated according
to the normal density distribution (with mean equal
to 0 and standard deviation set to Δm).

• Crossover
All the chromosomes (with the exception of the elite
chromosome) are paired up, and with probability
γ, crossed over according to the two-point rule
(Goldberg, 1989).

• Protecting against overfitting
The main purpose of this procedure is to protect
the classifier against overfitting. The procedure uses
VS to calculate the fitness of the elite chromosome,
QV S , in the same way as for a regular population
assessment (15). The procedure terminates the
optimization process if deterioration of the result
obtained by the highest scoring chromosome is
observed in the course of V subsequent learning
cycles.

5. Experiments

The main objective of the experiments was to examine the
behavior of the proposed method and to compare it with
the original AdaSS and CS algorithms.

5.1. Setup. All experiments were carried out
in the R environment (Team, 2008), and computer
implementations of the classification and optimization
methods used were taken from dedicated packages
built into the above-mentioned software. This ensured
that results achieved the best possible efficiency
and that performance was not diminished by a bad
implementation.

A pool of five individual classifiers consisting of
slightly undertrained neural networks (for which the
training process was deliberately stopped early) was used
in each of the experiments to ensure diversity of the simple
classifiers, thereby allowing their local competencies to be
exploited. The details of the neural networks used are as
follows:

• activation function: sigmoidal,

• learning method: backpropagation,

• architecture: five neurons in the hidden layer and the
last layer composed of a number of neurons equal
to the number of classes in each of the datasets
considered.

To each of the clusters there was assigned either a
single best classifier or a committee of five individual
classifiers. The parameter values used while training
AdaSS and the proposed modification are presented in
Table 1.

Additionally, for comparison, the clustering and se-
lection method was implemented, in which the k-means
algorithm (MacQueen, 1967) was used as the clustering
method and classifiers were selected from the same pool
used by AdaSS and the proposed modification.

5.2. Datasets. The idea behind the choice of datasets
was to examine the behavior of the selected methods on
as diverse a set of benchmarks as possible. Therefore,
we chose some high-dimensional sets, some very large
sets with a small number of features, and also some
typical/balanced ones, which allowed us to cover a
wide range of real-life possibilities and make our tests
more practically oriented. All datasets come from the
UCI Machine Learning Repository (Frank and Asuncion,
2010).

Table 1. Parameters for the training phase.
Parameter Values

H 1;3;5;7
Nc 200
Np 100
β 0.7:0.3
γ 0.3:0.7

Δm 0.2

862 M. Woźniak and B. Krawczyk

Table 2. Details of datasets used in the experimental investigation.
No. Name Objects Features Classes

1 Splice-junction Gene Sequences 3190 61 3
2 Ozone Level 2536 73 2
3 Vehicle Silhouettes 946 18 4
4 Letter Recognition 20000 16 26
5 Abalone 4177 8 28
6 Gamma Telescope 19020 11 2
7 Dermatology 366 33 6
8 SPECTF Heart 267 44 2
9 Promoter Gene Sequences 106 58 2

10 Audiology 226 69 23
11 Mammographic Mass 961 6 2
12 Musk (version 2) 6598 168 2
13 Internet Advertisements 3279 1558 2
14 Wine 178 13 3
15 Parkinsons 197 23 2
16 Horse Colic 368 27 11
17 Ecoli 336 8 8
18 Pima Indian Diabetes 768 8 2
19 Breast Cancer 286 9 2
20 Iris 150 4 3

The selected datasets with their respective names and
numbers of objects, features, and classes are listed in
Table 2.

5.3. Results. To facilitate the comparison, the accuracy
of the individual classifiers is presented in Table 3, where
‘No.’ denotes the identification number for the dataset
under consideration, and Cx denotes the classifier number
x (e.g., C1 is the first classifier from the pool).

Table 4 presents comparative detailed experimental
results for AdaSS and the proposed modification denoted
as AD and MAD, respectively, tested on the 20 selected
databases.

The combined 5 × 2 cv F test (Alpaydin, 1999)
for statistical significance was carried out to compare
the obtained results for the same size of the classifier
committee only. If there is a statistical significance, the
result of the better model is bolded.

Results of the experiments confirmed that the idea of
adaptive clustering and selection is a promising direction
for MCS design. For each dataset the compound
classifiers outperformed the individual ones. What is
worth stressing is that the proposed modification usually
achieved better results than the original algorithm. It was
also proved that statistically significant differences exist
for several databases. The native version of the algorithm
outperformed its modification only for one dataset (No.
13), although it should be mentioned that this dataset
is characterized by a huge number of features and there
was probably insufficient information for fuser training.
Other dependencies were as expected. The quality of
classification was improved according to the number

Table 3. Accuracy of individual classifiers. No. denotes the
dataset identifier according to Table 2.

No. C1 C2 C3 C4 C5

1 63,124 63,124 61,457 60,290 54,850
2 61,005 61,005 61,005 57,900 56,900
3 81,260 81,260 81,260 78.500 77,900
4 82,035 80,000 80,000 78,500 75,250
5 84,980 82,180 80,500 76,500 72,000
6 81,240 81,240 81,240 75,250 72,500
7 82,950 82,000 81.000 80.000 77.300
8 71,370 70,200 68,950 65,500 65,000
9 52,950 52,950 50,150 50,000 50,000

10 48,670 48,670 48,670 47,300 46,500
11 62,450 62,000 61,600 60,000 56,400
12 73,405 73,405 71,600 70,405 69,810
13 57,500 56,360 55,000 53,689 52,689
14 90,125 90,125 90,125 90,125 88,500
15 85,090 85,090 83,200 82,200 78,800
16 77,605 74,605 72,000 69,100 68,605
17 77,890 77,890 77,890 77,890 76,000
18 60,350 59,200 57,450 53,000 53,000
19 88,450 88,450 88,450 84,150 84,150
20 92,750 92,750 92,750 92,250 91,500

of competence areas and the size of the committee,
confirming what was stated by Jackowski and Woźniak
(2009). For a few datasets only (Nos. 10, 11, 17, 19, and
20), we observed that the best results were achieved with
H = 5, which could mean that overtraining occurs with
higher numbers of competence areas.

An interesting conclusion is drawn from the
comparative analysis of the CS algorithm and the

Combined classifier based on feature space partitioning 863

Table 4. Accuracy of AdaSS (AD) and its modification (MAD) for different values of H (number of clusters: 1, 3, 5, 7) and number
of classifiers per cluster (1 or 5) compared with standard clustering and selection (CS).

No. Mod N 1 3 5 7 No. Mod N 1 3 5 7

1. CS – 63,124 64,350 66,650 68,000 11. CS – 62,450 66,130 68,000 68,000
AD 1 63,124 68,658 68,956 69,300 AD 1 62,450 65,760 66,500 66,500

5 65,950 69,100 70,005 70,005 5 62,450 66,100 66,100 67,200
MAD 1 63,124 68,910 69,250 70,250 MAD 1 62,450 68,012 69,350 68,785

5 65,250 72,335 72,985 72,985 5 62,700 68,540 69,975 69,320
2. CS – 61,005 68,020 70.500 70.000 12. CS – 73,405 75,080 75,080 78,110

AD 1 61,005 69,120 72,500 72,500 AD 1 73,405 76,780 79,110 80,245
5 62,765 70,300 74,000 74,000 5 73,405 77,125 80,015 80,540

MAD 1 61,005 70,000 74,800 74,985 MAD 1 73,900 80,305 84,050 85,900
5 64,950 72,128 76,015 76,015 5 73,900 81,240 85,090 86,210

3. CS – 81,260 88,500 88,500 89,225 13. CS – 57,500 59,500 63,170 63,170
AD 1 81,260 88,500 88,500 89,225 AD 1 57,500 64,120 66,670 67,040

5 81,430 89,125 89,125 90,005 5 56,240 64,500 65,670 67,090
MAD 1 81,260 88,100 88,369 88,915 MAD 1 57,500 63,905 64,990 63,960

5 87,430 89,015 89,050 89,050 5 55,689 65,140 63,905 63,120
4. CS – 82,035 86,250 88,750 88,750 14. CS – 90,125 93,450 93,450 92,680

AD 1 82,035 90,125 91,068 91,068 AD 1 90,125 93,450 93,450 92,680
5 85,005 90,125 91,068 91,068 5 90,125 93,450 93,450 92,680

MAD 1 82,035 90,125 91,068 91,068 MAD 1 90,125 94,800 95,425 95,425
5 85,760 90,125 91,068 91,068 5 90,125 94,480 95,425 95,425

5. CS – 84,980 86,975 88,013 89,250 15. CS – 85,090 90,000 90,000 92,090
AD 1 84,980 86,975 87,005 89,013 AD 1 85,090 88,450 90,000 91,230

5 85,345 87,390 88,012 89,500 5 85,560 89,180 90,500 91,230
MAD 1 84,980 86,780 86,928 88,980 MAD 1 85,090 88,670 90,670 91,289

5 85,500 87,200 88,450 89,250 5 88,345 91,500 92,005 93,990
6. CS – 81,240 84,234 86,120 88,500 16. CS – 77,605 82,000 82,000 80,430

AD 1 81,240 84,234 86,120 88,500 AD 1 77,605 80,100 79,900 83,350
5 82,300 85,015 86,950 89,170 5 77,340 78,450 79,115 82,430

MAD 1 81,240 84,735 88,730 90,005 MAD 1 77,605 82,900 83,500 85,190
5 84,000 86,005 89,032 91,200 5 77,340 81,450 83,500 85,930

7. CS – 82,950 89,600 92,440 94,009 17. CS – 77,890 78,125 76,211 74,980
AD 1 82,950 89,600 92,440 94,009 AD 1 77,890 78,125 76,211 74,980

5 85,012 90,450 92,440 95,989 5 78,600 80,216 79,350 79,350
MAD 1 82,950 91,780 93,005 94,230 MAD 1 77,890 78,560 76,900 75,005

5 84,900 90,345 94,218 96,560 5 77,005 79,560 79,560 78,945
8. CS – 71,370 73,430 76,454 76,454 18. CS – 60,350 64,230 64,230 64,230

AD 1 71,370 75,530 78,908 78,908 1 60,350 64,230 64,230 67,600
5 72,015 76,025 79,780 79,780 5 62,900 67,025 69,450 69,450

MAD 1 71,370 78,120 80,900 80,900 MAD 1 60,350 67,000 67,300 70,350
5 75,050 80,300 81,000 82,450 5 64,000 69,300 70,300 72,010

9. CS – 52,950 59,600 62,440 64,009 19. CS – 88,450 89,230 90,230 92,544
AD 1 52,950 59,600 62,440 64,009 AD 1 88,450 90,560 92,340 91,500

5 55,012 60,450 62,440 65,989 5 89,200 90,560 93,150 93,005
MAD 1 52,950 62,780 65,005 67,230 MAD 1 88,450 89,911 92,544 92,020

5 54,900 63,345 66,218 68,560 5 89,120 91,008 93,300 92,890
10. CS – 48,670 48,670 51,350 52,340 20. CS – 92,750 95,000 95,000 95,000

AD 1 48,670 53,500 58,230 56,105 AD 1 92,750 95,000 96,005 94,250
5 50,110 54,340 60,650 57,890 5 93,000 95,250 96,000 95,000

MAD 1 48,670 55,900 59,233 58,670 MAD 1 92,750 95,000 95,750 94,00
5 50,995 59,110 61,748 60,157 5 93,000 95,500 96,250 95,500

algorithms based on AdaSS. In most cases the proposed
method outperformed the standard CS approach. This is
due to the adaptive nature of the proposed method; the size

of the clusters can be modified through the evolutionary
process to take full advantage of the classifiers available in
the pool. In the standard CS algorithm, the clustering step

864 M. Woźniak and B. Krawczyk

is done independently of classifier selection, which is the
main weakness of this approach. Only for four datasets
(Nos. 3, 5, 19, and 20) did AdaSS not perform better than
CS, but in all these cases it returned similar results.

6. Final remarks

This paper deals with compound pattern recognition
algorithms based on the clustering and selection approach.
A new method was derived from the AdaSS algorithm,
but using a slightly different training method and a more
sophisticated fusion block. The proposed approach was
evaluated and compared with both the CS and native
AdaSS algorithms through computer experiments. The
experimental investigations were carried out on a wide
range of benchmark datasets. The results confirmed the
high quality of performance of the proposed modification,
which mostly outperformed both the native algorithm
and the standard CS approach. However, we must
emphasize that the training time for the proposed method
is significantly longer than the training phase for the native
AdaSS. On the other hand, this undesirable feature of the
algorithm is not an obstacle in its implementation in real
decision problems because the classifier is trained only
once. The decision time is the same for both AdaSS and
its modification.

Acknowledgment

This work is supported by the Polish Ministry of Science
and Higher Education under a grant for the years
2010–2013, and by the Polish National Science Center
under a grant for the period 2011–2014.

References
Alpaydin, E. (1999). Combined 5 x 2 cv f test for comparing

supervised classification learning algorithms, Neural Com-
putation 11(8): 1885–1892.

Alpaydin, E. (2010). Introduction to Machine Learning, 2nd
Edn., The MIT Press, London.

Ashlock, D. (2006). Evolutionary Computation for Modeling
and Optimization, 1st Edn., Springer, New York, NY.

Baram, Y. (1998). Partial classification: The benefit of deferred
decision, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 20(8): 769–776.

Baruque, B., Porras, S. and Corchado, E. (2011). Hybrid
classification ensemble using topology-preserving
clustering, New Generation Computing 29(3): 329–344.

Biggio, B., Fumera, G. and Roli, F. (2007). Bayesian analysis
of linear combiners, Proceedings of the 7th Interna-
tional Conference on Multiple Classifier Systems, MCS’07,
Prague, Czech Republic, pp. 292–301.

Brown, G. and Kuncheva, L.I. (2010). “Good” and “bad”
diversity in majority vote ensembles, 9th International

Workshop on Multiple Classifier Systems, MCS 2010,
Cairo, Egypt, pp. 124–133.

Chmaj, G., Walkowiak, K., Tarnawski, M. and Kucharzak,
M. (2012). Heuristic algorithms for optimization of
task allocation and result distribution in peer-to-peer
computing systems, International Journal of Applied
Mathematics and Computer Science 22(3): 733–748, DOI:
10.2478/v10006-012-0055-0.

Chow, C.K. (1965). Statistical independence and threshold
functions, IEEE Transactions on Electronic Computers
EC-14(1): 66–68.

Cordella, L., Foggia, P., Sansone, C., Tortorella, F. and Vento, M.
(2000). A cascaded multiple expert system for verification,
in J. Kittler and F. Roli (Eds.), Multiple Classifier Systems,
Lecture Notes in Computer Science, Vol. 1857, Springer,
Berlin/Heidelberg, pp. 330–339.

Dietterich, T.G. and Bakiri, G. (1995). Solving multiclass
learning problems via error-correcting output codes, Jour-
nal of Artificial Intelligence Research 2: 263–286.

Duda, R.O., Hart, P.E. and Stork, D.G. (2001). Pattern Classifi-
cation, 2nd Edn., Wiley, New York, NY.

Duin, R. (2002). The combining classifier: To train or not to
train?, 16th International Conference on Pattern Recogni-
tion, Quebec, Canada, Vol. 2, pp. 765–770.

Frank, A. and Asuncion, A. (2010). UCI machine learning
repository, http://archive.ics.uci.edu/ml.

Giacinto, G., Roli, F. and Fumera, G. (2000). Design of effective
multiple classifier systems by clustering of classifiers,
15th International Conference on Pattern Recognition,
Barcelona, Spain, Vol. 2, pp. 160–163 .

Goebel, K. and Yan, W. (2004). Choosing classifiers for decision
fusion, Proceedings of the 7th International Conference on
Information Fusion, Stockholm, Sweden, pp. 563–568.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimiza-
tion and Machine Learning, 1st Edn., Addison-Wesley
Longman Publishing Co., Inc., Boston, MA.

Hansen, L. and Salamon, P. (1990). Neural network ensembles,
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 12(10): 993 –1001.

Ho, T.K. (1998). The random subspace method for constructing
decision forests, IEEE Transactions on Pattern Analysis
and Machine Intelligence 20(8): 832–844.

Jackowski, K. and Woźniak, M. (2009). Algorithm of designing
compound recognition system on the basis of combining
classifiers with simultaneous splitting feature space into
competence areas, Pattern Analysis and Applications
12(4): 415–425.

Jacobs, R.A. (1995). Methods for combining experts’
probability assessments, Neural Computation
7(5): 867–888.

Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton, G.E.
(1991). Adaptive mixtures of local experts, Neural Com-
putation 3(1): 79–87.

Jain, A., Duin, R. and Mao, J. (2000). Statistical pattern
recognition: A review, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 22(1): 4–37.

http://archive.ics.uci.edu/ml.

Combined classifier based on feature space partitioning 865

Jain, A.K., Murty, M.N. and Flynn, P.J. (1999). Data clustering:
A review, ACM Computing Surveys 31(3): 264–323.

Kacprzak, T., Walkowiak, K. and Woźniak, M. (2012).
Optimization of overlay distributed computing systems
for multiple classifier system—Heuristic approach, Logic
Journal of the IGPL 20(4): 677–688.

Krawczyk, B. and Woźniak, M. (2011). Designing cost-sensitive
ensemble genetic approach, in R. Choras (Ed.), Image
Processing and Communications Challenges 3, Advances
in Intelligent and Soft Computing, Vol. 102, Springer,
Berlin/Heidelberg, pp. 227–234.

Kuncheva, L. (2000). Clustering-and-selection model for
classifier combination, 4th International Conference on
Knowledge-Based Intelligent Engineering Systems and Al-
lied Technologies, Brighton, UK, Vol. 1, pp. 185–188.

Kuncheva, L., Bezdek, J.C. and Duin, R.P.W. (2001). Decision
templates for multiple classifier fusion: An experimental
comparison, Pattern Recognition 34(2): 299–314.

Kuncheva, L.I. (2004). Combining Pattern Classifiers: Methods
and Algorithms, Wiley-Interscience, Hoboken, NJ.

Kuncheva, L., Whitaker, C., Shipp, C. and Duin, R. (2003).
Limits on the majority vote accuracy in classifier fusion,
Pattern Analysis and Applications 6(1): 22–31.

Kuratowski, K. and Mostowski, A. (1976). Set Theory: With
An Introduction to Descriptive Set Theory, 2nd Edn.,
North-Holland Pub. Co., Amsterdam.

MacQueen, J.B. (1967). Some methods for classification and
analysis of multivariate observations, in L.M.L. Cam and
J. Neyman (Eds.), Proceedings of the 5th Berkeley Sym-
posium on Mathematical Statistics and Probability, Vol. 1,
University of California Press, Berkeley, CA, pp. 281–297.

Marcialis, G.L. and Roli, F. (2003). Fusion of face recognition
algorithms for video-based surveillance systems, in G.L.
Foresti, C.S. Regazzoni and P.K. Varshney (Eds.), Mul-
tisensor Surveillance Systems: The Fusion Perspective,
Dordrecht, The Netherlands, pp. 235–250.

Matan, O. (1996). On voting ensembles of classifiers (extended
abstract), Proceedings of the AAAI-96 Workshop on In-
tegrating Multiple Learned Models, Portland, OR, USA,
pp. 84–88.

Partridge, D. and Krzanowski, W. (1997). Software diversity:
Practical statistics for its measurement and exploitation, In-
formation and Software Technology 39(10): 707–717.

Polikar, R. (2006). Ensemble based systems in decision making,
IEEE Circuits and Systems Magazine 6(3): 21–45.

Rastrigin, L. and Erenstein, R.H. (1981). Method of Collective
Recognition, Energoizdat, Moscow.

Ruta, D. and Gabrys, B. (2005). Classifier selection for majority
voting, Information Fusion 6(1): 63–81.

Smetek, M. and Trawinski, B. (2011). Selection of
heterogeneous fuzzy model ensembles using self-adaptive
genetic algorithms, New Generation Computing
29(3): 309–327.

Srinivas, M. and Patnaik, L.M. (1994). Genetic algorithms: A
survey, Computer 27(6): 17–26.

Team, R.D.C. (2008). R: A Language and Environment
for Statistical Computing, R Foundation for Statistical
Computing, Vienna.

Ting, K., Wells, J., Tan, S., Teng, S. and Webb, G. (2011).
Feature-subspace aggregating: Ensembles for stable and
unstable learners, Machine Learning 82(3): 375–397.

Troć, M. and Unold, O. (2010). Self-adaptation of parameters
in a learning classifier system ensemble machine, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 20(1): 157–174, DOI: 10.2478/v10006-010-0012-8.

Tumer, K. and Ghosh, J. (1996). Analysis of decision boundaries
in linearly combined neural classifiers, Pattern Recognition
29(2): 341–348.

van Erp, M., Vuurpijl, L. and Schomaker, L. (2002). An
overview and comparison of voting methods for pattern
recognition, 8th International Workshop on Frontiers in
Handwriting Recognition, Ontario, Canada, pp. 195–200.

Walkowiak, K. (2010). Anycasting in connection-oriented
computer networks: Models, algorithms and
results, International Journal of Applied Mathe-
matics and Computer Science 20(1): 207–220, DOI:
10.2478/v10006-010-0015-5.

Wilk, T. and Woźniak, M. (2011). Complexity and multithreaded
implementation analysis of one class-classifiers fuzzy
combiner, in E. Corchado, M. Kurzynski and M. Wozniak
(Eds.), Hybrid Artificial Intelligent Systems, Lecture
Notes in Computer Science, Vol. 6679, Springer,
Berlin/Heidelberg, pp. 237–244.

Wolpert, D.H. (2001). The supervised learning no-free-lunch
theorems, 6th Online World Conference on Soft Computing
in Industrial Applications, pp. 25–42.

Woods, K., Kegelmeyer Jr., W.P. and Bowyer, K. (1997).
Combination of multiple classifiers using local accuracy
estimates, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 19(4): 405–410.

Woźniak, M. (2008). Experiments on linear combiners, in
E. Pietka and J. Kawa (Eds.), Information Technologies
in Biomedicine, Advances in Soft Computing, Vol. 47,
Springer, Berlin/Heidelberg, pp. 445–452.

Woźniak, M. and Jackowski, K. (2009). Some remarks on
chosen methods of classifier fusion based on weighted
voting, in E. Corchado, X. Wu, E. Oja, A. Herrero and
B. Baruque (Eds.), Hybrid Artificial Intelligence Systems,
Lecture Notes in Computer Science, Vol. 5572, Springer,
Berlin/Heidelberg, pp. 541–548.

Woźniak, M. and Zmyślony, M. (2010). Combining classifiers
using trained fuser—Analytical and experimental results,
Neural Network World 13(7): 925–934.

Xu, L., Krzyzak, A. and Suen, C. (1992). Methods of combining
multiple classifiers and their applications to handwriting
recognition, IEEE Transactions on Systems, Man and Cy-
bernetics 22(3): 418–435.

866 M. Woźniak and B. Krawczyk

Michał Woźniak is a professor of computer sci-
ence at the Department of Systems and Computer
Networks, Wrocław University of Technology,
Poland. He received an M.Sc. degree in biomed-
ical engineering from the Wrocław University of
Technology in 1992, and Ph.D. and D.Sc. (ha-
bilitation) degrees in computer science in 1996
and 2007, respectively, from the same university.
His research focuses on machine learning, dis-
tributed algorithms, and teleinformatics. Profes-

sor Woźniak has published over 160 papers and two books, and edited
eight books. He has been involved in several research projects related
to the above-mentioned topics and has been a consultant of several com-
mercial projects for well-known Polish companies and public adminis-
tration. Professor Woźniak is a senior member of the IEEE and a member
of the International Biometric Society.

Bartosz Krawczyk received a B.Sc. engineer-
ing degree in computer science in 2011 and an
M.Sc. degree with distinctions in 2012 from the
Wrocław University of Technology, Poland. He
was awarded as the best M.Sc. graduate by the
the Rector of the Wrocław University of Tech-
nology. Mr. Krawczyk is currently a Ph.D. stu-
dent in the Department of Systems and Computer
Networks of the same university. His research is
focused on machine learning, multiple classifier

systems, one-class classifiers, class imbalance, and interdisciplinary ap-
plications of these methods. So far, he has published more than 30 papers
in international journals and conferences. Mr Krawczyk is a chairman of
the Symposium on Advances in Artificial Intelligence and Applications
and a member of the Student Editorial Board for the Methods of Informa-
tion in Medicine journal. He has already served as a member of program
committees for over 20 international conferences and as a reviewer for
over a dozen journals.

Received: 14 April 2012

	Introduction
	Related works
	Clustering and selection algorithm
	AdaSS
	Proposed modification to AdaSS

	Model of a classifier
	Training algorithm
	Representation
	Learning material
	Criterion
	Algorithm

	Experiments
	Setup
	Datasets
	Results

	Final remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

