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This paper describes a robust set-membership-based Fault Detection and Isolation (FDI) technique for a particular class of
nonlinear systems, the so-called flat systems. The proposed strategy consists in checking if the expected input value belongs
to an estimated feasible set computed using the system model and the derivatives of the measured output vector. The output
derivatives are computed using a numerical differentiator. The set-membership estimator design for the input vector takes
into account the measurement noise thereby making the consistency test robust. The performances of the proposed strategy
are illustrated through a three-tank system simulation affected by actuator faults.
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1. Introduction and problem setting

The theory related to model-based FDI has been
developed since the 1970s and can be considered today
a mature and well-structured field of research within the
control community (for a survey, see Chen and Patton,
1999; Ding, 2008; Korbicz et al., 2004). The role of the
FDI unit is to detect, isolate and estimate the severity of
a fault. The IFAC SAFEPROCESS Technical Committee
defines a fault as an unpermitted deviation of at least one
characteristic property or parameter of the system from
the standard conditions (Isermann and Ball, 1997). Such
malfunctions may occur in sensors, actuators or other
devices and affect adversely the local or global behavior
of the system.

Generally, the main desirable characteristics of an
FDI system are

• early detection and identification of abnormal
situations, i.e., detection delay should be minimized;

• good ability to discriminate between different

failures (isolability);

• good robustness to various noise and sources
of uncertainty, and their propagation through the
system;

• high sensitivity and performance, i.e., high detection
rate and low false alarm rate.

The basic structure of a classical model-based FDI
technique is depicted in Fig. 1.

Fig. 1. Basic structure of FDI.

The core element is residual generation and many

{ramatou.seydou, ali.zolghadri}@ims-bordeaux.fr 
tarek.raissi@cnam.fr
denis.efimov@inria.fr


172 R. Seydou et al.

approaches concentrate on this step (Fig. 1). Note that if
only fault detection is of interest, reconstructing the fault
rather than detecting its presence through a residual signal
can be a nice alternative solution. Residual evaluation
and decision making consist in checking the residuals and
triggering alarm messages if the tolerances are exceeded.
The thresholds can be set into different kinds.

The simplest way is to use a constant threshold.
The main advantage with fixed thresholds is their
simplicity and reliability. To enhance the robustness
of FDI schemes against small parameter variations and
disturbances during residual generation, various design
and evaluation tools have been proposed (Hwang et al.,
2010). Robust FDI can be achieved if the residual signals
maintain these sensitivity properties over a suitable range
of system dynamics.

Most of the well known approaches assume the
availability of an LTI model or specific nonlinearities.
For systems with strong nonlinear behavior, several
FDI methodologies exist in the literature, including
LPV transformations (Bokor and Balas, 2004; Henry
and Zolghadri, 2004; Grenaille et al., 2008), adaptive
observers (Ding and Frank, 1993; Wang and Daley, 1996;
Wang et al., 1997; Chen et al., 2000; Besançon and
Zhang, 2002; Caccavale and Villani, 2004; Liu, 2009),
stochastic techniques (Wang and Noriega, 2001; Wang
and Lin, 2000; Wang, 2003; Poulsen and Niemann, 2008),
algebraic approaches (Zhang et al., 1998; Berdjag et al.,
2006) or sliding mode-based methods (Edwards and
Spurgeon, 2000; Hakiki et al., 2006; Yan and Edwards,
2008). For a good survey, see the work of Bokor and Szab
(2009) and the references therein.

Most of the proposed approaches make use of
particular structural characteristics of a given nonlinear
system to generate output residuals. Typically, the
observer design problem is solvable if the system model
can be transformed into a canonical form, which may be
an assumption difficult to satisfy in many applications.
Another approach is based on input observer design. In
this approach, the input observer is a dynamical system
with an output that converges asymptotically or in finite
time to a fault to be detected (Corless and Tu, 1998; Ha
and Trinh, 2004). More recently, set-membership fault
detection techniques have been investigated by several
authors (Puig et al., 2003; Stancu et al., 2005; Fagarasana
et al., 2004; Ragot et al., 2006; Lalami and Combastel,
2006; Raı̈ssi et al., 2010). Many publications are based
on interval observers (Gouzé et al., 2000; Bernard and
Gouzé, 2004; Moisan and Bernard, 2006; Moisan et al.,
2009), where the idea was to design two-point observers
to compute an upper and a lower bound for the state vector
domain under both stability and cooperativity conditions.
An interval residual is given as the difference between
the predicted set from the model and the real value
measured by the sensors. Another approach reported by

Ingimundarson et al. (2009) and Puig (2010) is based on
state/parametric consistency checks.

This paper investigates a set-membership fault
detection technique for a particular class of nonlinear
systems, the so-called flat ones (Fliess et al., 1992). The
proposed approach belongs to the class of input fault
detection techniques. It consists in formulating the input
estimation issue using a Constraint Satisfaction Problem
(CSP) (Neumaier, 2004; Arangú and Salido, 2011). A
CSP input estimator is then designed using the relation
between the input vector and the flat outputs. This
observer requires the computation of a finite number of
flat output derivatives. The robustness is achieved by
taking into account the whole domain of the uncertainties
(measurement noise) and without any linearization. This
technique is well suited to deal with actuator faults as well
as parametric or sensor faults. However, in this paper,
we choose to focus on actuator faults. The methodology
includes a fault identification stage where interval residual
quantities are generated by calculating the gap between
the estimated input set and the measured input value at
each time instant.

The paper is structured as follows. Section 2 recalls
some basic notations which will be used throughout the
paper. The problem is formulated in Sections 3 and 4.
Then, the CSP input estimator is presented and used in
the FDI procedure (Section 5). Finally, the methodology
is illustrated through a three-tank system application, and
some concluding remarks are given.

2. Preliminaries

This section recalls some basic and useful definitions.

2.1. Flatness. Consider a nonlinear system described
by {

ẋ = f(x) + g(x)u,
y = h(x), (1)

where x ∈ R
n, y ∈ R

m, u ∈ R
m, and assume f : R

n →
R

n g : R
n → R

n×m are two smooth vector fields while
h : R

n → R
m is a differentiable smooth function. The

system (1) is said to be flat with a flat output vector y if
and only if one can describe the system states and inputs
x, u only from the flat outputs and a finite number of their
derivatives, i.e.

{
x = θ (y, ẏ, . . . , yp) ,
u = s

(
y, ẏ, . . . , yp+1

)
,

(2)

where θ and s are two smooth vector fields.
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2.2. Nonlinear local observability. The matrix

H(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

dh (x)

dLf h (x)

...

dLn−1
f h(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

is called the local observability matrix for (1) where
Lfh(x) is the Lie derivative of the function h along

the vector field f and dLfh(x) is the gradient ∂Lf h(x)
∂x

(Hermann and Krener, 1977). The system (1) satisfies
the observability rank condition at the point x if the
observability matrix has full rank, i.e. rank(H(x) = n.

2.3. Interval tools. A real interval [a] = [a, a] is a
connected and closed subset of R. The set of all real
intervals of R is denoted by IR. Real arithmetic operations
are extended to intervals (Moore, 1966; Hansen, 2004).
Let f : R

n → R
m. The range of the function f over an

interval vector [x] is given by f([x]) = {f(x) | x ∈ [x]}.
An interval function [f ] : R

n → R
m is an inclusion

function for f if ∀ [x] ∈ R
n, f ([x]) ⊆ [f ] ([x]) .

2.4. Constraint satisfaction problems. A constraint
satisfaction problem (CSP) is defined by a set of
variables, X1, X2, . . . , Xn, and a set of constraints,
C1, C2, . . . , Cm. Each variable Xi has a nonempty
domain Di of possible values. Each constraint Ci involves
some subset of the variables and specifies the allowable
combinations of values for that subset. A state of
the problem is defined by an assignment of values to
some or all of the variables, {Xi = vi, Xj = vj , . . .}
(Neumaier, 2004).

Constraint propagation is a way to solve CSPs. The
aim of propagation techniques is to contract as much as
possible the domains for the variables without losing any
solution (Waltz, 1975). When interval uncertainties are
considered, consistency methods combining interval and
constraint satisfaction techniques can be used to deal with
problems such as parameter/state estimation and further
fault detection problems.

In the case of flat systems, CSP variables correspond
to the states and inputs related to the flat output by
a specific and unique map. This map defines the
constraints. In order to retrieve the state and input
vectors satisfying the constraints, consistency techniques
are applied through flatness equations.

3. Problem statement

Consider a system described by (1) and assume that the
measurement error e is bounded with a known bound ē.

The output vector y belongs to

y ∈ [ym − ē, ym + ē], (4)

where ym is the measured signal.

Assumption 1. The actuator fault fa is modeled as
follows:

u = u0 + fa, (5)

where u0 is the nominal input.

This assumption corresponds to additive fault
modeling. Note that multiplicative faults can be
modeled as additive faults considering the transformation
described by Ding (2008). Actually, additive faults
do not affect system stability under feedback control
whereas multiplicative ones could. The additive fault
assumption is made throughout the paper since it is easy
to derive the fault fa from Eqn. (5). Nevertheless,
this assumption can be relaxed without any additional
theoretical developments since the interval technique used
to solve the CSP (13) does not need such assumptions.

It is required to estimate the fault using the output
vector and its derivatives. To solve the problem, it is
proposed to rewrite the second equation of (2) expressing
the input u as a polynomial function of the flat output
y and a finite number of its derivatives. This step
is based on the parity space approach for polynomial
nonlinear systems. The resulting relations between the
variables (input, flat outputs and their derivatives, fault)
constitute the constraints for the CSP input estimator used
in the FDI procedure (Sections 5 and 6). The numerical
output differentiation for y is performed using a Higher
Order Sliding Modes (HOSM) differentiator. Both fault
detection and fault identification phases are based on input
estimation through a CSP input estimator.

The common point between the presented approach
and the geometric methodology proposed by De Persis
and Isidori (2001; 2002) is a kind of model invalidation.
In this paper, the model is invalidated through the use of a
consistency test whereas the geometric approach consists
mainly in finding an unobservable subspace due to the
occurrence of a certain fault among others. Note that this
geometric approach for fault detection and isolation relies
on stochastic assumptions.

4. Parity space and flat systems

The aim of this section is to derive relations between u0,
y and fa for the system (1). Taking the derivatives of the



174 R. Seydou et al.

output vector up to an order n − 1, we obtain
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = y(0) = h(x),

y(1) =
∂h(x)

∂t
=

∂h(x)
∂x

· ∂x

∂t

=
∂h(x)

∂x
· [f(x) + g(x)u]

= Lfh(x) + Lgh(x) · u,
y(2) = L2

fh(x) + LgLfh(x) · u + LfLgh(x) · u
+L2

gh(x) · uuT + Lgh(x) · u(1),
...

Equation (4) can be rewritten as

Y = H + GW, (6)

where

Y =

⎛
⎜⎜⎜⎝

y

y(1)

y(2)

...

⎞
⎟⎟⎟⎠ , H =

⎛
⎜⎜⎜⎝

Lfh(x)
L1

fh(x)
L2

fh(x)
...

⎞
⎟⎟⎟⎠ ,

W =

⎛
⎜⎜⎜⎝

u
u.uT

u(1)

...

⎞
⎟⎟⎟⎠

and

G =

⎛
⎜⎜⎜⎝

0 0 0
Lgh(x) 0 0

LgLfh(x) + LfLgh(x) L2
gh(x) Lgh(x)

...
...

...

0 . . .
. . . . . .
0 . . .
...

...

⎞
⎟⎟⎟⎠ .

Equation (6) shows that the consecutive derivatives
of the measured output vector are polynomial functions of
the derivatives of the input vector u (Sontag and Wang,
1991). The relation (6) can be formulated as

φi

(
x, u, . . . , u(i−2), y(i−1)

)

= y(i−1) − Li−1
F h(x) = 0, i = 1, . . . , n, (7)

where φi is a nonlinear function of its arguments and
F (x, u) = f(x) + g(x)u.

Under the observability rank condition (3) and using
the implicit functions theorem (Krantz and Parks, 2002),
Eqn. (7) has a solution,

x = P
(
u(0), y(0) . . . , u(n−1), y(n−1)

)
. (8)

Thus, the state x is a function of the input and output
vector derivatives, transforming (7) into

Ψi

(
u, y, u(1), . . . , y(1), . . .

)

= φi(P (u, y . . . , u(n−1), y(n−1)), u,

. . . , u(n−2), y(n−1)) = 0,

i = 1, 2, . . . , (9)

where Ψi is a nonlinear function of its arguments. Taking
into account the expression of u given by (5), the relation
(9) can be transformed into

Ψi

(
(u0 + fa), y, . . . , (u0 + fa)(αi), y(αi)

)
= 0. (10)

The relation (10) is established for a general class of
nonlinear systems. Nevertheless, it is well known that
for flat systems the input is related to the output and its
derivatives as

u = s
(
y, y(1), . . . , y(p+1)

)
. (11)

Thus, the relations (9) and (11) lead to

Ψl

(
(u0 + fa), y, y(1), . . . , y(p+1)

)
= 0,

l = 1, . . . , m. (12)

Remark 1. For simplicity, only additive faults are
considered in this paper. Nevertheless, multiplicative
faults modeled by u = u0(1 + α), where α is the
fault effect, can also be studied without any additional
investigations.

5. Input estimation and fault diagnosis

Given a flat system described by (1) and admitting the
decoupling relation (12), the input estimation problem is
formulated as a CSP given by

⎧⎨
⎩

Ψl

(
u, y, y(1), . . . , y(p+1)

)
= 0, l = 1, . . . , m,

y ∈ [y] , y(1) ∈ [
y(1)

]
, . . . , y(p+1) ∈ [

y(p+1)
]

u ∈ U,
,

(13)
which can be solved using interval analysis. Note
that a similar formulation has been performed for state
estimation by Jaulin (2013), according to whom the
output derivatives are supposed to be measured. This
is not the case in our work. Finding solutions to (13)
needs an evaluation of the measurement derivatives. In
the following, the measurement derivatives are estimated
using HOSM differentiators (Levant, 1998; 2003).

5.1. HOSM differentiator for derivative estimation.
Let yi be the signal to be differentiated and z0, z1, . . . , zn

be some estimates for the signal yi and its derivatives.
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Note that yi is the i-th output vector component and
yi = yi0 +ei; ei is a bounded Lebesgue-measurable noise
with unknown features and an unknown base signal yi0

with the n-th derivative having a known Lipschitz constant
Ci > 0. The n-th-order HOSM differentiator is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż0 = ν0,

ν0 = −α0 |z0 − yi|
n

n+1 sign (z0 − yi) + z1,
ż1 = ν1,

ν1 = −α1 |z1 − ν0|
n−1

n sign (z1 − ν0) + z2,
...
żk = νk,

νk = −αk |zk − νk−1|
n−k

n−k+1 sign (zk − νk−1)
+zk+1

...
żn = −αnsign (zn − νn−1) .

(14)
It has been proved (Levant, 2001) that the best

estimate accuracy of the k-th derivative is proportional to

accik
= μik

C
k

n+1
i ē

n+1−k
n+1

i , k = 0, . . . , n,

when the Lipschitz constant of the n-th derivative of the
clear-off-noise signal is bounded by a certain constant Ci

and μik
≥ 1 (μk depends only on αk, k = 0, . . . , n.

Please refer to Proposition 1 of Levant (2001) for more
details). Hence, the derivative domain is y

(k)
i ∈ [y(k)

iest −
accik

, y
(k)
iest + accik

] where y
(k)
iest = zk is the estimate of

the k-th derivative for yi.

5.1.1. Input estimation. At each time instant tj ,
denote by Uj the domain of u at tj . If no prior
information about the domain of u is available, we can
select the domain Uj =] − ∞, +∞[. Thus, the basics
of the input estimation method consist in computing all
the values of u satisfying (13). The idea is to remove
parts of the searching domain Uj for the model input
that are inconsistent with the measured data yj and their
derivatives up to an order p + 1. For easy reference,
the main steps of the input estimation are summarized as
Algorithm 1.

Note that U is the initial search domain for the input
vector and SIVIAP is a set inversion algorithm which
makes is possible to solve CSPs in a guaranteed way using
interval analysis (Jaulin et al., 2001).

Remark 2. The vectors e, acck and y(k) should be
respectively understood as e = (ē1, . . . , ēm)T , acck =
(acc1k

, . . . , accmk
)T , and y(k) = (y(k)

1 , . . . , y
(k)
m )T ,

where m represents the flat output vector dimension.

5.1.2. Residual generation and fault diagnosis. The
residual generation and fault detection procedures are

Algorithm 1. CSP Estimator.

Step 0. (Inputs: y(tj), j = 1, . . . , N , U ), Output: [u(tj)])
Step 1. Flatness modelling as a CSP (13).

Step 2. For j = 1, . . . , N , do

Step 2.1. Estimate the derivatives y(k), k = 1, . . . , p + 1
using (14).

Step 2.2. Estimate the bound acck and construct the
domains of y(tj) and its derivatives.

Step 2.3 Solve the CSP using the SIVIAP algorithm to
obtain [u(tj)].

based on input estimation. At each time instant tj , we
consider the algorithm output [u(tj)] and an inclusion test
is run over an interval residual. This residual denotes
the gap between the estimated input set and the expected
input value. The lower (respectively, upper) bound of
the residual corresponds to the difference between the
estimated set lower (respectively, upper) bound input u
and the value of the fault free model input u0. The residual
is defined by

[r(tj)] = [u(tj) − u0(tj), u(tj) − u0(tj)]. (15)

The consistency test aim is to check whether the expected
(fault-free case or controller output) input value u0(tj)
belongs to the estimated domain [u(tj)], i.e.,

detj =
{

0, 0 ∈ [r(tj)],
1, 0 /∈ [r(tj)],

(16)

which is equivalent to checking

det
j

=
{

0, u0 (tj) ∈ [u (tj)] ,
1, u0 (tj) /∈ [u (tj)].

The algorithm used for input estimation could
involve several bisections over the initial input domain for
the admissible value research. Actually, the computing
time increases exponentially with the input dimension
(Jaulin et al., 2001). In the fault detection phase, we only
check whether the actual input u0 is consistent with the
measurements. If a fault is detected, the algorithm CSP
Estimator will be applied to estimate its amplitude.

5.1.3. Fault identification. Fault identification is the
characterization of the fault besides its occurrence time.
This task is here restricted to the determination of the fault
amplitude. Since we consider additive actuator faults,
the fault amplitude or, more precisely, the estimated fault
domain is given by the residual expression

[
f

a
, fa

]
= [r] = [u − u0, u − u0] . (17)

Note that the approaches developed by Jiang et al.
(2004), Akhenak et al. (2003), Kabore and Wang (2001)
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as well as Orani et al. (2009) propose alternative solutions
for actuator failures and simultaneous faults diagnosis.
These techniques are based on a robust sliding mode
observer design whereas the sliding mode concept is
used in this paper for robust numerical differentiation
of bounded noisy measurements. Most of these
methodologies require system linearizations (Akhenak
et al., 2003; Kabore and Wang, 2001) or a canonical
form (Jiang et al., 2004). The technique proposed in this
paper considers the original nonlinear model without any
linearization and the results are guaranteed by the fact that
the variables are modeled by means of intervals containing
the actual value which cannot be known exactly. This is
one of the main advantages of set-membership techniques.
However, the computational burden remains a drawback
when dealing with high dimensional systems.

5.1.4. Minimum detectable fault. The minimum
detectable fault corresponds to the smallest amplitude for
a fault to be detectable with respect to the measurement
error bounds ēi and output derivatives error bounds accik

.
Recall that the bound acck is given by

acck = μk · C k
n+1 · ē( n+1−k

n+1 ), k = 0, . . . , n.

When no fault occurs, the residual [r] is centered around
the value 0 and its upper and lower bounds (r̄ and r) can
be computed from the residual expression and the bounds
acck:

{
[r] = [r, r] = [u − u0, u − u0],
[r, r] = [s]

(
[y] ,

[
y(1)

]
, . . . ,

[
y(p+1)

]) − u0.
(18)

In a fault-free case, we have r ≥ 0 (respectively
r ≤ 0). Thus, the minimum detectable fault is the
fault that makes r (respectively, r) cross the null value
towards negative values (respectively, positive values).
The minimum detectable fault depends on the nominal
input and output amplitudes.

In the following, we assume that the system is subject
to null valued inputs and the flat outputs are subsequently
null (ym = 0 under null initial conditions or in a steady
state case). Moreover, we assume that a fault fa occurs at
the same time on the actuators. The output domain is then

y ∈ [ym − ē, ym + ē] ⇒ y ∈ [−ē, +ē] = [−acc0, acc0] .
(19)

The residual domain becomes

[r, r̄] = [s] ([−acc0, acc0], . . . , [−accp+1, accp+1])− u0.
(20)

Since u0 is the nominal input value and is assumed
to be null, the residual domain is

[r, r̄] = [s] ([−acc0, acc0], . . . , [−accp+1, accp+1]) .
(21)

Actually, this domain gives roughly the minimum
detectable fault famin amplitude:

famin = min (|r| , |r̄|) . (22)

For the general case, the nominal inputs and outputs
should be taken into account.

6. Application: A three tank hydraulic
system

The proposed methodology is illustrated on a well-known
hydraulic laboratory system (Fig. 2) which is modeled by

ẋ1 = −a13

S

√
x1 − x3 +

1
S

u1, (23a)

ẋ2 =
a32

S

√
x3 − x2 − a20

S

√
x2 +

1
S

u2, (23b)

ẋ3 =
a13

S

√
x1 − x3 − a32

S

√
x3 − x2, (23c)

y1 = x1, (23d)

y2 = x3, (23e)

where y1 and y2 are the flat outputs of the system and
x = (x1, x2, x3)T = (h1, h2, h3)T represents the state
vector (under the condition h1 > h3 > h2 for all times),
u = (u1, u2)T = (Q1, Q2)T is the control vector.

Fig. 2. Three-tank system.

The three-tank system is a popular benchmark used
in many published works. Moreover, this example is fully
nonlinear and flat, which is important for our approach.
This example has been addressed in other papers (Join
et al., 2005; Theilliol et al., 2002; Zolghadri et al., 1996),
where the authors adopted the assumption that the whole
state vector of the plant is available for measurement.
The technique proposed in this paper only requires two
measurable flat outputs.

The noise magnitude corrupting the measurements
ym is bounded by [±2] mm. The system is under feedback
control and two PI controllers have been implemented for
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the flat output x1 and the non-flat output x2. It is easy
to prove the system flatness (and subsequently its local
observability) through the following equations:

⎧⎪⎪⎨
⎪⎪⎩

x1 = y1,

x2 = y2 −
(

a13
√

y1 − y2 − Scẏ2

a32

)2

,

x3 = y2,

(24)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = Scẏ1 + a13
√

y1 − y2,

u2 = −
2Sc

a32
(a13

√
y1 − y2 − Scẏ2)

a32

×
(

a13 (ẏ1 − ẏ2)
2
√

y1 − y2
− Scÿ2

)

−a13
√

y1 − y2

+a20

√
y2 −

(
a13

√
y1 − y2 − Scẏ2

a32

)2

.

(25)

Fault detection and isolation. Additive actuator faults
(bias) with different amplitudes are applied to both
actuators and the consistency test (16) is used here.
Equations (25) expressing the inputs in function of the
flat outputs are required for detection. To control the
conservatism induced by interval analysis due to the
several occurrences of the variables y1, y2, ẏ1 and ẏ2 in
the second equation of (25), we propose to use first (24) to
estimate x2. In addition, the derivative of x2 is computed
through the HOSM differentiator (14). Then, Eqn. (23b)
is used to perform the inclusion test for u2; thus only the
first derivative of y1 and x2 is required to estimate u1 and
u2.

As mentioned in Section 5, a robust differentiator
built on the high order sliding modes technique provides
the successive derivatives of the flat outputs, which yields

{
ẏ1 ∈ [ẏ1est − accẏ1est

, ẏ1est + accẏ1est
],

ẋ2 ∈ [ẋ2est − accẋ2est
, ẋ2est + accẋ2est

], (26)

where

accẏ1est
= (0.002)

1
2 × (

25.10−6
) 1

2 × 1 = 0.000224

and

accẋ2est
= (0.002)1/2 × (80e−8)1/2 × 1 = 13e−6

with a first order sliding-mode differentiator in both cases.
Table 1 sums up fault detection performances for the

algorithm CSP Estimator applied to the three-tank system
with the following faults:
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Fig. 3. Fault detection on u1.
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Fig. 4. Fault detection on u2.

• additive bias on the first actuator (u1) appearing at
t = 300 s with amplitudes 3.5 ml/s and 6 ml/s;

• additive bias on the second actuator (u2) appearing
at t = 250 s with amplitudes 6 ml/s and 7 ml/s.

As we can see, the detection time decreases with
respect to the fault amplitude growth. The detectability
is stronger for the Actuator 1 and this could be explained
by the fact that differential equation (23a) leading it is
relatively less complex than (23b) for Actuator 2 in the
sense that for the variables x1, x2 and x3 the occurrence
number is lower than in (23b), which leads to less
conservatism in the interval computations. Actually, in the
case of a fault with an amplitude of 6 ml/s for the second
actuator, the fault effects are not persistent. Note that the
time interval [0, 80] s corresponds to system transient
behavior.

Fault identification. We can simultaneously estimate
the admissible domain for the inputs u1 and u2 and the

Table 1. Fault detection performances.
Actuator Fault Amplitude Amplitude Delay

(%)×ui max

No. 1 Bias 8%
14%

3.5 ml/s
6ml/s

14.5 s
8 s

No. 2 Bias 11%
13%

6 ml/s
7 ml/s

23 s
17 s
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fault (residual) estimated domain. Figures 5 and 6
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Fig. 5. Fault identification for u1.
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Fig. 6. Fault identification for u2.

depict the kind of faults affecting the actuators. Moreover,
the fault occurrence time is clearly shown (t1 = 300 s
for u1 and t2 = 250 s for u2) despite the existence of
some detection delay time in both cases. The residual
bounds, beyond the detection instant, give estimation
for the domain of the fault amplitude. Depending
on the differential equation leading to the actuator and
the measurement derivative estimation, the pessimism
induced around the fault amplitude may change.

Minimum detectable fault.

Actuator 1: The expression of the input is given by
u1 = Sẏ1 + a13

√
y1 − y2. Given the bounds accy1 =

accy2 = ē = 0.002 and accẏ1est
= 0.000224, we have

fa1min
= S · ∣∣accẏ1est

∣∣ + a13

√
accy1 − accy2

= 3.44 · 10−6 mls−1.
(27)

Actuator 2: The expression of u2 is given by

u2 = −
2Sc

a32
(a13

√
y1 − y2 − Scẏ2)
a32(

a13 (ẏ1 − ẏ2)
2
√

y1 − y2
− Scÿ2

)

− a13

√
y1 − y2

+ a20

√
y2 −

(
a13

√
y1 − y2 − Scẏ2

a32

)2

,

which leads to

fa2min

= −
2Sc

a32
(a13

√
accy1 − accy2 − Scaccẏ2est

a32

·
(

a13(accẏ1est
− accẏ2est

2
√

accy1 − accy2

− Scaccÿ2est

)

− a13

√
accy1 − accy2

+ a20

√
accy2 −

a13
√

accy1 − accy2 − Scaccẏ2est

a32
.

Both flat outputs y1 and y2 are bounded by the value
0.002 m (accy1 = accy2 = 2 mm). These uncertainties
lead to a null denominator (accy1 − accy2 = 0) in the
expression of fa2min

. Since we consider that both outputs
y1 and y2 are bounded by accy1 and accy2 , we can
extrapolate and consider x2 as an output that would also
be bounded by the same value (accx2 = 2 mm), Then,
from (23b), we have

u2 = S ∗ ẋ2 − a32

√
x3 − x2 + a20

√
x2,

and the expression fa2min of the smallest detectable fault
on the second actuator is given by

fa2min
= S · accẋ2est

− a32

√
accy2 − accx2

+ a20
√

accx2 = 7.91 mls−1.
(28)

Figure 4 shows that some faults with an amplitude
lower than (28) can also be detected, which means that
the expression given by (28) is conservative due to the
estimation of the derivatives error bounds.

The drawback of the proposed technique is the
computation time due to bisections in the set inversion
procedure. It has been shown by Jaulin and Walter
(1993) that the complexity of set inversion algorithms is
exponential with respect to the unknown vector dimension
m (here, the dimension of the input vector):

N =
(

w (U )
ε

+ 1
)m

,

where U is the initial searching domain for the input u,
w(U) is the domain width and ε is the bisection tolerance
threshold. This technique can be implemented for systems
with a low dimension for the input (or fault) vector.

7. Concluding remarks

In this paper, a new model-based fault diagnosis
methodology with interval consistency techniques has
been proposed for a class of nonlinear systems. The
objective is to provide an original solution to actuator fault
diagnosis for flat systems. The main important advantage
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of the technique is the possibility offered to generate
a residual that gives the fault amplitude and satisfies
robustness conditions under valid modeling hypotheses.
Finally, the performance of the proposed strategy has been
illustrated through a numerical example where no false
alarm occurred during the detection phase. However,
concerning an on-line implementation, the computational
burden remains a drawback when dealing with high
dimensional systems. An appealing direction for further
investigations is the impact of parametric uncertainties
and component faults that could lead to flatness property
loss for a system. This is a topic of our current research.
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Appendix

Table A1. Three-tank system parameters.
Parameter Description Units Nominal

values

S Tank surface
area

m 2 0.0154

Sn Pipe surface
area

m 2 5 · 10−5

a13 az13Sn

√
2g –

a20 az20Sn
√

2g –
a32 az32Sn

√
2g –

az13 – 0.6

az20 – 0.8

az32 – 0.6

g Gravity
constant

N/m2 9.81

h1 max

h2 max

h3 max

Maximum
levels in tank
1, 2 and 3

m 0.5
0.3
0.4

Q1 max

Q2 max

Input flow
rates (steady
state)

mls−1 42
55
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