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The objective of this paper is to present and make a comparative study of several inverse kinematics methods for serial
manipulators, based on the Jacobian matrix. Besides the well-known Jacobian transpose and Jacobian pseudo-inverse me-
thods, three others, borrowed from numerical analysis, are presented. Among them, two approximation methods avoid the
explicit manipulability matrix inversion, while the third one is a slightly modified version of the Levenberg–Marquardt
method (mLM). Their comparison is based on the evaluation of a short distance approaching the goal point and on their
computational complexity. As the reference method, the Jacobian pseudo-inverse is utilized. Simulation results reveal that
the modified Levenberg–Marquardt method is promising, while the first order approximation method is reliable and requires
mild computational costs. Some hints are formulated concerning the application of Jacobian-based methods in practice.
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1. Introduction

Inverse kinematics are the most frequently solved robotic
tasks (in fact, forward and inverse tasks are encountered
in many domains of science (Hunek and Latawiec,
2011) and various robotic sub-domains (Dulęba and
Jagodziński, 2011)). For open-chain serial manipulators,
considered in this paper, whose forward kinematics are
given analytically, the inverse kinematics task is to find
such a configuration at which the end-effector of the robot
reaches a given point in the taskspace.

Due to the non-linearity of forward kinematics,
direct and analytic computations of inverse kinematics
are hardly ever possible. Therefore, some numerical
approaches have been developed in robotics to solve the
task. The most prominent among them are based on
the Jacobian matrix, which describes the transformation
between velocities in the configuration and the taskspaces.

There are many versions of Jacobian-based methods
(Nakamura, 1991), formulated as Newton algorithms,
which differ in computational complexity, the speed
of convergence, the way of passing through singular
configurations (Nakamura, 1991; Dulęba and Sasiadek,
2002), and other features (repeatability (Tchoń et al.,
2009), optimality (Nakamura, 1991)). Some researchers
considered the inverse kinematic task even in the case

when forward kinematics are not available and the
inverse transformation has to be learned (D’Souza et al.,
2001). Inverse kinematics can be also viewed as an
optimization task solved with general-purpose methods
(neural networks (Tejomurtula and Kak, 1999), genetic
algorithms (Nearchou, 1998), etc.), but those approaches
are usually computationally ineffective.

The Jacobian-based algorithms search for a
configuration that solves the task by means of an iterative
process initialized at an assumed initial configuration.
While solving a given inverse kinematics task, various
Jacobian-based methods can be compared with each
other by counting the number of iterations needed to
complete the inverse task multiplied by the computational
cost of a single iteration. However, this comparison
is not reliable because different methods, although
initialized at the same configuration, may generate
trajectories significantly different from each other as
the computations progress. Moreover, the number of
iterations required to finish a given algorithm may be
strongly influenced by consecutive configurations of the
generated trajectory because the Jacobian matrix is a
function of the current configuration. Therefore, in this
paper, Jacobian-based methods will be evaluated locally,
around selected configurations.

The main problem addressed in this paper concerns
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the local convergence of selected Jacobian-based
methods. In particular, a convergence measure will be
defined. Based on this measure, a question concerning the
convergence of the tested method for a given manipulator
at a given configuration will be answered. As the reference
method, the Jacobian pseudo-inverse method is selected
because, locally, it generates a straightforward motion
towards the goal with a minimal configuration effort.
A natural angle-measure will be defined to relate the
motion towards the goal provided by the Jacobian
pseudo-inverse method with the motion offered by
a method being evaluated.

The paper is organized as follows. In Section 2,
Jacobian-based methods are presented, and a measure
used to evaluate their speed of convergence is defined.
Roboticians are quite familiar with two of them, while
the remaining three methods have been transferred to
the inverse kinematic task from numerical analysis. The
first one was borrowed from the robust-inverse kinematic
task solved by the Levenberg–Marquardt method
(Marquardt, 1963). Exploiting the analogy between the
Jacobian transposed method and the singularity robust
inverse method in its basic form (Nakamura, 1991), a
modification of the Levenberg–Marquardt method is
designed to avoid the computationally involved matrix
inversion. The idea of two other methods is rooted in
numerical procedures of matrix inversion. Some time
ago, researchers (Ben-Isreal and Cohen, 1966) noticed
that the inversion can be computed as a limit of an
appropriately defined iteration process that avoids explicit
matrix inversion. Although the process may require many
iterations to converge, we propose to use either one or two
initial iterations to get a rough matrix inverse estimation.
In Section 3, simulations of Jacobian-based methods
of inverse kinematics carried out on four models of
redundant manipulators (including two industrial robots)
are presented. Section 4 concludes the paper.

2. Jacobian-based methods of inverse
kinematics and their evaluation

The forward kinematics for serial robot manipulators are
a mapping

Q � qqq → kkk(qqq) = xxx ∈ X ⊂ SE(3),
dim(qqq) = n ≥ m = dim(xxx),

(1)

where qqq is a configuration living in the configuration
space Q, xxx is a generalized location in the taskspace
X and SE(3) denotes the special Euclidean group. For
a given point xxxf in the taskspace, the inverse kinematics
algorithms search for such a configuration qqq� that kkk(qqq�) =
xxxf . Jacobian-based methods of solving inverse kinematics
are derived by differentiating Eqn. (1) with respect to time,

ẋxx =
∂kkk(qqq)
∂qqq

q̇qq = JJJ(qqq)q̇qq, (2)

and approximating infinitesimal q̇qq, ẋxx by their finite
equivalents, (qqqi+1 − qqqi)/Δt, ξi(xxxf − k(qqqi))/Δt,
respectively. It is assumed that an initial configuration qqq0
is known.

To get qqqi+1 as a function of the data from the i-th
iteration, some kind of inversion of the Jacobian matrix
JJJ has to be applied. The most frequently encountered
in practice is the pseudo-inverse matrix (Moore–Penrose
(Nakamura, 1991)) defining a process whose iterations are
counted by the variable i,

qqqi+1 = qqqi + ξi · JJJT (qqqi)MMM(qqqi)−1(xxxf − kkk(qqqi))

= qqqi + ξi · JJJ#(qqqi)(xxxf − kkk(qqqi)),
(3)

where the superscript ‘T ’ introduces the matrix
transposition, ξi is a given (or appropriately varied
from one iteration to another) positive coefficient,

MMM(qqqi) = JJJ(qqqi)JJJT (qqqi) (4)

denotes an (m × m) non-negative definite, symmetric
manipulability matrix, and the initial value of qqq0 is given.

The pseudo-inverseJJJ# = YYY displays all four axioms
of generalized matrix inverses for a real-valued matrix JJJ
(Ben-Isreal and Greville, 2003),

JJJYYY JJJ = JJJ, YYY JJJYYY = YYY ,

(JJJYYY )T = JJJYYY , (YYY JJJ)T = YYY JJJ. (5)

Very similar to the pseudo-inverse is the adjoint
pseudo-inversion adj(MMM) = det(MMM)(MMM)−1 that
excludes the determinant of the manipulability matrixMMM
(Tchoń and Dulęba, 1993) to partially avoid the problem
of singular configurations. The Jacobian pseudo-inverse
matrix inversion JJJ# is usually quite complex to compute,
as it requires the manipulability matrix inversion.
Therefore, other methods of inversion have been invented.

Singularity robust inverses (Nakamura, 1991) are
used to cope with singular configurations at which
det(MMM) takes the value of zero, and Eqn. (3) fails to
generate consecutive configurations. In order to retrieve
invertibility in a close vicinity of singular configurations, a
diagonal matrixAAA scaled with a small positive coefficient
λ is usually added to the manipulability matrixMMM ,

qqqi+1 = qqqi+ξi ·JJJT (qqqi)(MMM(qqqi)+λAAA)−1(xxxf −kkk(qqqi)). (6)

In the Levenberg version (Levenberg, 1944), AAA is equal
to the (m × m) identity matrix IIIm, while in the
Levenberg–Marquardt (Marquardt, 1963) version AAA =
diag(MMM), where diag(MMM) denotes an (m × m) matrix
composed of main diagonal elements ofMMM .

Two computationally cheap algorithms can be
obtained when the manipulability matrix is omitted
from Eqn. (6) and coefficient λ is merged into new ξi =
ξoldi · λ: a well-known Jacobian transpose inverse method
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introduced into robotics by Chiacchio and Siciliano
(1989),

qqqi+1 = qqqi + ξi · JJJT (qqqi)(xxxf − kkk(qqqi)), (7)

and the modified Levenberg–Marquardt one (mLM),

qqqi+1 = qqqi+ξi ·JJJT (qqqi)(diag(MMM(qqqi))−1(xxxf −kkk(qqqi)). (8)

The last two Jacobian-based methods of inverse
kinematics studied in this paper result from an
approximation of the Jacobian pseudo-inverse matrix JJJ#

proposed by Ben-Isreal and Cohen (1966), computed by
the recursive formula

YYY 0 = αJJJT , YYY k+1 = YYY k(2IIIm − JJJYYY k),

α ∈
(

0,
2

λmax(MMM)

)
,

(9)

where λmax(MMM) is the largest singular value of the
manipulability matrix MMM and the parameter α influences
the speed of convergence of the scheme (9). It was proven
(Ben-Isreal and Cohen, 1966) that YYY k → JJJ# as k → ∞.

There exist other numerical methods of matrix
inversion based on a factorization of the matrix (for
example, singular value decomposition (Maciejewski
and Klein, 1989) or LU factorization (Golub and
Van Loan, 1996)). As a rule they provide an easy way
to get matrix inversion, if only factorization has been
performed. However, matrix factorization is almost as
computationally complicated as inverting the matrix itself.
Some specialized methods of matrix inversion can be
applied to matrices in a special form (block, sparse, with
a significant rank deficit), but Jacobian matrices of inverse
kinematics do not belong to those matrix sub-classes.

Now, let us turn back to Eqn. (9). The singular value
decomposition method allows computing all singular
values of the manipulability matrix. However, the
decomposition is computationally involved, so the explicit
derivation of λmax is not computationally justified as a
preliminary step to set α in Eqn. (9). Therefore, λmax will
be estimated, rather than determined explicitly. To speed
up the convergence of the process (9), the estimated value
of λmax should be as close to its real value as possible,
and α as large as possible.

Fortunately, a reliable estimation of λmax is possible
with little computational effort. Singular values of a given
symmetric and non-negative defined matrix MMM are
non-negative and satisfy the equality (Horn and Johnson,
1986)

m∑
i=1

λi(MMM) = tr(MMM) =
m∑

i=1

Mii. (10)

Equation (10) allows setting the range for possible values
of λmax(MMM):

1
m

tr(MMM) ≤ λmax(MMM) ≤ tr(MMM). (11)

The left equality in Eqn. (11) covers the case when all
singular values are identical, while the right equality
corresponds to the case when there is only one non-zero
singular value.

To keep a mild computational complexity, only
the first and the second (iterations k = 1, 2) order
approximation of JJJ# given by (9) will be used later on.
The first order approximation of JJJ# is defined by the
following iterative scheme:

qqqi+1 = qqqi

+ ξi · JJJT (qqqi)
(
IIIm − α(qqqi)

2
MMM(qqqi)

)
(xxxf − kkk(qqqi)),

(12)

when YYY 1 from Eqn. (9) substitutes JJJ# in Eqn. (3) and
ξi includes also the 2 · α(qqqi) term. The second order
approximation of JJJ# generates the inversion algorithm

qqqi+1

= qqqi + ξi · JJJT (qqqi)(IIIm − α(qqqi)
2

MMM(qqqi))

· (IIIm − α(qqqi)MMM(qqqi)(IIIm − α(qqqi)
2

MMM(qqqi)))

· (xxxf − kkk(qqqi)),

(13)

where YYY 2 replaces JJJ#, and ξi includes also the 4 · α(qqqi)
term.

Jacobian-based versions of the Newton algorithm
described by Eqns. (7), (8), (12), (13) are computationally
cheaper than the original algorithm (3) based on
the pseudo-inverse. It should be stressed that
the aforementioned algorithms do not display all
the properties of the generalized inverse (5) (in
fact (7), (12), (13) satisfy the last two properties
in (5), while (8) satisfies none of them).

2.1. Evaluation measure of Jacobian-based me-
thods. It is easy to observe a formal similarity
of all the Jacobian-based methods given by
Eqns. (3), (7), (8), (12), (13). In all of them, JJJT is
multiplied by a square (m × m) symmetric matrix and
post-multiplied by a vector (xxxf − kkk(qqqi)). Therefore,
a quite natural measure serving to compare these
methods could be based on any matrix metrics applied
to matrices JJJ#,JJJT ,JJJT diag(MMM)−1,JJJT (III − α

2MMM),
JJJT

(
III − α

2MMM
) (
III − αMMM

{
III − α

2MMM
})

or to their variants
without trailing JJJT . However, these metrics do not take
into account the real direction to the goal (xxxf − kkk(qqqi)).

As the Jacobian pseudo-inverse method (3) generates
a short-time straightforward motion towards the goal in
the taskspace, it is a natural candidate to be chosen
as the reference method for other tested methods.
For the pseudo-inverse method and outside singular
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configurations, we define a virtual direction to the goal
as

xxxref =MMM(qqqi)−1(xxxf − kkk(qqqi)). (14)

The virtual direction lives in the same Rm space as the
real direction to the goal xxxf − kkk(qqqi). The other Jacobian
methods will be related to the Jacobian pseudo-inverse
one by measuring the angle between xxxref and xxxmet,

e(xxxref(qqq),xxxmet(qqq))

= arc cos
( 〈xxxref(qqq),xxxmet(qqq)〉
||xxxref(qqq)|| · ||xxxmet(qqq)||

)
, (15)

where 〈·, ·〉 denotes the Euclidean inner product in Rm,
|| · || is the Euclidean metrics. xxxmet derived from
Eqns. (7), (8), (12), (13) is given by

xxxmet(qqq) = BBB · (xxxf − kkk(qqqi)),
where

BBB =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

IIIm

(diag(MMM(qqqi))−1(
IIIm − 1

2MMMα

)
(
IIIm +MMMα

(− 3
2IIIm +MMMα(IIIm − 1

4MMMα)
))
(16)

and MMMα = α(qqqi)MMM(qqqi). In the last row of Eqn. (16),
an equivalent version of (13) is presented. Obviously,
e(xxxref(qqq),xxxref(qqq)) = 0, e(xxxref(qqq),xxxmet(qqq)) ∈ [0, π], and
if only ∀qqq ∈ Q : e(xxxref(qqq),xxxmet(qqq)) ∈ [0, π/2) the tested
method is at least locally convergent, i.e., it generates a
motion decreasing the distance to the goal. Intentionally,
the angular measure (15) neglects the information about
the length of the vector xxxmet. This length is not important
as its influence on the local motion can be adjusted by
appropriately varying the ξi coefficient.

Having recalled Jacobian-based methods of inverse
kinematics, and defined a measure allowing to compare
them, it is necessary to introduce a methodology of
performing the tests. For a given manipulator with given
kinematics, let us fix a non-singular configuration qqq0 and
compare its image xxx0 = kkk(qqq0) in the taskspace. Around
xxx0 a small radius R ball is fixed that collects all possible
infinitesimal directions of motion Δxxx = xxxf − xxx0.

Notice that the short distance of R is not particularly
important as the measure (15) is insensitive to the length
of Δxxx. On the surface of the ball, select a set of uniformly
distributed goal points xxxf . For each of the targets xxxf and
each of the tested methods, Eqns. (14), (16) determine
the measure (15). Physically, this simulates a single
step motion towards xxxf of the tested method. Results
are collected and processed statistically to get reliable
characteristics at qqq0. The following characteristics are
used (N is the number of goal points, i = 1, . . . , N ):

• the histogram of e(i) (the range [0, π] � e(i) is split
into K equi-length sub-intervals and frequencies of
entering each sub-interval are found);

• the mean angular error value,

e =
1
N

N∑
i=1

e(i);

• the standard deviation,

σ =

√√√√ 1
N

N∑
i=1

(e(i) − e)2;

• the maximal angular value,

emax =
N

max
i=1

e(i);

• the percentage of trails that generate angular error
larger than 90◦.

Computer simulations carried out on some models
of manipulators should answer two basic questions: how
the characteristics depend on the kinematics kkk and the
configuration qqq0 under evaluation, and whether there exist
configurations at which the measure (15) attains values
higher than 90◦, which means that the convergence is
locally lost.

2.2. Complexity. The presented Jacobian-based
methods of inverse kinematics can also be evaluated
according to their computational complexity. It is natural
to measure the complexity by the number of elementary
operations, i.e., the number of additions (subtractions) and
multiplications (divisions), and to express these numbers
as a function of the dimensionality of the taskspace m.
We assume that the complexity of a given method is the
same as that of computing the matrix BBB in Eqn. (16)
because other transformations (a pre-multiplication by
JJJT and a post-multiplication by (xxxf −kkk(qqqi)) are the same
for all methods while computing an inverse kinematic
task.

The complexity of the Jacobian pseudo-inverse
method is measured by the complexity of computing
MMM−1. It was assumed that the computation of the
matrix MMM does not contribute to the overall complexity.
Taking into account a straightforward calculation of
the matrix determinant and matrix inversion (only for
the pseudo-inverse method), multiplication of symmetric
matrices, multiplication of a matrix by a scalar and matrix
additions, the following complexity (additions ⊕ and
multiplications ) has been obtained for the presented
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Table 1. Number of elementary operations to compute a crucial
part of Jacobian-based methods of inverse kinematics
as a function of m: additions (a), multiplications (b).

(a)
m

method (Eqn.) 2 3 4 5 6

pseudo-inverse (3) 1 11 73 464 3218
Jacobian transpose (7) 0 0 0 0 0

L–M modified (8) 0 0 0 0 0
1st approximation (12) 2 3 4 5 6
2nd approximation (13) 12 33 72 135 228

(b)
m

method (Eqn.) 2 3 4 5 6

pseudo-inverse (3) 5 30 202 1575 13701
Jacobian transp. (7) 0 0 0 0 0
L–M modified (8) 2 3 4 5 6
1st approx. (12) 3 6 10 15 21
2nd approx. (13) 15 42 90 165 273

methods:

• Jacobian pseudo-inverse,(
(m+ 1)!

2
− m(m+ 1)

2
+m! − 1

)
⊕

+
(

(m+ 1)!(m− 2)
2

+
m(m+ 1)

2
+m!(m− 1)

)
;

• Jacobian transpose, 0 ⊕ +0;
• modified Levenberg–Marquardt, 0 ⊕ +m,

• 1st approx., m⊕ +
m(m+ 1)

2
;

• 2nd approx., m(m2 + 2) ⊕ +
m(m+ 1)(2m+ 1)

2
 .

(17)

Numerical values of complexity of Jacobian-based
methods given by Eqn. (17) for some taskspaces
encountered in practice are presented in Table 1.

3. Simulations

Simulations were carried out on models of three robotic
manipulators. If possible, their geometric parameters
correspond to manufactured robots, while their taskspaces
were selected to get redundant kinematics (dim Q >
dim X). The following manipulators were tested:

• a 3D(4D) planar pendulum with a
two(three)-dimensional taskspace (x, y)T

((x, y,Θ)T ) and three (four)-dimensional
configuration space qqq = (q1, q2, q3)T

(qqq = (q1, q2, q3, q4)T ), described by its kinematics

⎡
⎣xy

Θ

⎤
⎦ = kkk(qqq)

=

⎡
⎣l1c1 + l2c12 + l3c123(+l4c1234)
l1s1 + l2s12 + l3s123(+l4s1234)

q1 + q2 + q3 + q4

⎤
⎦ , (18)

and link-lengths equal to l1 = 1, l2 = 2, l3 =
3, l4 = 3. In Eqn. (18), and later on, a standard
robotic convention to denote sine/cosine functions
was utilized, c1 = cos(q1), s12 = sin(q1 + q2);

• SCARA (Tchoń et al., 2000) with the kinematics
⎡
⎣xz
φ

⎤
⎦ = kkk(qqq) =

⎡
⎣a1c1 + a2c12

d1 + q3
q1 + q2 + q4

⎤
⎦ , (19)

where dim Q = 4, qqq = (q1, q2, q3, q4)T , dim X = 3
and real geometric parameters equal d1 = 0.8 [m],
a1 = 0.445 [m], a2 = 0.355 [m]. The taskspace
includes two positional coordinates (x, z) and one
angle coordinate φ describing the orientation of the
end-effector in the xy plane. The motion of the
prismatic joint q3 was restricted to the range (0, 0.8)
[m];

• PUMA’s positional kinematics (x, y, z)T (Lee,
1982),

kkk(qqq) =

⎡
⎣ c1A− s1(d2 + d6s4s5)

s1A+ c1(d2 + d6s4s5)
−a2s2 + d4c23 + d6(c5c23 − c4s5s23)

⎤
⎦ ,

A = a2c2 + d4s23 + d6(c4s5c23 + c5s23),
(20)

where dim Q = 5, qqq = (q1, q2, q3, q4, q5)T ,
dim(X) = 3 with the following geometric
parameters a2 = 0.432 [m], d2 = 0.0745 [m], d4 =
0.432 [m], d6 = 0.056 [m]. To preserve all technical
data, the motion ranges for all coordinates were
restricted: q1 ∈ [−160◦, 160◦], q2 ∈ [−225◦, 45◦],
q3 ∈ [−45◦, 225◦], q4 ∈ [−100◦, 100◦], q5 ∈
[−266◦, 266◦] (Lee, 1982).

In order to get statistically reliable data, in all
simulations a set of 1000 non-singular configurations qqq0
was generated randomly within the configuration space
(at a non-singular configuration the determinant of the
manipulability matrix should exceed a given threshold).
For each configuration a corresponding point in the
taskspace was computed, xxx0 = kkk(qqq0). Centered at this
point, a ball was defined in the taskspace. A set of goal
points xxxf placed on the surface of the ball was selected.
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For each pair (qqq0,xxxf ) and all Jacobian-based
methods subject to the tests (coded by data given in
Eqn. (16)), the measure (15) was computed and results
gathered and processed to get statistical characteristics.
Moreover, for the first (12) and the second (13) order
approximation of the inverse Jacobian matrix, five values
of the parameter α were involved,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1(qqq) = 2/tr(MMM(qqq)),
α2(qqq) = 2m/tr(MMM(qqq)),
α3(qqq) = (m+ 1)/tr(MMM(qqq)),
α4(qqq) = (m+ 1)/2(tr(MMM(qqq))),
α5(qqq) = 2/(λmax(MMM)).

(21)

The value α1 corresponds to the right-hand side
estimate of λmax in Eqn. (11) and covers the most
pessimistic case. α2 results from the left-hand side
estimate of λmax in Eqn. (11) and describes the most
optimistic case. α3 is the average of α1 and α2, while
α4 is a dumped version of α3 with the dumping factor
equal to 2. Here α5 corresponds to the ideal case when
the maximal singular value is known (in fact, it was
computed numerically for a given manipulator and a
given point in the configuration space using the SVD
algorithm (Maciejewski and Klein, 1989)). Although α5

does not have got any practical significance (exact λmax

computation is too costly) it may certainly be useful in a
comparative study with other values (α1−4). Evaluation
of inverse tasks using α5 allows answering the question
how good approximations could be if real values of λmax

instead of estimated ones were used.
Because the manipulators have different taskspaces,

the distribution of goal points xxxf should be adjusted
accordingly. For a 3D planar pendulum, the polar
coordinates are used,

xf = x0 +R cos(ψ), yf = y0 +R sin(ψ),
ψ ∈ [−π, π), (22)

where, here and later on, R denotes a small radius of the
ball. In a similar fashion, goal points were generated for
the SCARA robot

xf = x0 +R cos(ψ), yf = y0 +R sin(ψ),
φf = φ0 + φ, ψ ∈ [−π, π), φ ∈ [−π, π),

(23)

while for the PUMA manipulator the spherical
coordinates are applied,

x = R cos(ϕ) cos(ψ), y = R cos(ϕ) sin(ψ),
z = R sin(ϕ), ϕ ∈ [−π, π), ψ ∈ [0, 2π).

(24)

In all the cases, R = 0.1, and mesh points in
taskspaces were generated by dividing the ranges of
variablesψ, ϕwith the step π/18. Statistical data gathered

Table 2. Statistical data obtained from 1000 random simulations
for the 3D planar pendulum.
method emax e σ e > 90o

[◦] [◦] [◦] [%]

Jacobian transp. 88.7 36.7 21.1 0.0
L–M modified 153.0 24.9 23.8 2.1

1st approx. α1 0.0 0.0 0.0 0.0
1st approx. α2 179.9 53.2 36.7 14.1
1st approx. α3 179.9 38.8 35.8 9.3
1st approx. α4 84.8 16.9 14.9 0.0
1st approx. α5 89.9 8.2 14.9 0.0

2nd approx. α1 0.0 0.0 0.0 0.0
2nd approx. α2 179.9 80.0 29.5 2.9
2nd approx. α3 179.9 55.3 36.3 14.5
2nd approx. α4 82.6 10.9 11.9 0.0
2nd approx. α5 89.9 8.2 14.9 0.0

Table 3. Statistical data obtained from 1000 random simulations
for the SCARA robot.
method emax e σ e > 90◦

[◦] [◦] [◦] [%]

Jacobian transp. 84.5 57.6 15.1 0.0
L–M modified 159.4 28.0 33.7 8.4

1st approx. α1 79.2 37.5 15.2 0.0
1st approx. α2 179.9 81.7 26.9 34.0
1st approx. α3 179.9 66.6 29.3 19.2
1st approx. α4 79.2 37.5 15.2 0.0
1st approx. α5 89.9 29.0 18.3 0.0

2nd approx. α1 76.3 28.7 14.2 0.0
2nd approx. α2 179.9 96.1 18.1 72.7
2nd approx. α3 179.9 82.0 26.8 33.9
2nd approx. α4 76.3 28.7 14.2 0.0
2nd approx. α5 89.9 21.6 16.3 0.0

from simulations for 3D-pendulum, SCARA and PUMA
robots are collected in Tables 2–4, respectively. Graphics
are provided only for the SCARA robot, in Figs. 1–3.

It appears that for all manipulators the
computationally cheapest Jacobian transpose method
always guarantees the convergence (emax < 90◦), but
it is really slow (relatively large values of e). Only a
little bit more computationally expensive is the modified
Levenberg–Marquardt method. Statistically, this method
is much better that the Jacobian transposed method, but it
occasionally loses the convergence property. Therefore,
when this method is applied in motion planning, it is
advised to check the convergence. When the convergence
is lost, for a single iteration, the Jacobian transpose
method or any other method preserving convergence
should be used. The performance of the first and second
order approximation methods strongly depends on the
α coefficient used. Its pessimistic value (α1) always
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Table 4. Statistical data obtained from 1000 random simulations
for the PUMA robot.
method emax e σ e > 90◦

[◦] [◦] [◦] [%]

Jacobian transp. 67.5 44.5 14.9 0.0
L–M modified 106.2 32.0 19.6 0.3

1st approx. α1 57.2 32.2 13.3 0.0
1st approx. α2 179.9 67.0 39.3 2.7
1st approx. α3 179.9 29.2 30.5 6.1
1st approx. α4 57.2 32.2 13.3 0.0
1st approx. α5 89.9 18.2 15.1 0.0

2nd approx. α1 46.0 20.5 10.4 0.0
2nd approx. α2 179.9 86.0 31.1 45.1
2nd approx. α3 179.8 33.0 33.6 8.1
2nd approx. α4 46.0 20.5 10.4 0.0
2nd approx. α5 89.9 15.2 14.6 0.0

preserves the convergence property (α1 is always within
the range (0, 1/(2 · λmax))), while the optimistic value
frequently loses this property (α2 ≥ 1/2 · λmax))).

Averaging the optimistic and pessimistic values (α3)
sometimes also brings bad results. Only if α3 is dumped
is the convergence restored. Generally, the second order
approximation provides better results than the first order
one. However, this method is more computationally
costly. Unexpected results were obtained for the 3D planar
pendulum. It appeared that the first order approximation
method is ideal for this particular manipulator and gives
even better results than the second approximation one.

3.1. Time complexity. In Section 2.2 the theoretical
complexity of Jacobian-based methods was analyzed.
It is instructive to evaluate also the time required to
compute the transformations. To perform the task, 10000
positive definite matrices MMM and coefficients α were
generated randomly for some values of m. Using the
Mathematica package, for each matrix-coefficient pair,
the matrix BBB in Eqn. (16) was computed and the total
computation time was recorded. Results are presented in
Table 5. Maybe the absolute values of the run-time are
not so informative (they depend on particular hardware
and other circumstances), but their relative values are
quite meaningful. It appears that the Jacobian transpose,
the modified Levenberg–Marquardt and the first order
approximation methods are significantly better than the
Jacobian pseudo-inverse method and better than the
second order approximation method. It appeared that in
practice the Jacobian pseudo-inverse method is not as
time consuming as predicted by the theoretical analysis.
Likely, the matrix inversion in the Mathematica package
is computed by means of optimized algorithms.
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Fig. 1. Frequency distribution of the error e for the SCARA
robot collected from 1000 random simulations whi-
le applying the Jacobian transposed and the modified
Levenberg–Marquardt methods of inverse kinematics:
Jacobian transposed (a), modified Levenberg–Marquardt
(b).

3.2. Examples of real inverse kinematics tasks.
Evaluation of Jacobian-based methods of inverse
kinematics has been performed based on objective criteria
(efficiency in a short motion (15) and the computational
complexity, cf. Section 2.2), valid for short-distance
(single step of the algorithms) motions. In this subsection,
complete inverse kinematics tasks will be solved with
these methods. Two tasks for the 4D planar pendulum (18)
are run with the following initial data (initial configuration
and the goal point):

Table 5. Time (in [s]) to compute many instances of the ma-
trix BBB as a function of m.

m
method 3 4 5 6

pseudo-inverse 1.672 5.125 14.828 39.98
Jacobian transpose 0 0 0 0

L–M modified 0.265 0.312 0.36 0.406
1st approximation 0.344 0.422 0.515 0.609
2nd approximation 2.094 2.969 4.016 5.313
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Fig. 2. Frequency distribution of the error e for the SCARA ro-
bot gathered from 1000 random simulations while apply-
ing three variants (a)–(c) of the Jacobian-based method
(first order approximation) of inverse kinematics: coeffi-
cient α1 (a), coefficient α2 (b), coefficient α5 (c).

Task 1:

q0 := (15◦,−30◦, 45◦, 10◦)T , xf = (−2,−2, 90◦)T ,

Task 2:

q0 = (0◦, 20◦,−25◦, 0◦)T , xf = (3,−1,−45◦)T ,

and one task for the PUMA robot (20):
Task 3:

q0 = (−45◦,−15◦, 25◦, 50◦,−10◦,−97◦)T ,

xf = (0.803,−0.06, 0.018)T .

For all the tasks the accuracy of reaching the goal
xf was set to ε = 0.1 while the length of a single
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Fig. 3. Frequency distribution of the error e for the SCARA ro-
bot collected from 1000 random simulations while ap-
plying three variants (a)–(c) of the Jacobian-based me-
thod (second order approximation) of inverse kinema-
tics: coefficient α1 (a), coefficient α2 (b), coefficient α5

(c).

step motion was restricted to 0.0005. Trajectories in the
taskspace generated with these methods are visualized in
Fig. 4, while the number of iterations and the computation
time (algorithms implemented in Mathematica and run on
a 3.2 GHz computer) are presented in Table 6.

It appears that, for some tasks, trajectories
produced by the modified Levenberg–Marquardt and
the Jacobian transpose methods can be quite far from the
straight-line motion towards the goal (Figs. 4(a) and (b)).
Approximation methods more exactly reflect properties of
the Jacobian pseudo-inverse algorithm, thus trajectories
generated with those methods are close to straight-line
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Table 6. Number of iterations and time of computations (in [s])
to complete Tasks 1–3 with Jacobian-based methods.

J# JT mLM appr1 appr2

1 time 5.85 6.31 4.44 5.08 5.21
iter 11372 14323 9371 8982 8845

2 time 3.92 2.96 3.22 4.14 4.00
iter 6955 7693 7043 7379 7324

3 time 2.26 1.02 1.39 1.78 1.87
iter 2298 1759 1773 1809 1870

motions. Usually, the modified Levenberg–Marquardt
method is among the fastest methods, while the Jacobian
transpose can be significantly faster than the Jacobian
pseudo-inverse method, but sometimes it can also be
slower. As expected, the first order approximation method
is faster than the second order method.

Two final remarks are of a quite general nature.
First, advantages of using methods alternative to Jacobian
pseudo-inverse ones become more evident as the
dimensionality of the taskspace,m, increases, cf. (17) and
Table 1. In the simplest and slightly unrealistic case m =
1 all the methods are virtually equivalent. Second, the
alternative methods can be useful when the initial point
and the final point in the taskspace are relatively far from
each other. When they are close, the computational time
advantage of the Jacobian transpose and mLM methods
can disappear easily as trajectories generated resemble
rather a spiral around the final point than a straight-line
segment leading towards the goal.

4. Conclusions

In this paper four Jacobian-based methods of solving the
inverse kinematics task have been evaluated. The most
natural measure, the number of iterations required to
complete a given inverse kinematics task, was rejected
as a comparative criterion of the methods because this
characteristic is not reliable and path-dependent. To avoid
these drawbacks, a new criterion based on the evaluation
of a motion produced by a given method related to
the motion generated with the Jacobian pseudo-inverse
method has been proposed.

Besides the well-known Jacobian transpose method,
the modified Levenberg–Marquardt method and a number
of methods based on the first and the second order
approximations of the inverse Jacobian matrix have been
tested. For three manipulators, simulations carried out on
a quite large set of random configurations revealed that
the modified Levenberg–Marquardtmethod is much better
than the Jacobian transpose one, although occasionally it
may lose convergence. Simulation experiments showed
that approximation methods are very sensitive to the
estimated maximal singular value.
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Fig. 4. Trajectories in the taskspace generated with the diffe-
rent Jacobian-based methods of inverse kinematics: Ja-
cobian pseudo-inverse (1), Jacobian transpose (2), mo-
dified Levenberg-Marquardt (3), the first approximation
of J# (4), the second approximation of J# (5): Task 1
(a), Task 2 (b), Task 3 (c).

Estimation of the maximal singular value is
necessary because the computation of its real value is
demanding. It appeared that it is better to underestimate
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than to overestimate the maximal singular value. As
expected, the second order approximation is better
than the first order approximation, but it is also
computationally more involved. The latter method is
comparable to the modified Levenberg–Marquardt one,
which is more reliable (the convergence has been always
preserved by the first order approximation method).

Results of the paper seem to be important for the
implementation of inverse kinematic algorithms when
computational resources are restricted and fast solutions
are desired. This situation is frequently encountered in
practice for mobile robots carrying a manipulator on the
board.
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