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This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems
with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical
stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear
matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach, where the
fractional order α belongs to 1≤α<2 and 0<α≤1, respectively. A stability analysis of the fractional-order error system
is made and it is shown that the fractional-order observers are as stable as their integer order counterpart and guarantee
better convergence of the estimation error.
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1. Introduction

State estimators or observers have been widely used in
control and signal processing in the last few decades.
They are of theoretical interest and have also led to many
successful applications, e.g., in failure detection and fault
diagnosis problems or in chaotic synchronization and
secure communications (Darouach et al., 1994; Boutayeb
et al., 2002).

The problem of functional observer design was
related to constrained or unconstrained Sylvester
equations (Tsui, 1985; Van Dooren, 1984). To solve
this problem, many authors have generally proposed to
transform the initial system to an equivalent one (by
using some regular transformations) of reduced order and
to design an observer for this system. Necessary and
sufficient conditions for the existence of these observers
for integer order linear systems were given by Darouach
(2000), Watson and Grigoriadis (1998), as well as Trinh
and Fernando (2012). The observers for systems with
unknown inputs are of great interest in failure detection
and the control of systems in the presence of disturbances
(Darouach et al., 1994; Trinh and Fernando, 2012).

The use of non-integer orders in systems theory

is not a new concept—many successful applications
of differintegration have been proposed in the last two
decades. The field of automatic control systems is
also influenced by this new perspective of operators
with a significant number of contributions, e.g.,
fractional-order variants of Proportional Integral
Derivative (PID) controllers (Podlubny, 1999; Monje
et al., 2010; Caponetto et al., 2010). Fractional-order
systems have been studied by many authors in engineering
sciences from an application point of view (see, e.g.,
the works of Podlubny (1999), Hilfer (2001), Kilbas
et al. (2006) or Kaczorek (2011a) and the references
therein). Many systems can be described with the
help of fractional derivatives: electromagnetic systems
(Heaviside, 1971; Engheta, 1996), dielectric polarization
(Sun et al., 1984), a supercapacitor (Kaczorek, 2011b),
viscoelastic systems (Bagley and Calico, 1991; Rossikhin
and Shitikova, 1997), and chaotic synchronization or
secure communications (Delshad et al., 2011).

The question of stability is crucial in control theory.
In the field of fractional-order control systems, there
are many challenging and unsolved problems related
to stability theory such as robust stability, bounded
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input-bounded output stability, internal stability, etc.
Some early results on the stability of fractional-order
control systems were presented by Matignon (1996), Chen
et al. (2006), Petrás̆ et al. (2004) and Petrás̆ (2011).

One highly relevant but so far scarcely addressed
problem is the design of observers for fractional-order
systems. In the literature, there are only very
limited reports on the estimation and compensation
of disturbances (Chen et al., 2004). Recently,
the observability and stability problems of linear
fractional-order systems using a continuous frequency
distribution have been presented by Sabatier et al.
(2012) and Trigeassou et al. (2011), respectively. It is
shown that the pseudo-state-space representation, usually
encountered in the literature for fractional-order systems,
can be used to design Luenberger-like observers that
permit estimation of important variables in the system.
Furthermore, the convergence of the observation was
considered by Sabatier et al. (2012). For fractional-order
nonlinear systems, a novel robust fractional-order sliding
mode observer was presented by Dadras and Momeni
(2011b), who also proposed a simple fractional-order
observer design (Dadras and Momeni, 2011a). The
problem of non-fragile observer design for a class
of Lipschitz nonlinear factional-order systems using
continuous frequency distribution was presented by
Boroujeni and Momeni (2012), based on an indirect
approach to Lyapunov stability to derive the stability
conditions.

In this paper, a fractional-order observer design is
presented to solve the problem of state reconstruction
for fractional-order linear systems with unknown inputs.
It is shown that the proposed observer guarantees
the convergence of the state estimation errors. The
fractional-order stability condition is exploited to analyze
the stability of the estimation fractional-order error
system. It ought to be mentioned that the proposed
observer is as stable as its integer order counterpart, very
simple and constructive for practical applications.

This paper is organized as follows. In Section 2,
we provide some background on the fractional derivative,
the stability and the detectability of fractional-order
systems with the fractional order 0 < α < 2. In
Section 3, we formulate a condition for the existence
and a functional observer design problem for linear
fractional-order systems. Sufficient conditions for the
asymptotical stability of observers with the fractional
order α belonging to the ranges 0 < α ≤ 1 and 1 ≤
α< 2 are presented in terms of linear matrix inequalities.
Finally, two numerical examples are given to illustrate our
proposed results.

Notation. MT is the transpose of M , Sym{X} is used
to denote XT + X , Σ+ is any generalized inverse of
Σ satisfying ΣΣ+Σ = Σ, ⊗ stands for the Kronecker

product and Dα represents the initialized α-th order
differintegration.

2. Preliminary results

In this section, we present some preliminary results on
fractional derivative systems which will be used in the
sequel of this paper.

Fractional-order differentiation is a
generalization of integer-order one. Formulations
of fractional-order derivatives fall into two main
classes: the Riemann–Liouville derivative defined as
(Podlubny, 1999)

Dαf(t) =
1

Γ(n − α)
dn

d tn

∫ t

0

f(τ)
(t − τ)α−n+1

dτ,

n − 1 < α < n, (1)

or the Caputo derivative defined as (Podlubny, 2002)

Dαf(t) =
1

Γ(α − n)

∫ t

0

dnf(τ)
d tn

(t − τ)α−n+1
dτ,

n − 1 < α < n, (2)

with n ∈ N and α ∈ R
+, where Γ(·) is the Gamma

function defined by the integral

Γ(z) =
∫ ∞

0

e−ttz−1 dt.

A physical interpretation of fractional derivatives and the
solution of fractional differential equations are given by
Podlubny (2002). Here and throughout the paper, only
the Caputo definition is used since its Laplace transform
allows the use of initial values of classical integer-order
derivatives with clear physical interpretations. In the rest
of this paper, Dα is used to denote the Caputo fractional
derivative of order α.

For numerical simulation of fractional-order
systems, we can use the Grünwald–Letnikov
method (Petráš, 2010; 2011) based on the
Adams–Bashforth–Moulton type predictor-corrector
scheme (Deng, 2007). The method is suitable for
Caputo’s derivative because it just requires the initial
conditions and has a clear physical meaning for unknown
functions. The relation for the explicit numerical
approximation of the α-th derivative at the points kh (see
also Dorckák, 1994; Podlubny, 1999; Petráš, 2010; 2011)
is given by

(k−Lm/h)D
α
khf(t) ≈ h−α

k∑
j=0

(−1)j

(
α
j

)
fk−j , (3)

where Lm is the memory length, h is the time step of
the calculation and (−1)j

(
α
j

)
are binomial coefficients
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c
(α)
j (j = 0, 1, . . . ). For their calculation we can use

the following expressions (Dorckák, 1994; Petráš, 2010;
2011):

c
(α)
0 = 1, c

(α)
j =

(
1 − 1 + α

j

)
c
(α)
j−1. (4)

Now we consider the following linear
fractional-order system:⎧⎨

⎩
Dαx(t) = Ax(t) + Bu(t),
y(t) = Cx(t),
x(0)=x0,

0 < α < 2, (5)

where x(t) ∈ R is the state vector, u(t) ∈ R is the control
input vector and y(t) ∈ R is the measured output. A, B
and C are known constant matrices.

It has been shown that the system (5) is stable if the
following condition is satisfied (refer to Matignon (1996;
1998) for 0 < α ≤ 1 and Sabatier et al. (2008) for 1 <
α < 2):

|arg(spec(A))| > α
π

2
, (6)

where spec(A) represents the eigenvalues of matrix A.
Necessary and sufficient LMI conditions to satisfy

the condition (6) if the fractional order α belongs to 0 <
α<2 are given in the following two lemmas.

Lemma 1. (Sabatier et al., 2008; 2010; Chilali et al.,
1999) Let A ∈ R

n×n. Then |arg(spec(A))| > απ/2,
where 1≤α < 2, if and only if there exits a matrix P0 =
PT

0 > 0 such that[
(AP0 + P0A

T ) sin θ (AP0 − P0A
T ) cos θ

(P0A
T − AP0) cos θ (AP0 + P0A

T ) sin θ

]
< 0,

where θ = π − απ/2.

Lemma 2. (Lu and Chen, 2010) Let A ∈ R
n×n and

0 < α < 1. The fractional-order system Dαx(t) = Ax(t)
is asymptotically stable, i.e., (|arg(spec(A))| > απ/2) if
and only if there exist two real symmetric matrices Pk1 ∈
R

n×n, k = 1, 2, and two skew-symmetric matrices Pk2 ∈
R

n×n, k = 1, 2, such that
2∑

i=1

2∑
j=1

Sym{Γij ⊗ (APij)} < 0, (7)

[
P11 P12

−P12 P11

]
> 0,

[
P21 P22

−P22 P21

]
> 0, (8)

where

Γ11 =
[
sin(απ

2 ) − cos(απ
2 )

cos(απ
2 ) sin(απ

2 )

]
,

Γ12 =
[

cos(απ
2 ) sin(απ

2 )
− sin(απ

2 ) cos(απ
2 )

]
,

Γ21 =
[

sin(απ
2 ) cos(απ

2 )
− cos(απ

2 ) sin(απ
2 )

]
,

Γ22 =
[− cos(απ

2 ) sin(απ
2 )

−sin(απ
2 ) −cos(απ

2 )

]
. (9)
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Fig. 1. Stability region of linear fractional-order systems with
order 0 < α < 1.
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Fig. 2. Stability region of linear fractional-order systems with
order 1 < α < 2.

The two drawings in Figs. 1 and 2 illustrate the
stability regions of linear fractional-order systems with a
fractional order belonging to 0 < α < 1 and 1 ≤ α < 2,
respectively.

Note that the conditions presented in Lemma 2 are
equivalent to those given by Sabatier et al. (2010) and
Farges et al. (2010).

To prove the main results in the next section, we need
the following lemmas.

Lemma 3. (Matignon and Adréa-Novel, 1996; 1997) The
system (5) is detectable if and only if

rank
([

σIn − A
C

])
= n, ∀σ ∈ C (10)

with |arg(σ)| ≤ απ/2.

Proof. The result can be established as in the
usual integer-order case, since it only involves algebraic
properties of the pair (C, A). �

Remark 1. (Matignon and Adréa-Novel, 1996; 1997) In
particular, if (C, A) is observable, i.e.,

rank
([

σIn − A
C

])
= n, ∀σ ∈ C,
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there exists a matrix gain L such that the spectrum of L =
A − LC can be assigned anywhere in the complex region
of asymptotic stability i.e. (|arg(spec(L))| > απ/2).

Lemma 4. (Lancaster and Tismenetsky, 1985; Ben-Israel
and Greville, 1974) Let X represent an m×n matrix and
Y an n × p matrix. Then rankXY = rankY if and only
if

rank
[

X
I − Y Y +

]
= n.

3. Unknown input functional observer
design

In this section, we give sufficient conditions for the
existence and stability of a functional observer with
unknown inputs. A constructive procedure for the design
of this functional observer will be presented.

Consider the following linear fractional-order
system:⎧⎪⎪⎨

⎪⎪⎩

Dαx(t) = Ax(t) + Fd(t) + Bu(t),
y(t) = Cx(t) + Gd(t),
z(t) = Lx(t),
x(0)=x0

0 < α < 2,

(11)
where x(t) ∈ R

n is the state vector, u(t) ∈ R
m is the

control input vector, y(t) ∈ R
p is the measured output,

d(t) ∈ R
q is the unknown input vector and z(t) ∈ R

r is
the vector to be estimated, where r ≤ n. A, B, C, F ,
G and L are known constant real matrices of compatible
dimensions.

In order to reconstruct the state function, we require
a functional observer of the form⎧⎨

⎩
Dαη(t) = Nη(t) + Jy(t) + Hu(t),
ẑ(t) = η(t) + Ey(t),
η(0)=η0,

0 < α < 2,

(12)
where η(t) ∈ R

r is the state vector of the observer
and ẑ(t) ∈ R

r is the estimate of z(t). Matrices
N , J , H and E are unknown matrices of appropriate
dimensions to be designed. Figure 3 shows the block
diagram of the closed-loop fractional-order system with
the fractional-order unknown input observer. Note that
the fractional-order observer only uses the available input
and output to reconstruct the state vector.

The following proposition gives the conditions for
the existence and stability of the functional observer (12).

Proposition 1. The system (12) is an asymptotic func-
tional observer where 0<α<2, i.e.,

lim
t→∞ ẑ(t) − z(t) = 0,

for any x(0), ẑ(0) and u(t) if

d(t)

u(t)

ẑ(t)

y(t)x(t)Dαx(t)

Dαη(t)η(t)
+

F

B

H

∫

N

+ J

E

A

∫
+ +C

G

Fig. 3. Scheme of the closed-loop system with a fractional-
order unknown input observer.

(i) Dαe(t) = Ne(t) is asymptotically stable,
(ii) PA − NP − JC = 0,

(iii) PF + NEG − JG = 0,
(iv) H = PB,
(v) EG = 0,

where P = L − EC.

Proof. Define e(t) = z(t) − ẑ(t), the error between z(t)
and ẑ(t). Then its fractional-order dynamics are given by

Dαe(t) = Dαz(t) − Dαẑ(t) (13)

or, equivalently,

Dαe(t) = Ne(t) + (PA − NP − JC)x(t)
+ (PB − H)u(t)
+ (PF + NEG − JG)d(t) − EGDαd(t).

(14)

If the conditions (i)–(v) are satisfied, then

lim
t→∞ e(t) = 0

for any x(0), ẑ(0), d(t) and u(t).
From Eqn. (14), one can see that under the conditions

(ii)–(v) the fractional-order dynamics of this observer
error are given by

Dαe(t) = Ne(t) with 0 < α < 2, (15)

and in this case limt→∞ e(t) = 0 if (15) is asymptotically
stable. �

Now the design of the functional observer is reduced
to finding matrices N , P , J , H such that Proposition 1 is
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satisfied. By using the definition of P , the conditions (ii)
and (iii) can be written as

NL + ECA + KC = LA, (16a)

KG + ECF = LF, (16b)

where K = J − NE. Equations (16a) and (16b) and the
condition (v) can be written as

[
N K E

]
Σ1 = Σ2, (17)

where

Σ1 =

⎡
⎣ L 0 0

C G 0
CA CF G

⎤
⎦

and

Σ2 =
[
LA LF 0

]
. (18)

The following lemma gives necessary and sufficient
conditions for the existence of a solution to (17).

Lemma 5. There exists a solution to (17) if and only if

rank

⎡
⎢⎢⎣

L 0 0
C G 0

CA CF G
LA LF 0

⎤
⎥⎥⎦ = rank

⎡
⎣ L 0 0

C G 0
CA CF G

⎤
⎦ .

(19)

Proof. From the general solution of linear matrix
equations (Rao and Mitra, 1971), there exists a solution
of (17) if and only if

Σ2Σ+
1 Σ1 = Σ2, (20)

where Σ+
1 is the generalized inverse matrix of Σ1.

Equation (20) is equivalent to

rank
[
Σ1

Σ2

]
= rankΣ1, (21)

which is the condition (19). �
In this case the general solution of (17) is given by
[
N K E

]
= Σ2Σ+

1 − Z(I − Σ1Σ+
1 ), (22)

where Z is an arbitrary matrix of appropriate dimension.
From (22), we obtain

N = A − ZB, (23)

where

A = Σ2Σ+
1

⎡
⎣I

0
0

⎤
⎦

and

B = (I − Σ1Σ+
1 )

⎡
⎣I

0
0

⎤
⎦ . (24)

Matrices J and H are obtained according to

J = K + NE, (25)

H = (L − EC)B. (26)

By using this algorithm, we can compute all the observer
parameters which provide a fractional-order functional
observer of the form (12).

Under the condition (19) and by using (23), the
observer error dynamics can be written as

Dαe(t) = Ne(t) with 0 < α < 2. (27)

Now, the problem of the design of the functional observer
(12) is reduced to the determination of the free matrix
parameter Z such that condition (i) of Proposition 1
is satisfied. The following lemma gives necessary and
sufficient conditions for the existence of the matrix
parameter Z .

Lemma 6. There exists a matrix parameter Z such that
(27) is asymptotically stable if and only if

rank

⎡
⎣σL − LA −LF 0

C G 0
CA CF G

⎤
⎦ = rankΣ1, ∀σ ∈ C,

(28)

with |arg(σ)| ≤ απ/2.

Proof. From (27), the matrix N is asymptotically stable
if and only if the pair (B, A) is detectable or, equivalently,

rank
([

σI − A

B

])
=r, ∀σ ∈ C (29)

with |arg(σ)| ≤ απ/2.
The left-hand side of (28) can be written as

rank

⎡
⎣σL − LA −LF 0

C G 0
CA CF G

⎤
⎦

= rank

⎡
⎣

⎡
⎣σI 0 0

0 I 0
0 0 I

⎤
⎦Σ1 −

[
Σ2

0

]⎤
⎦

= rank

⎡
⎣

⎡
⎣σI 0 0

0 I 0
0 0 I

⎤
⎦ −

[
Σ2Σ+

1

0

]⎤
⎦ Σ1.

From this equality one can see that (28) is satisfied if and
only if

rank

⎡
⎣
⎡
⎣σI 0 0

0 I 0
0 0 I

⎤
⎦ −

[
Σ2Σ+

1

0

]⎤
⎦Σ1 = rankΣ1
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∀σ ∈ C with |arg(σ)| ≤ απ/2.
Using Lemma 4, this is equivalent to the condition

that
⎡
⎢⎢⎣

⎡
⎣σI 0 0

0 I 0
0 0 I

⎤
⎦ −

[
Σ2Σ+

1

0

]

I − Σ1Σ+
1

⎤
⎥⎥⎦

is of full column rank σ ∈ C and |arg(σ)| ≤ απ/2.
Or, equivalently, the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σI − A −Σ2Σ+
1

⎡
⎣0

I
0

⎤
⎦ −Σ2Σ+

1

⎡
⎣0

0
I

⎤
⎦

B (I − Σ1Σ+
1 )

⎡
⎣0

I
0

⎤
⎦ (I − Σ1Σ+

1 )

⎡
⎣0

0
I

⎤
⎦

0 I 0
0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

must be of full column rank, ∀σ ∈ C and |arg(σ)| ≤
απ/2. This is equivalent to

rank
[
σI − A

B

]
= r, ∀σ ∈ C

with |arg(σ)| ≤ απ/2, which ends the proof. �

The asymptotical stability for the fractional-order
observer error system (27) where 0 < α ≤ 1 and 1 ≤
α < 2 is given in the two following theorems.

Theorem 1. Under the conditions (19) and (28), there
exists an asymptotically stable observer of the form (12)
where 1 ≤ α < 2 if there are matrices X ∈ R

m×n and
P0 = PT

0 > 0 ∈ R
n×n such that

[
Ω11 Ω12

ΩT
12 Ω22

]
< 0, (30)

where

Ω11 = Ω22 = (P0A + A
T P0 − XB − B

T XT ) sin θ,

Ω12 = (AT P0 − P0A + XB − B
T XT ) cos θ.

Moreover, a stabilizing gain matrix Z is given by

Z = XP−1
0 .

Proof. From Lemmas 3 and 6, one can see that a
necessary condition in order to satisfy the condition (i) of
Proposition 1, by using (23), implies that the pair (B, A)
is detectable. Now, suppose that there exist matrices X ∈
R

m×n and P0 = PT
0 > 0 ∈ R

n×n such that (30) holds.
It follows from Lemma 1 that |arg(spec(N))| > απ/2 is

equivalent to

[
(P0N + NT P0) sin θ −(P0N − NT P0) cos θ
(P0N − NT P0) cos θ (P0N + NT P0) sin θ

]

= Sym
{[

P0A sin θ −P0A cos θ
P0A cos θ P0A sin θ

]}

+ Sym
{[−XB sin θ XB cos θ

−XB cos θ −XB sin θ

]}
< 0,

(31)

where Z = XP−1
0 and θ = π − απ/2. The inequality

(31) is equivalent to (30). This ends the proof. �

Theorem 2. Under the conditions (19) and (28), there
exists an asymptotically stable observer of the form (12)
where 0 < α ≤ 1 if and only if there are matrices Q ∈
R

m×n and P0 = PT
0 > 0 ∈ R

n×n such that

2∑
i=1

(
Sym{Γi1 ⊗ (AT P0)} − Sym{Γi1 ⊗ (BT Q)}) < 0,

(32)
where Γi1(i = 1, 2) satisfy (9) and the stabilizing gain
matrix Z is given by Z = P−1

0 QT .

Proof. From Lemmas 3 and 6, one can see that a necessary
condition in order for the condition (i) of Proposition 1
be satisfied, by using (23), implies that the pair (B, A) is
detectable. Suppose that there exist matrices Q ∈ R

m×n

and P0 = PT
0 > 0 ∈ R

n×n such that (32) holds. It
follows from Lemma 2 that |arg(spec(N))| > απ/2 is
equivalent to

2∑
i=1

2∑
j=1

Sym{Γij ⊗ (NT Pij)} < 0, (33)

where N = A − ZB and Γij(i, j = 1, 2) satisfy (9). By
setting P11 = P21 = P0, P12 = P22 = 0 in (33), one can
conclude that, if

Sym{Γ11⊗(NT P0)}+Sym{Γ21⊗(NT P0)} < 0, (34)

the fractional-order system Dαe(t) = Ne(t), where 0 <
α ≤ 1, is asymptotically stable. Substitution of N =
A − ZB into (34) and setting Z = P−1

0 QT result in

2∑
i=1

(
Sym{Γi1⊗(AT P0)} − Sym{Γi1⊗(BT Q)})<0.

(35)
The inequality (35) is equivalent to (32). This completes
the proof. �

The following design algorithm can be carried out for
the design of a fractional-order observer.
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Algorithm 1. Design.
Step 1. Check if (19) in Lemma 5 is satisfied or not. If
not, STOP as a fractional-order observer does not exist.

Step 2. From (24), obtain matrices A and B. Check if
the pair (B, A) is detectable. If not, STOP, as a stable
fractional-order observer does not exist.

Step 3. Use (23) to derive Z such that matrix N is stable.

Step 4. From (22), obtain matrices N , K and E.

Step 5. Obtain matrix P , where P = L − EC.

Step 6. Use (25) to obtain matrix J . Finally, obtain matrix
H from (26). The fractional-order observer design is thus
completed.

4. Numerical examples

In this section, we provide two numerical examples to
illustrate the applicability of the proposed method.

Example 1. (α = 1.76) Consider the linear
fractional-order system (11) with the following matrices:

A =

⎡
⎢⎢⎣
−1 0 0 0
1 −2 1 0
0 1 −3 0
0 0 0 −4

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣
0
1
0
1

⎤
⎥⎥⎦ , C =

[
1 0 0 0
0 1 0 0

]
,

L =
[
0 0 1 0

]
, G =

[
0
0

]
.

One can see that the conditions (19) and (28) are
satisfied.

From the results of Section 3, we obtain

A = −2.2857,

B =
[
0.1429 0.1429 −0.2857 0 −0.1429

]T
.

A feasible solution of the LMI (30), where α = 1.76, is
as follows:

P0 = 49.402,

X =
[
3.0876 3.0876 −6.1752 0 −3.0876

]
.

Then, the asymptotically stabilizing state-feedback gain is
obtained as

Z = XP−1
0

=
[
0.0625 0.0625 −0.1250 0 −0.0625

]
.

Using Algorithm 1, we obtain the following functional
observer parameters:

N = −2.3482, K =
[
0.6518 −0.3036

]
,

E =
[
0 −0.6518

]
, J =

[
0.6518 1.2270

]
,

P =
[
0 0.6518 1 0

]
, H = 0.6518.

Finally, the estimate ẑ(t) is given by the following
observer:

⎧⎨
⎩

Dαη(t)=−2.3482η(t)+
[
0.6518 1.2270

]
y(t)

+ 0.6518u(t),
ẑ(t) = η(t) − 0.6518y2(t),

with α = 1.76.
Figures 3 and 4 show the performance of the

functional observer presented in this paper for α = 1.76
and α = 1 with the unknown input vector d(t) =
0.5 sin(60πt).

The simulation for the proposed fractional-order
observer was performed with ẑ0 = 800. Figures 3 and
4 show the true and estimated trajectories of the state z(t)
and the corresponding estimation error. These simulation
results demonstrate that our proposed design is effective.

�

Example 2. (α = 0.77 ) Consider the linear
fractional-order system (11) with the following matrices:

A =

⎡
⎢⎢⎣
−5 0 0 0
3 −8 1 0
0 −1 −10 0
0 0 0 −7

⎤
⎥⎥⎦ ,

F =

⎡
⎢⎢⎣
1
0
2
1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
1
1
0
1

⎤
⎥⎥⎦ , C =

[−1 0 0 0
0 2 0 0

]
,

L =
[
0 0 1 0

]
, G =

[
0
0

]
.

It can easily be seen that the conditions (19) and (28) are
satisfied.

From the results of Section 3, we obtain

A = −10.8381,

B =
[
0.0381 −0.1143 −0.1524 0 −0.0190

]T
.

A feasible solution of the LMI (32), where α = 0.77, is
as follows:

P0 = 243.98,

Q =
[
0.8576 −2.5738 −3.4303 0 −0.4288

]T
.

Then, the asymptotically stabilizing state-feedback gain is
obtained as

Z = P−1
0 QT

=
[
0.0035 −0.0105 −0.0141 0 −0.0018

]
.

Using Algorithm 1, we obtain the following functional
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observer parameters:

N = −10.8416,

K =
[−7.4752 2.8664

]
,

E =
[−2 0.4208

]
,

J =
[
14.2080 −1.6957

]
,

P =
[−2 −0.8416 1 0

]
,

H = −2.8416.

Finally, the estimate ẑ(t) is given by the following
fractional-order observer:⎧⎨
⎩

Dαη(t)=−10.8416η(t)+
[
14.2080 −1.6957

]
y(t)

− 2.8416u(t),
ẑ(t) = η(t) +

[−2 0.4208
]
y(t),

where α = 0.77.
Figures 5 and 6 show the performance of the

functional observer presented in this paper for α = 0.77
and α = 1 with the unknown input vector

d(t) =
[
0.25 sin(40πt)
0.45 sin(40πt)

]
.

�

5. Conclusion

In this paper, we presented a simple method to design
a functional observer for linear fractional-order systems.
This method reduces the design procedure to one such as
known from integer-order systems. Some conditions for
the existence of these observers are given, and sufficient
conditions for their stability are derived in terms of linear
matrix inequalities for a fractional order satisfying 0 <
α < 2. It is shown that the fractional-order observer
design is as stable as its integer-order counterpart and
guarantees the convergence of the estimation error. Two
illustrative examples have shown the effectiveness of our
results.
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estimate ẑ with α = 1

Fig. 4. State response z and its estimate ẑ in Example 1 with
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fractional orders α = 0.77 and α = 1.

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

 

 

error with α = 0.77

error with α = 1

e
rr

o
r

Fig. 7. Error function of the functional observer in Example 2
with fractional orders α = 0.77 and α = 1.

nonlinear systems, IEEE Conference on Decision & Con-
trol, Orlando, FL, USA, pp. 6925–6930.

Darouach, M. (2000). Existence and design of functional
observers for linear systems, IEEE Transactions on Auto-
matic Control 45(5): 940–943.

Darouach, M., Zasadzinski, M. and Xu, S. (1994). Full-order
observers for linear systems with unknown inputs, IEEE
Transactions on Automatic Control 39(3): 606–609.

Delshad, S.S., Asheghan, M.M. and Beheshti, M.M.
(2011). Synchronization of n-coupled incommensurate
fractional-order chaotic systems with ring connection,
Communications in Nonlinear Science and Numerical
Simulation 16(9): 3815–3824.

Deng, W. (2007). Short memory principle and a
predictor-corrector approach for fractional differential
equations, Journal of Computational and Applied Mathe-
matics 206(1): 174–188.

Dorckák, L. (1994). Numerical models for simulation the
fractional-order control systems, Technical Report UEF-
04-94, Slovak Academy of Sciences, Kosice.

Engheta, N. (1996). On fractional calculus and fractional
multipoles in electromagnetism, IEEE Transactions on An-
tennas and Propagation 44(4): 554–566.

Farges, C., Moze, M. and Sabatier, J. (2010). Pseudo-state
feedback stabilization of commensurate fractional order
systems, Automatica 46(10): 1730–1734.

Heaviside, O. (1971). Electromagnetic Theory, 3rd Edn.,
Chelsea Publishing Company, New York, NY.

Hilfer, R. (2001). Applications of Fractional Calculus in
Physics, World Scientific Publishing, Singapore.

Kaczorek, T. (2011a). Selected Problems of Fractional Sys-
tems Theory, Lecture Notes in Control and Information
Sciences, Vol. 411, Springer-Verlag, Berlin.

Kaczorek, T. (2011b). Singular fractional linear systems and
electrical circuits, International Journal of Applied Math-
ematics and Computer Science 21(2): 379–384, DOI:
10.2478/v10006-011-0028-8.

Kilbas, A., Srivastava, H. and Trujillo, J. (2006). Theory
and Applications of Fractional Differential Equations,
North-Holland Mathematics Studies, Vol. 204, Elsevier,
Amsterdam.

Lancaster, P. and Tismenetsky, M. (1985). The Theory of Matri-
ces, 2nd Edn., Academic Press, Orlando, FL.

Lu, J. and Chen, Y. (2010). Robust stability and stabilization of
fractional-order interval systems with the fractional-order
α: The 0 < α < 1 case, IEEE Transactions on Automatic
Control 55(1): 152–158.

Matignon, D. (1996). Stability results for fractional differential
equations with applications to control processing, IEEE
International Conference on Systems, Man, Cybernetics,
Lille, France, pp. 963–968.

Matignon, D. (1998). Generalized fractional differential and
difference equations: Stability properties and modelling
issues, Mathematical Theory of Networks and Systems
Symposium, Padova, Italy, pp. 503–506.
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