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In this paper, a singularly perturbed system of reaction–diffusion Boundary Value Problems (BVPs) is examined. To solve
such a type of problems, a Modified Initial Value Technique (MIVT) is proposed on an appropriate piecewise uniform
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1. Introduction

In many fields of applied mathematics we often come
across initial/boundary value problems with small positive
parameters. If, in a problem arising in this manner, the
role of the perturbation is played by the leading terms
of the differential operator (or part of them), then the
problem is called a Singularly Perturbed Problem (SPP).
Applications of SPPs include boundary layer problems,
WKB theory, the modeling of steady and unsteady
viscous flow problems with a large Reynolds number
and convective-heat transport problems with large Peclet
numbers, etc.

The numerical analysis of singularly perturbed cases
has always been far from trivial because of the boundary
layer behavior of the solution. These problems depend
on a perturbation parameter ε in such a way that the
solutions behave non-uniformly as ε tends towards some
limiting value of interest. Therefore, it is important
to develop some suitable numerical methods whose
accuracy does not depend on ε, i.e., which are convergent
ε-uniformly. There are a wide variety of techniques
to solve these types of problems (see the books of
Doolan et al. (1980) and Roos et al. (1996) for further
details). Parameter-uniform numerical methods for a
scalar reaction–diffusion equation have been examined

extensively in the literature (see the works of Roos et al.
(1996), Farrell et al. (2000), Miller et al. (1996) and the
references therein), whereas for a system of singularly
perturbed reaction–diffusion equations only few results
(Madden and Stynes, 2003; Matthews et al., 2000; 2002;
Natesan and Briti, 2007; Valanarasu and Ramanujam,
2004) have been reported.

In this paper, we treat the following system of two
singularly perturbed reaction–diffusion equations:

L1�u ≡ −εu′′
1(x) + a11(x)u1(x) + a12(x)u2(x)

= f1(x), (1)

L2�u ≡ −μu′′
2(x) + a21(x)u1(x) + a22(x)u2(x)

= f2(x), (2)

where �u = (u1, u2)T , x ∈ Ω = (0, 1), with the boundary
conditions

�u(0) =
(

p
r

)
, �u(1) =

(
q
s

)
. (3)

Without loss of generality, we shall assume that 0 <
ε ≤ μ ≤ 1. The functions a11(x), a12(x), a21(x),
a22(x), f1(x), f2(x) are sufficiently smooth and satisfy
the following set of inequalities:
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(i) a11(x) > |a12(x)|, a22(x) > |a21(x)|,
x ∈ Ω = [0, 1],

(ii) a12(x) ≤ 0, a21(x) ≤ 0, x ∈ Ω.

Shishkin (1995) classifies three separate cases for
a system of two singularly perturbed reaction–diffusion
problems with diffusion coefficients ε, μ: (i) 0 < ε = μ �
1, (ii) 0 < ε � μ = 1 and (iii) ε, μ arbitrary. Matthews
et al. (2000) consider case (i), showing that a standard
finite difference scheme is uniformly convergent on a
fitted piecewise uniform mesh. They establish first-order
convergence up to a logarithmic factor in the discrete
maximum norm. The same authors have also obtained a
similar result for case (ii), which they have strengthened
to show almost second-order convergence (Matthews
et al., 2002). Madden and Stynes (2003) obtained almost
first-order convergence for the general case (iii). For
case (ii), Natesan and Briti (2007) developed a numerical
method which is a combination of a cubic spline and a
finite difference scheme.

Das and Natesan (2013) obtained almost
second-order convergence for the general case (iii)
in which they used central difference approximation for
an outer region with cubic spline approximation for an
inner region of boundary layers. Melenk et al. (2013)
have constructed full asymptotic expansions together
with error bounds that cover the complete range of
0 < ε � μ � 1. Rao et al. (2011) proposed a hybrid
difference scheme on a piecewise-uniform Shishkin
mesh and showed that the scheme generates better
approximations to the exact solution than the classical
central difference one. Valanarasu and Ramanujam
(2004) proposed an Asymptotic Initial Value Method
(AIVM) to solve (1)–(3), whose theoretical order of
convergence is 1. Bawa et al. (2011) used a hybrid
scheme for a singularly perturbed delay differential
equation, which is of second order convergent.

We construct a Modified Initial Value Technique
(MIVT) for (1)–(3) which is based on the underlying
idea of the AIVM (Valanarasu and Ramanujam, 2004).
The aim of the present study is to improve the order of
convergence to almost second order (up to a logarithmic
factor) for case (i), i.e., for 0 < ε = μ � 1.

First, in this technique, an asymptotic expansion
approximation for the solution of the Boundary Value
Problem (BVP) (1)–(3) has been constructed. Then,
Initial Value Problems (IVPs) and Terminal Value
Problems (TVPs) are formulated whose solutions are the
terms of this asymptotic expansion. The IVPs and TVPs
are happened to be SPPs, and therefore they are solved
by a hybrid scheme similar to that by Bawa et al. (2011).
The scheme is a combination of the trapezoidal scheme
and a backward difference operator. It not only retains
the oscillation free behavior of the backward difference

operator but also retains the second order of convergence
of the trapezoidal method.

The paper is organized as follows. Section 2 presents
an asymptotic expansion approximation of (1)–(3). The
initial value problem is discussed in Section 3. Section 4
deals with the error estimates of the proposed hybrid
scheme. The Shishkin mesh and the MIVT are given in
Section 5. Finally, numerical examples are presented in
Section 6 to illustrate the applicability of the method. The
paper ends with some conclusions.

Note. Throughout this paper, we let C denote a generic
positive constant that may take different values in the
different formulas, but is always independent of N and
ε. Here || · || denotes the maximum norm over Ω.

2. Preliminaries

2.1. Maximum principle and the stability result.

Lemma 1. (Matthews et al., 2002) Consider the BVP
system (1)–(3). If L1�y ≥ 0, L2�y ≥ 0 in Ω and �y(0) ≥ �0,
�y(1) ≥ �0, then �y(x) ≥ �0 in Ω.

Lemma 2. (Matthews et al., 2002) If �y(x) is the solution
of BVP (1)–(3), then

‖ �y(x) ‖≤ 1
γ
‖ �f ‖ + ‖ �y(0) ‖ + ‖ �y(1) ‖,

where γ = min
Ω

{a11(x) + a12(x), a21(x) + a22(x)}.

2.2. Asymptotic expansion approximation. It is well
known that, by using the fundamental idea of WKB
(Valanarasu and Ramanujam, 2004; Nayfeh, 1981), an
asymptotic expansion approximation for the solution of
the BVP (1)–(3) can be constructed as

�uas(x) = �uR(x) + �v(x) + O(
√

ε),

where

�uR(x) =
(

uR1(x)
uR2(x)

)

is the solution of the reduced problem of (1)–(3) and is
given by

a11(x)uR1(x) + a12(x)uR2(x) = f1(x), (4)

a21(x)uR1(x) + a22(x)uR2(x) = f2(x), (5)

x ∈ [0, 1), and

�v(x) =
(

v1(x)
v2(x)

)

is given by

v1(x) = [p − uR1(0)]
[

a11(0) + a12(0)
a11(x) + a12(x)

] 1
4

vL1(x)

+ [q − uR1(1)]
[

a11(1) + a12(1)
a11(x) + a12(x)

] 1
4

wR1(x),
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v2(x) = [r − uR2(0)]
[

a21(0) + a22(0)
a21(x) + a22(x)

] 1
4

vL2(x)

+ [s − uR2(1)]
[

a21(1) + a22(1)
a21(x) + a22(x)

] 1
4

wR2(x).

Here

�vL(x) =
(

vL1(x)
vL2(x)

)

is a “left boundary layer correction” and

�wR(x) =
(

wR1(x)
wR2(x)

)

is a “right boundary layer correction” defined as

vL1(x) = exp

{
−
∫ x

0

√
[a11(s) + a12(s)]

ε
ds

}
, (6)

vL2(x) = exp

{
−
∫ x

0

√
[a21(s) + a22(s)]

ε
ds

}
, (7)

wR1(x) = exp

{
−
∫ 1

x

√
[a11(s) + a12(s)]

ε
ds

}
, (8)

wR2(x) = exp

{
−
∫ 1

x

√
[a21(s) + a22(s)]

ε
ds

}
. (9)

It is easy to verify that vL1(x), vL2(x), wR1(x)
and wR2(x) satisfy the following IVPs and TVPs,
respectively:

√
εv′L1(x) +

√
[a11(x) + a12(x)]vL1(x) = 0, (10)

vL1(0) = 1, (11)

√
εv′L2(x) +

√
[a21(x) + a22(x)]vL2(x) = 0, (12)

vL2(0) = 1, (13)

√
εw′

R1(x) −√
[a11(x) + a12(x)]wR1(x) = 0, (14)

wR1(1) = 1, (15)

and
√

εw′
R2(x) −√

[a21(x) + a22(x)]wR2(x) = 0, (16)

wR2(1) = 1. (17)

Theorem 1. (Valanarasu and Ramanujam, 2004) The ze-
roth order asymptotic expansion approximation �uas satis-
fies the inequality

‖ (�u − �uas)(x) ‖≤ C
√

ε,

where �u(x) is the solution of the BVP (1)–(3).

3. Initial value problem

In this section, we describe a hybrid scheme for the
following singularly perturbed initial value problem of the
first order:

Lεy(x) ≡ εy′(x) + b(x)y(x) = g(x), (18)

y(0) = A, (19)

where A is a constant, x ∈ Ω = (0, 1) and 0 < ε � 1 is a
small parameter, b and g are sufficiently smooth functions,
such that b(x) ≥ β > 0 on Ω = [0, 1]. Under these
assumptions, (18)–(19) possesses a unique solution y(x)
(Doolan et al., 1980).

On Ω, a piecewise uniform mesh of N mesh intervals
is constructed as follows. The domain Ω is sub-divided
into two subintervals [0, σ] ∪ [σ, 1] for some σ that satisfy
0 < σ ≤ 1/2. On each sub-interval, a uniform mesh with
N/2 mesh intervals is placed. The interior points of the
mesh are denoted by

x0 = 0, xi =
i−1∑
k=0

hk, hk = xk+1 − xk,

xN = 1, i = 1, 2, . . . , N − 1.

Clearly, xN
2

= 0.5 and Ω
N

ε = {xi}N
0 . It is fitted to

(18)–(19) by choosing σ to be the following functions of
N and ε:

σ = min
{

1
2
, σ0ε ln N

}
,

where σ0 ≥ 2/β. Note that this is a uniform mesh when
σ = 1/2. Further, we denote the mesh size in the regions
[0, σ] by h = 2σ/N and in [σ, 1] by H = 2(1 − σ)/N .

We define the following hybrid scheme for the
approximation of (18)–(19):

LN
ε Yi ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εD−Yi +
bi−1Yi−1 + biYi

2
=

gi−1 + gi

2
, 0 < i ≤ N

2 ,

εD−Yi + biYi = gi,
N
2 < i ≤ N,

(20)

Y0 = A, (21)

where

D−Yi =
Yi − Yi−1

xi − xi−1

and bi = b(xi), gi = g(xi).

4. Error estimate

Theorem 2. Let y(x) and Yi be respectively the solutions
of (18)–(19) and (20)–(21). Then the local truncation er-
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ror satisfies the following bounds:

|LN
ε (Yi − y(xi))| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CN−2σ2
0 ln2 N

for 0 < i ≤ N/2,

C(N−1ε + N−βσ0)
for N/2 < i ≤ Nand H ≤ ε,

C(N−2 + N−βσ0)
for N/2 < i ≤ Nand H > ε.

(22)

Proof. We distinguish several cases depending on the
location of the mesh points. Firstly, we state the bound for
the derivatives of the continuous solution, i.e., the solution
y(x) of the IVP (18)–(19) satisfies the following bound
(Doolan et al., 1980):

|y(k)(x)| ≤ C
[
1 + ε−k exp(−βx/ε)

]
. (23)

For xi ∈ (0, σ], by using the usual Taylor series
expansion, we get

|LN
ε (Yi − y(xi))| ≤ Cεh2|y′′′(ξ)| (24)

for 0 < i ≤ N/2 and some point ξ, xi−1 ≤ ξ ≤ xi.
First we consider the case when the mesh is uniform.

Then, σ = 1/2 and ε−1 ≤ Cσ0 ln N . Using the above
bound, we have

|LN
ε (Yi − y(xi))| ≤ Cεh2

[
1 + ε−3 exp(−βξ/ε)

]
≤ CN−2σ2

0 ln2 N (25)

for 0 < i ≤ N/2.
Secondly, we consider the case when the mesh is

non-uniform. Using h = 2N−1σ0ε ln N on the above
bound and bounding the exponential function by a
constant, we have

|LN
ε (Yi − y(xi))| ≤ CN−2σ2

0 ln2 N (26)

for 0 < i ≤ N/2.
For xi ∈ (σ, 1], by using the Taylor series expansion,

we get

|LN
ε (Yi − y(xi))| ≤ CεH |y′′(ξ)|, (27)

for N/2 < i ≤ N . Note that the above expression
for the truncation error in the interval [σ, 1] can also be
represented as

|LN
ε (Yi − y(xi))| =

ε

hi−1
R1(xi, xi−1, y), (28)

where

Rn(a, p, g) =
1
n!

∫ p

a

(p − ξ)ng(n+1)(ξ)dξ

denotes the remainder obtained from Taylor expansion in
an integral form.

We discuss the following two cases. First, if H < ε,
from (27), we obtain

|LN
ε (Yi − y(xi))| ≤ CεH |y′′(ξ)|,

≤ C[Hε + Hε−1 exp(−βxi/ε)]

≤ C[N−1ε + N−βσ0 ]. (29)

Secondly, if H ≥ ε, then using the bounds of the
derivatives of y(x) from (23), one can obtain the
following:

|LN
ε (Yi − y(xi))|

≤ C

(
Hε +

∫ xi

xi−1

(xi − ξ)ε−2 exp(−βξ/ε)dξ

)
. (30)

Integrating by parts, we get∫ xi

xi−1

(xi − ξ)ε−2 exp(−βξ/ε)dξ

≤ C

(
Hε +

∫ xi

xi−1

ε−1 exp(−βξ/ε)dξ

)

≤ C
[
Hε + N−βσ0

]
.

Assuming that H < 2N−1 and ε ≤ H , we get

|LN
ε (Yi − y(xi))| ≤ C

(
N−2 + N−βσ0

)
. (31)

Combining all the previous results, we obtain the
required truncation error. Hence, we arrive at the desired
result. �

Theorem 3. Let y(x) be the solution of the IVP (18)–
(19) and Yi be the numerical solution obtained from the
hybrid scheme (20)–(21). Then, for sufficiently large N ,
and N−1σ0 ln Nβ∗ < 1, where

β∗ = max
0≤i≤N

b(xi),

we have

|Yi − y(xi)| ≤ C
[
N−2 ln2 N + N−1ε + N−βσ0

]
,

∀xi ∈ Ω. (32)

Proof. Let B−
i = (2 − ρibi), B+

i = (2 + ρibi) and
b+
i = (1 + ρibi), where ρi = hi/ε.

The solution of the scheme (20)–(21) can be
expressed as follows: For 0 < i ≤ N/2,

Yi =
Πi−1

j=0B
−
j

Πi
j=1B

+
j

Y0 +
ρiΠi−1

j=1B
−
j

Πi
j=1B

+
j

(g0 + g1)

+
ρiΠi−1

j=2B
−
j

Πi
j=2B

+
j

(g1 + g2) + · · · + ρi

B+
i

(gi−1 + gi),



A robust computational technique for a system of singularly perturbed reaction–diffusion equations 391

and for N/2 < i ≤ N ,

Yi =
1

Πi
j=N/2+1b

+
j

YN/2 +
ρi

Πi
j=N/2+1b

+
j

gN/2+1

+
ρi

Πi
j=N/2+2b

+
j

gN/2+2 + · · · + ρi

b+
i

gi.

Clearly, B+
i ’s and b+

i ’s are non-negative.
For B−

i > 0, 0 < i ≤ N/2, we have

B−
i = 2 − ρibi = 2 − hibi

ε
.

Since hi = 2N−1σ0ε lnN and bi ≤ β∗, we have
B−

i > 0. Consequently, the solution satisfies the discrete
maximum principle and hence there are no oscillations.

Let us define the discrete barrier function:

φi = C
[
N−2 ln2 N + N−1ε + N−βσ0

]
.

Now, choosing C sufficiently large and using the discrete
maximum principle, it is easier to see that

LN
ε (φi ± (Yi − y(xi))) ≥ 0

or, equivalently,

LN
ε (φi) ≥ |Yi − y(xi)|.

Therefore, it follows that

|Yi − y(xi)| ≤ |φi|, ∀xi ∈ Ω.

Thus, we have the required ε-uniform error bound. �

Remark 1. In Theorem 2, one can notice that the
truncation error is of order N−βσo for H > ε. It is
assumed that βσo ≥ 2 and we are interested in the case of
ε ≤ N−1. Also, we obtain the error bound of order N−1ε
only in the interval [σ, 1] for the case H < ε, which is
not the practical case. With these points, we conclude that
the order of convergence is almost 2 (up to a logarithmic
factor).

5. Mesh and the scheme

A fitted mesh method for the problem (1)–(3) is now
introduced. On Ω, a piecewise uniform mesh of N mesh
intervals is constructed as follows. The domain Ω is
subdivided into the three subintervals as

Ω = [0, σ] ∪ (σ, 1 − σ] ∪ (1 − σ, 1]

for some σ that satisfies 0 < σ ≤ 1/4. On [0, σ] and
[1 − σ, 1], a uniform mesh with N/4 mesh-intervals is
placed, while [σ, 1 − σ] has a uniform mesh with N/2
mesh intervals. It is obvious that mesh is uniform when

σ = 1/4. It is fitted to the problem by choosing σ to be
the function of N and ε and

σ = min
{
1/4, σ0

√
ε ln N

}
,

where σ0 ≥ 2/
√

β. Then, the hybrid scheme (20)–(21)
for (10)–(11)becomes

LN
ε VL1,i

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εD−VL1,i + 1
2 (
√

a11,i−1 + a12,i−1VL1,i−1

+
√

a11,i + a12,iVL1,i) = 0

for 0 < i ≤ N/4 and 3N/4 < i ≤ N,

εD−VL1,i +
√

a11,i + a12,iVL1,i = 0

for N/4 < i ≤ 3N/4,

(33)

VL1,0 = 1. (34)

Similarly, we can define the hybrid scheme for (12)–(13),
(14)–(15) and (16)–(17).

5.1. Description of the method. In this subsection, we
describe the MIVT to solve (1)–(3):

Step 1. Solve the IVP (10)–(11) by using the hybrid
scheme described on the Shishkin mesh. Let VL1,i

be its solution.

Step 2. Solve the IVP (12)–(13) by using the hybrid
scheme. Let VL2,i be its solution.

Step 3. Solve the TVP (14)–(15) by using the hybrid
scheme. Let WR1,i be its solution.

Step 4. Solve the TVP (16)–(17) by using the hybrid
scheme. Let WR2,i be its solution.

Step 5. Define mesh function �Ui as

�Ui =
(

U1,i

U2,i

)

=
(

uR1,i

uR2,i

)

+

⎛
⎜⎜⎜⎝

[p − uR1(0)]
[

a11(0) + a12(0)
a11(xi) + a12(xi)

] 1
4

VL1,i

[r − uR2(0)]
[

a21(0) + a22(0)
a21(xi) + a22(xi)

] 1
4

VL2,i

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

[q − uR1(1)]
[

a11(1) + a12(1)
a11(xi) + a12(xi)

] 1
4

WR1,i

[s − uR2(1)]
[

a21(1) + a22(1)
a21(xi) + a22(xi)

] 1
4

WR2,i

⎞
⎟⎟⎟⎠ .

(35)
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Theorem 4. Let �u(x) be the solution of the BVP (1)–(3)
and �Ui be the numerical solution obtained by the MIVT.
Then we have

‖ �Ui − �u(xi) ‖
≤ C

[
N−2 ln2 N + N−1ε + N−√

βσ0 +
√

ε
]
.

Proof. Theorem 3, when applied to the IVPs (10)–(11),
(12)–(13) and the TVPs (14)–(15), (16)–(17), yields

|VL1,i − vL1(xi)|
≤ C

[
N−2 ln2 N + N−1ε + N−√

βσ0

]

for 0 ≤ xi ≤ 1,

|VL2,i − vL2(xi)|
≤ C

[
N−2 ln2 N + N−1ε + N−√

βσ0

]

for 0 ≤ xi ≤ 1,

|WR1,i − wR1(xi)|
≤ C

[
N−2 ln2 N + N−1ε + N−√

βσ0

]
,

for 0 ≤ xi ≤ 1,

|WR2,i − wR2(xi)|
≤ C

[
N−2 ln2 N + N−1ε + N−√

βσ0

]

for 0 ≤ xi ≤ 1.

From the definitions of �uas(x), �Ui and the above
inequalities, we have

‖ �uas(xi) − �Ui ‖
≤ C

[
N−2 ln2 N + N−1ε + N−√

βσ0

]
, (36)

for xi ∈ ΩN
ε . From Theorem 1, we have

‖ �u(xi) − �uas(xi) ‖≤ C
√

ε, x ∈ Ω. (37)

The desired estimate follows from the inequalities (36)
and (37). �

6. Numerical experiments and discussions

To show the applicability and efficiency of the present
technique, two examples are provided. The computational
results are given in the form of tables. The results
are presented with the maximum point-wise errors for
various values of ε and N . We have also computed the
computational order of convergence, which is shown in
the same table along with the maximum errors.

Example 1. Consider the following problem:

−εu′′
1(x) + 3u1(x) − u2(x) = 2,

−εu′′
2(x) − u1(x) + 3u2(x) = 3, x ∈ (0, 1],

�u(0) =
(

0
0

)
, �u(1) =

(
0
0

)
.

The exact solution of this example is not available.
Therefore, to obtain the maximum pointwise errors and
rates of convergence, we use the double mesh principle.
By following the idea of Sun and Stynes (1995), we
modify the Shishkin mesh. We calculate the numerical

solution UN on Ω
N

ε and the numerical solution ŨN on
the mesh Ω̃N

ε , where the transition parameter σ is altered
slightly to σ̃ = min{1/4, σ0 ε ln(N/2)}. Note that this
slightly altered value of σ will ensure that the positions

of transition points remain the same in meshes Ω
N

ε and
Ω̃2N

ε . Hence, the use of interpolation for the double mesh
principle can be avoided. The double mesh difference is
defined as

EN
ε = max

xiεΩ
N
{|UN

i − Ũ2N
i |}, (38)

where UN
i and Ũ2N

i respectively denote the numerical
solutions obtained by using N and 2N mesh intervals.
The rates of convergence are calculated as

pN
ε =

ln EN
ε − ln E2N

ε

ln 2
. (39)

Tables 1 and 2 display respectively the maximum
pointwise errors for u1 and u2 for several values of ε and
N taking σ0 = 2. �

Example 2. Consider the following problem:

−εu′′
1(x) + 2(x + 1)2u1(x) − (x3 + 1)u2(x) = 2ex,

−εu′′
2(x) − 2 cos(πx/4)u1(x) + 2.2e−x+1u2(x)

= 10x + 1,

x ∈ (0, 1], �u(0) =
(

0
0

)
, �u(1) =

(
0
0

)
.

Maximum pointwise errors and rate of convergence
for u1 and u2 are given in Tables 3 and 4, respectively.
From the rates of convergence one can conclude that the
present method has second-order convergence up to a
logarithmic factor. �

7. Conclusions

In this article, a robust computational technique is
proposed for solving the system of two singularly
perturbed reaction–diffusion problems. It is observed that,
although the backward difference operator satisfies the
discrete maximum principle in the whole domain [0, 1],
the its order is 1 (up to a logarithmic factor). We can
get the order 2 (up to a logarithmic factor) by applying
the trapezoidal scheme in [0, 1], but it results in small
oscillations, hence the solution is not stable unless the
mesh size is very small even in the outer region [σ, 1],
where a coarse mesh is enough to give satisfactory results.

In order to retain the second-order convergence
of the implicit trapezoidal scheme together with the
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Table 1. Maximum pointwise errors and rates of convergence of u1 for Example 1.

ε Number of mesh points

16 32 64 128 256 512 1024
10−4 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
10−6 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
10−8 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
10−10 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
...

...
...

...
...

...
...

...
10−38 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
10−40 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698

Table 2. Maximum pointwise errors and rates of convergence of u2 for Example 1.

ε Number of mesh points

16 32 64 128 256 512 1024
10−4 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
10−6 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
10−8 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
10−10 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
...

...
...

...
...

...
...

...
10−38 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698
10−40 2.94547E-01 1.14899E-01 3.56373E-02 1.18109E-02 3.82798E-03 1.20389E-03 3.71125E-04

1.358 1.689 1.593 1.625 1.669 1.698

non-oscillating behavior of the backward difference
operator, we proposed the hybrid scheme. This paper
demonstrates the effectiveness of the Shishkin mesh by
modifying the initial value technique (Valanarasu and
Ramanujam, 2004) in a very simple way so that a higher
order (nearly the second order) of convergence can be
achieved with no restrictions on the values of h and ε.
The nonlinear system of equations has been handled by
the present technique after linearization.
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