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A packet buffer limited to a fixed number of packets (regardless of their lengths) is considered. The buffer is described
as a finite FIFO queuing system fed by a Markovian Arrival Process (MAP) with service times forming a Semi-Markov
(SM) process (MAP/SM /1/b in Kendall’s notation). Such assumptions allow us to obtain new analytical results for the
queuing characteristics of the buffer. In the paper, the following are considered: the time to fill the buffer, the local loss
intensity, the loss ratio, and the total number of losses in a given time interval. Predictions of the proposed model are much
closer to the trace-driven simulation results compared with the prediction of the MAP/G/1/b model.

Keywords: router interface, Markovian arrival process, semi-Markov service time, hidden Markov model, finite-buffer
queue, packet loss, first passage time.

1. Introduction

Since the beginnings of computer networks, many models
have been developed for interfaces of network devices
such as routers. A majority of them were designed for
ATM devices and are not suitable for IP devices, because
IP packets are not of constant length as opposed to those in
ATM/are. Thus, the existing models have to be modified
to fit the real IP network more precisely.

In the commonly used models, the router interface
is just a piece of memory drained at a constant rate of
C bytes per second. This simple model is correct for
some types of interfaces, but not for all. In some types
of devices (e.g., Cisco ISR routers) the buffer can hold no
more than a fixed number of packets, regardless of their
lengths. We call this type of buffer packet-oriented, and a
standard buffer byte-oriented.

For a packet-oriented buffer, a packet service is
completed when the entire packet is removed from the
queue. In a byte-oriented buffer, on the other hand, only
part of a packet is removed upon service completion. The
main modeling problem for real devices addressed in this
paper is that they have packet-oriented buffers which are
drained at a constant rate in bytes per second, not packets
per second. This problem is discussed in Section 4, while
an extended discussion of real packet buffers, their types
and properties can be found in the works of Rusek et al.

(2011), Janowski and Owezarski (2010) or Sequeira et al.
(2012).

A packet stored in a packet-oriented queue is
removed from the buffer after it has been sent to the
destination. Since the time required to complete this
operation depends on the actual packet length (the link
speed is constant), the service process model has to reflect
all the statistical properties of packet lengths, including
their correlation.

IP network traffic has a rich correlation structure.
Packet interarrival times are highly autocorrelated (Paxson
and Floyd, 1995). Similar behaviour was observed for
packet lengths (Emmert et al., 2007). Finally, packet
lengths can be correlated with interarrival times (Salvador
et al., 2004). All these correlations will considerably
affect the accuracy of any switching device model.

Among many attempts to model the correlation
structure of IP traffic with respect to its queuing,
Markovian models have proven to be a powerful tool.
Despite the fact that they cannot accurately model
selfsimilar and long range dependent behaviour over
all time scales, they can approximate them up to an
arbitrary time scale (Robert and LeBoudec, 1996), which
is often sufficient. More importantly, however, in
most cases Markovian traffic models lead to analytically
solvable queuing models even for complicated service
disciplines (Chydziński and Chróst, 2011). This is
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why they are still attractive and actively explored, (see
e.g., Dudin et al., 2005; Chydziński, 2007; 2006; 2008),
although a lot of theoretical work was done at the end of
the previous century.

The most flexible traffic model from the Markov
family is the Batch Markovian Arrival Process (BMAP).
This model can handle packet lengths and all the
correlations observed in real traffic. It is also possible
to construct an analytically solvable queue model with
the BMAP at the input (Dudin et al., 2002; Chydziński,
2006). However, all of the models implicitly assume
that buffers are byte-oriented. To the authors’ best
knowledge, a model of a finite packet-oriented buffer
fed by the BMAP has not been derived yet. This is
not surprising because this system is quite complicated.
However, if we assume packet lengths being independent
of interarrival times, the model is simplified because the
autocorrelation of packet lengths can be represented by
the service time autocorrelation and the arrival process is
reduced to the MAP while retaining the interarrival times
autocorrelation.

The Semi-Markov (SM) process, being a direct
generalization of the Markov process (Janssen and Manca,
2006), is often used as a model of the correlated service
process in a queue. Therefore, this type of service
process was used in the proposed model. Queues with
semi-Markov service times have been studied for many
years (Neuts, 1966). Most of the theoretical results
were obtained for an infinite capacity system. Recently,
Dudin et al. (2002) explored the general finite system
BMAP/SM /1/b, using the imbedded Markov chain
approach. However, in contrast to our model, none of
the analytical results provides the possibility of a transient
state analysis of a finite capacity system. In most cases,
stationary analysis is sufficient. However, transient state
analysis reveals more details about the system (Kobayashi
and Ren, 1992; Schwefe et al., 2001; Lucantoni et al.,
1994).

The loss process in a general MAP/G/1/b system
was analyzed by Chydziński (2008) using a novel
approach called the potential method. In this method
the system of integral equations describing a queue is
transformed into that of linear equations by the Laplace
transform. The resulting system of linear equations
is solved by a recursive function called the poten-
tial (Chydziński, 2007). Chydziński (2006; 2007; 2008)
showed how useful this approach is by employing it for
calculation of different characteristics such as queue size
distribution, loss process, time to buffer overflow, and
many others in either the stationary or the transient state.

In our previous work (Rusek et al., 2012) we showed
that the approach of Chydziński (2007) can be extended
to a system with semi-Markov service times. Derivation
of the loss process in MAP/SM /1/b was an example.
This paper summarizes previous results and extends them

with a new queue characteristic, namely, time to buffer
overflow.

The paper is divided into seven sections. Section 2
introduces basic notation and conventions used in the
paper. The model of network traffic is presented in
Section 3. In Section 4 the queue model is introduced.
Section 5 contains the main results of the paper, the proofs
of two formulas for the Laplace transform of tail of the
time to buffer overflow and the number of losses in a
given time period. Computational aspects of the results
are also discussed in that section. Section 6 presents
some numerical results based on a trace-driven simulation.
Finally, Section 7 concludes the paper.

2. Notation

In this paper, both the input process and the service
process are related to some Markov process. In order
to have an unambiguous notation, each property x
of the input process will be denoted by x̌ while the
corresponding property of the service process will be
denoted by x̂. Note that this convention applies only to
properties having counterparts, like the number of states.

In this paper, block matrices appear quite often.
Therefore, some shorthand notation will be used. The
symbol

⊕
denotes the matrix direct sum (not to be

confused with the Kronecker sum)—a shorthand notation
for a block diagonal matrix. The Kronecker product will
be denoted by ⊗.

Transposition of a matrix X will be traditionally
denoted byXT . In order to denote the block transposition
in a block matrix, the following property of the
transposition operation will be used:

[
AT BT

CT DT

]T

=
[
A C
B D

]

.

Column vectors of ones and zeros will be denoted
by 1 and 0, respectively. Traditionally, I is the identity
matrix and Ix is the identity matrix of size x.

3. Traffic model

The traffic model (interarrival times and packet lengths)
used in this paper can be seen as a special case of the
BMAP. In order to make the model analytically tractable
for a packet-oriented queue, we assumed no correlation
between the arrival rate of batches and the batch size.

3.1. Interarrival times. Formally, the BMAP is
defined here as a two-dimensional Markov process
(N(t), J̌(t)) on the state space {(i, j) : i ≥ 0, 1 ≤
j ≤ m̌}, with the infinitesimal generator for (N(t), J̌(t))
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equal to

Q =

⎡

⎢
⎢
⎢
⎣

D0 D1 D2 D3 · · ·
0 D0 D1 D2 · · ·
0 0 D0 D1 · · ·
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎦
,

where Dk are m̌ × m̌ matrices, the elements in Dk, k ≥
1 are nonnegative, D0 has nonnegative off-diagonal
elements and negative diagonal elements. It is also
assumed that D =

∑∞
k=0Dk is an infinitesimal generator

andD �= D0. N(t) denotes the number of arrivals in (0, t]
and J̌(t) denotes the state of the underlying (modulating)
Markov chain with the infinitesimal generator D.

The BMAP can also be defined in the so-called
‘constructive’ way. Assume that the underlying Markov
chain has just entered a state i. After an exponentially
distributed time with parameter λi, a transition to another
state occurs. With probability pi(0, j), there is a transition
to state j without a batch arrival. With probability pi(k, j)
there is a transition to state j and simultaneously k jobs
arrive. It is assumed that

pi(0, i) = 0,
∞∑

k=0

m̌∑

j=1

pi(k, j) = 1, (1)

and

λi = −(D0)ii, 1 ≤ i ≤ m̌,

pi(0, j) =
(D0)ij

λi
, 1 ≤ i, j, i �= j ≤ m̌,

pi(k, j) =
(Dk)ij

λi
1 ≤ i, j ≤ m̌.

In relation to IP traffic modeling, batches (simultaneous
arrivals of multiple jobs) represent packets of different
lengths (in bytes or some other memory units). Thus the
memory block implicitly becomes a job in a queue model.

A special case of the BMAP, when Dk = 0, k > 1
(no batches), is called the Markovian Arrival Process
(MAP). A special case of that MAP, with D1 being
a diagonal matrix, is known as the Markov Modulated
Poisson Process (MMPP) (Fischer and Meierhellstern,
1993). The MMPP is also a popular traffic model.
However, the MAP is more flexible.

Formulas for many first and second order statistics of
the interarrival times in both the MAP and the BMAP can
be derived (see the work of Chydziński (2008) for a brief
description). Here we introduce only the average arrival
rate in the MAP,

λ = π̌D11, (2)

where π̌ is the stationary vector for D,

π̌D = 0T , π̌1 = 1.

This will be important in Section 5, where it is used to
obtain the packet loss ratio.

3.2. Packet lengths. The constructive definition of
the BMAP is the starting point for a derivation of a
packet length model. According to this definition, in
each state i of the underlying Markov chain, there is a
bivariate transition probability distribution pi(k, j). This
distribution determines packet lengths and the next state
of the Markov modulator.

Because the transition distribution is bivariate and
each state has a corresponding arrival intensity, it is
possible to capture the correlation between packet lengths
and the traffic intensity (Klemm et al., 2003). In this
paper, we use an approximation and assume that packet
lengths and traffic intensity are independent. However,
we assume that either of them could be autocorrelated.
In such a case, the packet length and the next state are
described by the marginal distributions of pi(k, j). To be
more precise, let tn denote the n-th state transition time of
the BMAP. The marginal distributions pi are given by

Ti,j = P(J̌(tn+1) = j|J̌(tn) = i) =
∑

k

pi(k, j),

and

Ei,k = P(l(tn) = k|J̌(tn) = i) =
∑

j

pi(k, j),

where l ∈ {l1, . . . , ld̂} is the observable probabilistic
outcome in each state. This outcome represents packet
lengths and, indirectly, the time required to transfer
the packet to the destination. Independent descriptions
of packet length and the next state lead to a packet
lengths model known as the Hidden Markov Model
(HMM) (Rabiner, 1989; Dainotti et al., 2006).

If all state transitions were accompanied by an
arrival, such a model could be used as a packet model.
However, due to transitions without arrival (k = 0),
probabilities Tij and Eik have to be modified to remove
this unobserved emission. This can easily be done using
the total probability theorem in a similar way to that
presented in Appendix. However, it is more practical to
estimate model parameters directly from the trace file.
The resulting HMM model gives an additional flexibility
in parameter estimation.

In summary, the proposed HMM packet model is
parameterized by the following:

1. m̂, the number of states in the model. This parameter
corresponds to the number of states in the BMAP.

2. L distinct observation symbols (an alphabet). This
parameter corresponds to batch sizes in the BMAP
and is the vector of distinct packet lengths.

3. State transition probabilities T , the transition matrix
of the underlying Markov chain.

4. Emission probabilities E, the discrete distribution of
packet lengths emitted in each state.



432 K. Rusek et al.

Fig. 1. Difference between packet (top) and byte (bottom) ori-
ented buffers. Service times are represented by the
columns. So the packet-oriented buffer requires variable
and correlated service times.

4. Queue model

The model of a byte-oriented queue fed by the BMAP
is fairly simple. Since a memory block (e.g., 1 B) is a
job and the link drains the buffer at a constant number of
bytes per unit time, the service time (time to send a single
byte or other memory unit) is constant. In this model, the
interface is similar to a bucket leaking a liquid. The model
can be written as BMAP/G/1/b in Kendall’s notation,
where b is the total amount of memory.

The model becomes complicated when the buffer is
packet-oriented. The queue is still drained at a constant
number of bytes per unit time. However, a single byte
can no longer be identified as a job. Now, the entire
packet is a job and there is no need for a batch arrival (see
Fig. 1), therefore the BMAP is reduced to an MAP, i.e.,
information about packet sizes is removed from the input
process. However, this information can be transferred
to the service process in an MAP/SM /1/b system,
by introducing the states of the server. Each state of
the server corresponds to a state of the traffic source in
the BMAP. In addition, the states introduce the memory
and autocorrelation of packet lengths because each state
has an associated service time distribution. This can be
visualized in Fig. 1 as a transformation of batch byte ar-
rival to batch byte removals.

In this paper, we consider a single server FIFO
queuing system fed by the Markovian arrival process,
and the service times are assumed to be autocorrelated.
The system capacity is finite and equal to b (including a
customer currently being served).

Since the service times are simply scaled packet
lengths, it is straightforward to derive the service process
from the model presented in Section 3.2. The states of
the HMM are mapped to those of the server. In the i-th
server state, the service time is a random variable with
CDF Fi(t), i = 1, . . . , m̂. After each service completion,
the state of the server is changed in such a way that the
state sequence forms a homogenous Markov chain.

Let {Ĵn}, n ≥ 0 denote the state after n − 1
transitions and Gn, n ≥ 0 be the (n − 1)-th service
time. If we suppose that G0 = 0, the described service
process (Ĵn, Gn) is a semi-Markov process (Janssen and
Manca, 2006) defined on a finite set of states S =
{1, 2 . . . , m̂} by the matrix

PĴn−1,j(t) = P(Ĵn = j,Gn ≤ t|(Ĵn−1, Gn−1)).

Note that the semi-Markov process is constructed only of
service times. The idle periods are ignored. However, we
define Ĵ(t) ∈ S as the server state at time t including the
idle periods. We assume that the time origin corresponds
to a departure epoch.

The definition of the semi-Markov process allows
dependence of sojourn time on the current state and the
future state as well. However, for practical purposes we
can assume the sojourn time as independent of the future
state. Under this assumption, the HMM of packet lengths
can be interpreted as a service process. In such a case
Pi,j(t) = Ti,jFi(t), where T is the state transition matrix
of the underlying Markov chain.1

Because of a packet loss, the state transition matrix
T of the server is not exactly the same as the transition
matrix T in an HMM estimated from traffic. The
quantitative analysis of the problem is presented in
Appendix. However, for a small loss probability the
difference is negligible.

5. Queue characteristics

Chydziński (2006; 2007; 2008) reported numerous queue
characteristics of nontrivial queuing systems expressed
in terms of ‘potential’, a recurrent matrix series, defined
later in this section. All of his results were derived for
a system with uncorrelated service times. This section
shows how to generalize the potential method for systems
with semi-Markov service times.

Two important characteristics are considered. The
first is the time to reach the buffer capacity, also known
as the ‘first passage time’ and abbreviated as ttbo,
which stands for ‘time to buffer overflow’. The second
characteristic is the loss process described by the expected
number of losses in a given time interval, or the loss ratio.
Note that the formula for ttbo is also valid for an infinite
system. In such a case, first passage time means that the
queue exceeded a given threshold.

A key step in the derivation of those characteristics
is to modify the counting function. For the MAP, the
counting function is defined as follows:

P̌i,j(n, t) = P(N(t) = n, J̌(t) = j|
|N(0) = 0, J̌(0) = i). (3)

1In general, T = [Pi,j(∞)]i,j .
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Since the state of the service process creates the second
degree of freedom in the initial conditions, the counting
function has to be redefined in the following way:

Pijkl(n, t) = P(N(t) = n, J̌(t) = k, Ĵ(t) = l|
|N(0) = 0, J̌(0) = i, Ĵ(0) = j). (4)

It is a fourth rank tensor, and in general it is difficult to
compute, unless t is single packet service time counted
from the departure epoch. In such a case, assuming
independence of the MAP and service processes, the new
counting function is simplified to

Pijkl(n, t) = TjlP̌ik(n, t), (5)

where Tjl is the server state transition matrix defined in
Section 4 and P̌ik(n, t) is the standard counting function
for the MAP. The product form follows directly from the
assumption of the independence of the arrival and service
processes.

A modified counting function implicates new forms
of some auxiliary matrices:

Aj,k(s) =
∫ ∞

0

e−stP̌ (k, t) dFj(t), (6)

D̄j,k(s) =
∫ ∞

0

e−stP̌ (k, t)(1 − Fj(t)) dt, (7)

An(s) =
m̂⊕

i=1

Ai,n(s) · T ⊗ Im̌, (8)

Dk(s) = [D̄T
1,k(s), · · · , D̄T

m̂,k(s)]T , (9)

Ān(s) =
∞∑

k=n

Ak(s), (10)

Yk(s) =
[
λipi(k, j)
s+ λi

]

ij

, (11)

Yk(s) =
m̂⊕

i=1

Yk(s), (12)

z(s) =
[ 1
s+ λ1

, . . . ,
1

s+ λm̌︸ ︷︷ ︸
m̂ times

]T
. (13)

In this notation the obtained results are easier to present
and more consistent with those for an independent system.

5.1. Time to buffer overflow. Let us start with the
queue length at time t denoted as X(t). Let the first time
to buffer overflow be denoted by

τn,i,j = inf{t > 0 : X(t) = b|
|X(0) = n, J̌(0) = i, Ĵ(0) = j}. (14)

The transform of the tail of τn,i,j ,

hn,i,j(s) =
∫ ∞

0

e−st
P(τn,i,j > t) dt. (15)

In order to use the standard matrix notation, hn,i,j(s)
is turned into a column vector hn(s) using an inverse
lexicographic order:

hn(s) = [hn,1,1(s), . . . , hn,m̌,1(s), . . . ,

hn,1,m̂(s), . . . , hn,m̌,m̂(s)]T . (16)

Theorem 1. For the MAP/SM /1/b system, if the MAP
input process and the SM service process are independent
and the matrix T is nonsingular, then

hn(s) =
b−n∑

k=0

Rb−k−n(s)Ak(s)hb−1(s)

−
b−n∑

k=1

Rb−k−n(s)Ck(s), (17)

hb−1(s) = W−1
b (s)Vb(s), (18)

where the potential Rk(s) is defined as

R0(s) = 0, R1(s) = A−1
0 (s), (19)

Rk+1(s) = R1(s)(Rk(s)

−
k∑

i=0

Ai+1(s)Rk−i(s)), k ≥ 1 (20)

and

Wb(s) =(Y0(s) − I)
b∑

k=0

Rb−k(s)Ak(s)

+ Y1(s)
b−1∑

k=0

Rb−k−1(s)Ak(s), (21)

Vb(s) = (Y0(s) − I)
b∑

k=1

Rb−k(s)Ck(s)

+ Y1(s)
b−1∑

k=1

Rb−k−1(s)Ck(s) − z(s), (22)

Cn(s) =
n−1∑

k=0

Dk(s)1. (23)

Proof. If the system is not empty at the beginning,
then from the total probability theorem applied to the first
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service completion time we get

P(τn,i,j > t)

=
m̌∑

ǩ=1

m̂∑

k̂=1

b−n−1∑

k=0

∫ t

0

P(τn+k−1,ǩ,k̂ > t− u)

× Pi,j,ǩ,k̂(k, u) dFj(u)

+ (1 − Fj(t))
m̌∑

ǩ=1

b−n−1∑

k=0

P̌i,ǩ(k, t),

0 < n ≤ b, (24)

The first term in (24) represents the case when the first
service completion time uwas before time t and there was
no packet loss. In this case, the number of packet arrivals
in (0, u] must be less than b−n−1; the state of the server
might have changed. If the first service completion was
before t and there was an overflow, P(τn,i,j > t) = 0,
so this term does not appear in the equation. The second
term corresponds to the situation when the first service
completion time u is after time t. This happens with
probability 1 − Fj(t), which depends on the current state
of the server.

For an empty system, the total probability formula
applied with respect to the first event (arrival or state
transition) gives

P(τ0,i,j > t)

=
m̌∑

ǩ=1

∫ t

0

P(τ0,ǩ,j > t− u)pi(0, ǩ)λie
−λiu du

+
m̌∑

ǩ=1

∫ t

0

P(τ1,ǩ,j > t− u)pi(1, ǩ)λie
−λiu du

+ e−λit. (25)

The first and the second terms represent, respectively,
a state transition and an arrival. The third component
represents no event before time t.

At this point, let us consider only the first term in (24)
and see how it behaves under the Laplace transform. It
is a convolution, thus in the Laplace transform domain it
becomes a product of several terms,

hn,i,j(s) =
m̌∑

ǩ=1

m̂∑

k̂=1

b−n−1∑

k=0

hn+k−1,ǩ,k̂(s)Tj,k̂[Aj,k]i,ǩ,

plus some additional terms omitted for simplicity. If
hn+k−1,ǩ,k̂(s) were a matrix, the formula for each column
could be rewritten in the form

hn,i(s) =
m̂∑

k̂=1

b−n−1∑

k=0

hn+k−1,k̂(s)Tj,k̂Aj,k + · · · .

The above summation is equivalent to the multiplication
of a block matrix Ak and the flattened hn+k−1,ǩ,k̂(s).
Similar block matrix composition can be applied to other
terms in (24) and (25), resulting in the following form
after the Laplace transform:

hn(s) =
b−n−1∑

k=0

Ak(s)hn+k−1(s) (26)

+ Cb−n(s), 0 < n ≤ b, (27)

h0(s) = Y0(s)h0(s) + Y1(s)h1(s) + z(s). (28)

From this point we can follow the proof of
Theorem 3.2.1 by Chydziński (2007) simply by replacing
hn(s) = ub−n(s). With these new variables, Eqns. (26)
and (28) can be rewritten in the form

n−1∑

k=−1

Ak+1(s)un−k(s)

− un(s) = ψn(s), 0 < n ≤ b, (29)

ub(s) = Y0(s)ub(s) + Y1(s)ub−1(s) + z(s), (30)

where ψn(s) = Anu1(s) − Cn(s). Lemma 3.2.1
by Chydziński (2007) gives the closed-form solution

un(s) = Rn(s)c(s) +
n∑

k=1

Rn−k(s)ψk(s), (31)

where c(s) is a vector independent of n. This vector can
be calculated by putting n = 1 into (31), which gives
c(s) = A0u1(s), and the solution for un gets the form

un(s) = Rn(s)A0u1(s) +
n∑

k=1

Rn−k(s)ψk(s). (32)

By means of the boundary condition (28), it is
straightforward to derive Eqns. (17) and (18).

The last thing to be proven is why A0 is nonsingular,
a condition required by Lemma 3.2.1 of Chydziński
(2007). Using properties of the Kronecker product matrix
product and the matrix direct sum, it is straightforward to
find that

detA0 = (detT )m̌
m̂∏

i

detAi,0. (33)

It is discussed by Chydziński (2007) why Ai,0 are
nonsingular. Thus the matrix T is the only source of
singularities and this completes the proof of Theorem 1.

�
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5.2. Loss process. Let L(t) denote the number of
losses observed in an interval (0, t], and Δn,i,j(t) be its
average value conditioned on the initial queue length and
the initial states of the MAP and the SM service process,
namely,

Δn,i,j(t) = E(L(t)|X(0) = n, J̌(0) = i, Ĵ(0) = j),
0 ≤ n ≤ b, 1 ≤ i ≤ m̌ 1 ≤ j ≤ m̂. (34)

The Laplace transform of Δn,i,j(t) is denoted by
δn,i,j(s), namely,

δn,i,j(s) =
∫ ∞

0

e−stΔn,i,j(t) dt. (35)

In order to use the standard matrix notation, δn,i,j(s) is
turned into a column vector similar to (16).

Theorem 2. If the MAP input process and the SM service
process are independent and the matrix T is nonsingu-
lar, then the Laplace transform of the average number of
losses in (0, t] in the MAP/SM /1/b queue has the form

δn(s) =
(
Rb−n+1(s)A0(s)

b−n∑

k=0

Rb−n−k(s)Bk(s)
)

×M−1
b (s)lb(s)

+
b−n∑

k=0

Rb−n−k(s)gk(b, s), (36)

where

Bn(s) = An+1(s) − Ān+1(s)Ā−1
0 (s),

gk(s) = Āk+1(s)Ā−1
0 (s)cb(s) − cb−k(s),

ck(s) =
1
s

∞∑

i=b−k

(i− b+ k)Ai(s) · 1

+
∞∑

i=b−k

(i− b+ k)Di(s) · 1, (37)

lb(s) = Y1(s)
b−1∑

k=0

Rb−k−1(s)gk(s)

− (I − Y0(s))
b∑

k=0

Rb−k(s)gk(s), (38)

Mb(s) = (I − Y0(s))

×
(

b∑

k=0

Rb−k(s)Bk(s) +Rb+1(s)A0(s)

)

− Y1(s)
( b−1∑

k=0

Rb−k−1(s)Bk(s)

+Rb(s)A0(s)
)
. (39)

Proof. If the system is not empty at the beginning,
then from the total probability theorem applied to the first
service completion time we get

Δn,i,j(t)

=
m̌∑

ǩ=1

m̂∑

k̂=1

b−n−1∑

k=0

∫ t

0

Δn+k−1,ǩ,k̂(t− u)

× Pi,j,ǩ,k̂(k, u) dFj(u)

+
m̌∑

ǩ=1

m̂∑

k̂=1

∞∑

k=b−n

∫ t

0

(k − b+ n

+ Δb−1,ǩ,k̂(t− u))Pi,j,ǩ,k̂(k, u) dFj(u)

+ (1 − Fj(t))
m̌∑

ǩ=1

∞∑

k=b−n

(k − b+ n)

× P̌i,ǩ(k, t), 0 < n ≤ b.

(40)

The first term in (40) represents the case when the
first service completion time uwas before time t and there
was no packet loss. In this case, the number of packets
arrivals in (0, u] must be less than b − n − 1; the state of
the server might have changed.

The second term in (40) represents the case when
the first service completion time u was before time t and
there was a buffer overflow. This means that over the time
interval (0, u] we had k ≥ b − n arrivals and k − b + n
of them were dropped; the state of the server might have
changed.

Finally, the third term in (40) corresponds to the
situation when the first service completion time u is after
time t. This happens with probability 1 − Fi(t), which
depends on the current state of the server. In this case, the
mean number of losses is given by

m̌∑

ǩ=1

∞∑

k=b−n

(k − b+ n)P̌i,ǩ(k, t).

Let us now suppose that at time t = 0 the queue
is empty. Applying the total probability formula with
respect to the first arrival time, we obtain

Δ0,i,j(t)

=
m̌∑

k=1

∫ t

0

Δ0,k,j(t− u)pi(0, k)λie
−λiu du

+
m̌∑

k=1

∫ t

0

Δ1,k,j(t− u)pi(1, k)λie
−λiu du.

(41)

The first term in (41) corresponds to the case where the
first MAP state transition is not accompanied by an arrival,
while the second term corresponds to the simultaneous
transition and an arrival.
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Applying the Laplace transform and matrix notation
to Eqns. (40) and (41), we get

δn(s) =
b−n−1∑

k=0

Akδn+k−1(s)

+
∞∑

k=b−n

Akδb−1(s) + cn(s), 0 < n ≤ b,

(42)

δ0(s) = Y0(s)δ0(s) + Y1(s)δ1(s). (43)

From this point the proof is mutatis mutandis the same as
that of Theorem 1. �

5.3. Transient and stationary analysis. Theorems 1
and 2 give the Laplace transforms of queuing
characteristics. However, following Chydziński (2007)
in exploiting the limiting properties of the Laplace
transform, we can compute the stationary parameters as
well.

Let us begin with the first passage time. Theorem 1
can be used to calculate the expected value of τn,i,j as well
as the transform of its distribution function,

E(τn,i,j) = hn,i,j(0), (44)

∫ ∞

0

e−st
P(τn,i,j < t) dt =

1
s
− hn,i,j(s). (45)

Numerical values of the distribution can be computed by
applying an algorithm (e.g., Abate et al., 2000) for the
Laplace transform inversion. The expected number of
losses at some particular time Δn,i,j(t) can be computed
in the same way. The stationary packet loss ratio (LR)
formula is given by

LR = lim
t→∞

1
λ

dΔn,i,j(t)
dt

= lim
s→0+

s2δn,i,j(s)
λ

. (46)

Because the stationary loss ratio does not depend on the
initial condition, we can choose any n, i and j. For some
other characteristics, such as local loss intensity, see the
results of Chydziński (2008).

5.4. Computational aspects. The system of equations
(42) and (43) can be solved in at least two different ways.
The first one is the potential method, and the second one
is a direct approach. In the direct approach, (42) and (43)
are combined into a single matrix equation,

A · δ(s) = B, (47)

where
δ(s) = [δT

0 (s), . . . , δT
b (s)]T , (48)

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y0 Y1 0 · · · 0 0
A0 · · · · · · Ab−2 Āb−1 0

0 A0 . . . Ab−3

... 0

0 0
. . . A0 Ā1 0

0 0 · · · 0 Ā0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− I, (49)

B = [0,−cT1 , · · · ,−cTb ]T . (50)

In (49) 0 denotes the zero square matrix of size m̌ × m̂
while in (50) it is the vector of the same size. The linear
system (49) can be solved even for a singular T .

The main advantage of the potential method over
the direct approach is its lower numerical complexity
equal to m̌3m̂3b2 as compared to m̌3m̂3b3 for the direct
approach. Despite its lower complexity, the potential
method may sometimes be harder in realisation, because
it often requires high precision computations (higher than
the machine precision).

A practical application of Theorems 1 and 2 requires
an effective algorithm for computing matrices Ak(s) and
D̄(s).

Direct computation of the MAP counting function
is problematic. Therefore, the uniformization technique
has been developed for efficient numerical calculations
(Lucantoni, 1991). Using uniformization, Eqns. (6) and
(7) for a particular state can be rewritten to following
forms:

Ak(s) =
∞∑

j=0

γj(s)Kk,j , (51)

D̄k(s) =
∞∑

j=0

βj(s)Kk,j , (52)

where

γj(s) =
∫ ∞

0

e−(s+θ)t (θt)
j

j!
dF (t), (53)

βj(s) =
∫ ∞

0

e−(s+θ)t (θt)
j

j!
(1 − F (t)) dt, (54)

θ = max
i

(−D0)ii.

For the simplicity of notation, the first indices of Aj,k(s)
and D̄j,k(s) were omitted, since it is not important
for which service state the matrices are computed.
The matrices Kk,j can be easily computed using the
recursive formulas presented by Lucantoni (1991). The
main advantage of using uniformization, besides its
computational aspects, is that if a service time distribution
changes, only (53) and (54) need to be computed.

The important case is when the service time is a
discrete random variable. This is the case for a real traffic
model where packet lengths are discrete. Before applying
uniformization to such a distribution, let us consider a
more general case, i.e., the mixture of distribution.
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Let the service time distribution be a mixture of
some distributions F (i)(t) with weights pi, i.e., F (t) =
∑

i piF
(i)(t). For each i, let γ(i)

j (s) and β(i)
j (s) denote

respectively the functionals (53) and (54) for the i-th
component of the mixture.

Proposition 1. For the mixture distributionF (t), the func-
tionals (53) and (54) get the form

γj(s) =
∑

i

piγ
(i)
j (s), (55)

βj(s) =
∑

i

piβ
(i)
j (s). (56)

The discrete service time is nothing more than a
mixture of some deterministic service times. Therefore,
all we need to know is the form of the functionals (53)
and (54) for the deterministic service time d. For this case
the integrals (53) and (54) can be calculated analytically
and are equal to

γj =
e−(θ+s)d(θd)j

j!
, (57)

βj = θj Γ(j + 1, 0) − Γ(j + 1, d(s+ θ))
j!(s+ θ)j+1

, (58)

where Γ(j, x) is the incomplete gamma function. Now,
using Proposition 1 combined with Eqns. (57) and (58),
it is straightforward to apply uniformization and compute
matrices Ak(s) and D̄k(s).

6. Numerical results

In this section, we present the queue characteristics
obtained for parameters estimated from the actual network
traffic generated by the dormitories of the AGH University
of Science and Technology (Cracow, Poland). We
captured 150,000 IP packets from the uplink. The
traffic was used to fit the model parameters and to
run a trace-driven simulation. The simulation results
were later compared with the model predictions. Buffer
parameters of the router were taken from experiments
reported by Rusek et al. (2011). The queue was simulated
in our own simulator written in MATLAB and Java, the
same as used by Rusek et al. (2011). The correctness of
the simulator was verified by comparison with ns-2.

6.1. Parameter estimation. There are many fitting
algorithms designed for Markovian traffic models (cf.,
e.g., Klemm et al., 2003; Heyman and Lucantoni, 2003;
Muscariello et al., 2005). We found the Expectation
Maximisation (EM) algorithm (Klemm et al., 2003) to fit
our needs. The model estimated by the EM algorithm can
accurately approximate first and second order statistics of
the traffic while being quite simple (small dimensionality)
and numerically tractable. Keeping model simplicity and

accuracy under consideration, we modelled the traffic as a
four state (m̌ = 4) MAP.

The HMM of packet lengths was parameterized
in a similar way by means of a Baum–Welch
algorithm implemented in the MATLAB function hmm-
train (Rabiner, 1989). However, the packet lengths require
some preprocessing because the real traffic contains quite
a large number (hundreds) of different packet lengths. It
is obvious that such a fine-grained trace cannot be handled
by any numerical procedure.

The problem has to be changed to have just a few
distinct packet lengths. This can be done quite easily since
the major parts of a packet are either small (≈ 50 B) or
large (≈ 1500 B), with a small percentage forming the
medium group (≈ 600 B). In the work of Klemm et al.
(2003) the entire length spectrum was divided into a small
number of ranges, and for each range the mean length
was used. Here, we take a different approach. We run
a k-means clustering algorithm on packet lengths to find
the course-grained representation. The algorithm finds the
best centroid points L as well as group boundaries. The
only parameter is the number of centroids. Having seen
that most packets are either small, medium or large, three
centroids is the recommended choice.

Packet lengths after clusterization are now suitable
for fitting an HMM. Since the Baum–Welch algorithm
may not converge to a global minimum, it is often
necessary to run the algorithm multiple times to find the
best parameters. The key is to match the autocorrelation
function of packet lengths as closely as possible,
sometimes at the cost of a higher error of mean or
variance.

Because an n-state BMAP can describe both the
packet lengths and the interarrivals, we may expect that
the MAP and the HMM should have a similar (∼ n)
number of states. Indeed, experimenting with different
numbers of states and emissions, we found that a four
state HMM with two emissions (d̂ = 2) was enough to fit
the autocorrelation of packet lengths. A two-state HMM
could also match the autocorrelation function, but not as
often as the four state model. The model parameterization
in all numerical examples used hereafter is as follows:

D0 =

⎡

⎢
⎢
⎣

−11300. 35.9 20.6 1.28 × 10−6

0.297 −2290. 34.6 12.3
0.00147 2.55 −503. 1.38

216. 2.99 243. −8590.

⎤

⎥
⎥
⎦ ,

D1 =

⎡

⎢
⎢
⎣

10100. 559. 524. 0.0202
70.2 1850. 233. 88.8

0.0378 22.6 412. 64.3
130. 237. 3790. 3970.

⎤

⎥
⎥
⎦ ,

T =

⎡

⎢
⎢
⎣

0.840 0.0754 0.0352 0.0491
0.222 0.757 0.0123 0.00836
0.0386 0.0151 0.573 0.374
0.00249 0.0384 0.573 0.386

⎤

⎥
⎥
⎦ ,
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Fig. 2. Local intensity of the loss process for the initially empty
(a) and full (b) buffer (b = 62 packets). The time unit is
the average service time.

E =

⎡

⎢
⎢
⎣

0.868 0.132
0.201 0.799
0.994 0.00617
0.985 0.0145

⎤

⎥
⎥
⎦ , L =

[
82 1307

]
.

Note thatD0 andD1 contains only rates and none of them
is a infinitesimal generator. However, D = D0 + D1

is a generator, and the sum of its rows equals zero. The
independent model uses an empirical discrete distribution.
However, the stationary distribution of the HMM can be
used instead.

6.2. Model validation. The main advantage of the
proposed model is the ability to compute transient state
characteristics of the system. One example of such a
characteristic is the loss intensity shown in Fig. 2. The
plots are made for two of sixteen different pairs of the
initial states and two extreme buffer sizes (empty and full)
for a one-second-long time interval. The transient state
analysis gives a unique chance to analyze the maximal
loss intensities as well as the time to steady state. In the
presented example the steady state begins after about 300
service times on the average, and after that time the loss
intensity is constant and equal about 35 drops per second.
Note that during the transient state the loss intensity could
be more than ten times greater.

It is possible to compute the queue characteristics
on a typical PC for quite large buffers, but an important
question is how accurate the model is and how it
behaves with real-sized buffers. Measuring the queuing
characteristics of a real packet buffer may be difficult

Fig. 3. Cumulative distribution function of time to reach the
buffer of size 168 starting an empty system. The uti-
lization ρ = 0.95, states of the MAP and the server are
according to the stationary distribution. The time unit is
the average service time.

or even impossible without deep interaction with the
hardware. However, the study of buffering in the Cisco
ISR router interface described by Rusek et al. (2011)
allows the building of an accurate simulator of a real
buffer.

Stationary loss process characteristics (e.g., the loss
ratio) are easy to measure by counting each lost packet.
With ttbo this is more difficult because the buffer has
to be prepared in a given state, e.g., n = 0. In our
approach we randomly selected 500 points in the trace.
Then the queue was simulated starting at the selected
point. When the system was empty, a timer started, and
it was stopped when the buffer was full. The average
value of all observations was used as the estimator of ttbo,
and confidence intervals were obtained by the bootstrap
method.

Figure 3 shows the prediction of two models (with
independent and correlated service times) compared with
simulation results for a heavily loaded queue. In each case
the system is initially empty and the states of the MAP and
the server are according to the stationary distribution.

The MAP/SM /1/b model is not perfect, but it
is much more accurate than a model with independent
service times. The accuracy increases for smaller buffers
(see Fig. 4) for both models. This is to be expected, as it
takes only few service times to fill the small buffer, so the
service time correlation becomes less important.

A large queue with autocorrelated service can
be filled much faster compared to a system with an
independent one. This is easily observed in Fig. 5,
showing the average value of the time to buffer overflow,
and it becomes even more clear as the load drops in
Fig. 6. In this case the ttbo value is about 3 s and the
model predicts 13 s, while the old model with independent
services predicts the buffer will be full after 4 min.
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Fig. 4. Cumulative distribution function of time to reach the
buffer of size 20 starting an empty system. The utiliza-
tion ρ = 0.8, states of the MAP and the server are ac-
cording to the stationary distribution. The time unit is
the average service time.

Fig. 5. Average time to buffer overflow versus the buffer size.
The utilization ρ = 0.95, states of the MAP and the
server are according to the stationary distribution.

Again, for small buffers both models give similar
results and the real value is somewhere inbetween. For
large buffers, on the other hand, the models give extremely
different predictions (up to two orders of magnitude).
Exactly the same situation is observed for the stationary
packet loss ratio in Fig. 7. This clearly indicates that
the autocorrelation function of service times has a huge
impact on the queuing characteristics, especially for large
buffers. Therefore, the autocorrelation in service times is
vital as some modern devices have buffers larger than 128
packets (Rusek et al., 2011).

The MAP/SM /1/b model is superior to
MAP/G/1/b in all aspects but is still inaccurate
for very large buffers. This is probably caused by
neglecting long range dependence. The estimated MAP
was observed to be accurate up to some time scale
(33 ms), and above this scale it is no longer accurate.
Similar behaviour was observed for the HMM and packet
lengths. This should explain the model’s inaccuracy for

Fig. 6. Average time to buffer overflow versus the buffer size.
The utilization ρ = 0.8, states of the MAP and the server
are according to the stationary distribution.

large buffers, because the larger the buffer the further
back in time it ‘looks’, thus the long range autocorrelation
becomes important.

The fact that packet lengths and interarrival times
are not independent as the model assumes may also be
important. However, this is the least probable explanation
since the Pearson correlation coefficient (Weisstein, 2013)
was only about −0.1.

Although a better estimation technique would
increase the accuracy, we cannot model a true long range
dependence by a Markov model. It will always be just
an approximation but, having said that, sometimes an
approximate result is enough. A perfect match to the
trace file gives nothing because the TCP changes traffic
in response to each packet loss. Approximate predictions,
on the other hand, can still be informative.

7. Conclusion

Correlation of service times in queuing systems has a great
impact on the characteristics of such systems and cannot
be omitted. This is especially important in the case of
packet-oriented network devices, because packet lengths
are highly autocorrelated. Modelling packet lengths as the
HMM allows the construction of a solvable mathematical
model of such a device.

The proposed model is a queuing system with
a Markovian arrival process and semi-Markov service
times. Queuing characteristics obtained for such a system
are quite accurate approximations of the characteristics
evaluated for a real device. Moreover, such a
model is much more accurate compared with previous
approaches assuming independent service times. The
main contribution of this paper is the theoretical analysis
of this system.

The results include closed-form representations of
transforms of the loss process and the tail distribution
of first passage time. They were derived using a novel
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Fig. 7. Stationary packet loss ratio versus the buffer size for ρ = 0.7 (a), ρ = 0.8 (b) and ρ = 0.9 (c). Confidence intervals (≈ 2%)
are omitted because they are tiny and invisible on the logarithmic scale.

approach to queuing systems with autocorrelated service
times. Derived formulae are suitable either for the
transient or the stationary analysis and allow computation
of the following queue characteristics: expected time to
reach the buffer capacity and its distribution, the loss ratio,
local loss intensity or the total number of losses. It is
possible to extend the obtained results beyond the loss
process and compute e.g., queue size distribution, in a
similar way as in the work of Chydziński (2006).
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Appendix

In the HMM of packet lengths there is a state transition
upon each packet arrival. If the packet is dropped,
the information about transition is lost. Therefore the
real service process is slightly different from the HMM
estimated from the traffic. Note that only the transition
matrix T is changed.

Let T be the transition matrix estimated from
the traffic and T ′ be the transition matrix of the service
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process. If drops can be assumed to be independent, then
it is possible to estimate the parameters of the real service
times by virtue of the following proposition.

Proposition A1. For each packet, if drop probabilities are
independent and equal to p, then the service time transi-
tion matrix is given by

T ′ = (1 − p)T + p(1 − p)T 2(I − pT )−1. (A1)

Proof. Applying the total probability theorem to the
number of successive drops, we get

T ′ = (1 − p)T + p(1 − p)T 2 + p2(1 − p)T 3 + · · ·
︸ ︷︷ ︸

unobserved transitions

(A2)

= (1 − p)T + p(1 − p)T 2(I + pT + p2T 2 + · · · ).

The first part of (A2) represents the situation when the
state transition was observed. This happens with the
probability 1 − p. In this case the transition matrix is
unchanged.

The second part of (A2) represents the situations
when there were 1, 2, 3, . . . drops (unobserved successive
state transitions). This happens with the probability (1 −
p)p, (1 − p)p2, (1 − p)p3, . . . . In those cases the service
time transition matrix corresponds to the 2, 3, 4, . . . -step
transition matrix of the estimated process.

The matrix T is stochastic and p < 1, so each
eigenvalue of pT is less than 1. Therefore, the second
part can be written in a closed form using the Neumann
series formula (Meyer, 2000) which gives (A1). �

The real loss ratio can be found as a fixed point of
the following map: p = LR(T ′(p)). The best approach is
to use the estimated T as an approximation and compute
LR. In the next steps we use the previously computedLR
to find the new T using (A1) and improve accuracy.

To show some numerical results of this procedure,
we simulated the queue with an artificially generated
MAP and HMM. The observed loss ratio was
LRsim = 0.2176 and its 95% confidence interval
was (0.2166, 0.2185). The first approximation was
LR1 = 0.2243. The next iterations gave LR2 = 0.2171,
LR3 = 0.2173 and LR4 = 0.2173. The procedure
converges after about four iterations and the result is
mostly within the confidence interval.

The assumption about drop independence is strong
and not always satisfied. Therefore there is no guarantee
nor proof that this procedure improves accuracy. It
might even not converge at all. However, we did not
observe such a case. In practice the improvement is
negligible compared with some other errors, for example,
measurements errors (Rusek et al., 2011), and it is fine to
use the estimated T in calculations.
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