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In this work, the problem of coil design is studied. It is assumed that the structure of the coil is known (i.e., the positions of
simple circular coils are fixed) and the problem is to find current distribution to obtain the required magnetic field in a given
region. The unconstrained version of the problem (arbitrary currents are allowed) can be formulated as a Least-SQuares
(LSQ) problem. However, the results obtained by solving the LSQ problem are usually useless from the application point of
view. Moreover, for higher dimensions the problem is ill-conditioned. To overcome these difficulties, a regularization term
is sometimes added to the cost function, in order to make the solution smoother. The regularization technique, however,
produces suboptimal solutions. In this work, we propose to solve the problem under study using the constrained Quadratic
Programming (QP) method. The methods are compared in terms of the quality of the magnetic field obtained, and the power
of the designed coil. Several 1D and 2D examples are considered. It is shown that for the same value of the maximum current
the QP method provides solutions with a higher quality magnetic field than the regularization method.
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1. Introduction

The coil design problem is to find the shape and/or current
distribution in the coil to excite the required magnetic field
in a specific region, located in the interior of the coil. The
problem belongs to the class of magnetic synthesis issues.

The problem has many applications, e.g., in medical
imaging diagnostics. Magnetic resonance imaging devi-
ces are built of three types of coils. The first one is the coil
exciting strong and homogeneous magnetic field. Magne-
tic homogeneity has a great impact on the imaging quali-
ty. The second coil, called the “gradient coil”, is built to
produce the gradient field (a linearly changing magnetic
field), and the third coil is of radio frequency (Jin, 1999).
Coils of the first type are usually made of superconducting
materials due to the necessity of using very large currents.
The other two coils are usually standard resistive ones. A
homogeneous magnetic field is also required in devices
like magnetic separators or filters.

In this work, we concentrate on the problem of desi-
gning coils exciting strong homogeneous magnetic fields.
Although the main aspect of the design is the homogeneity
of the magnetic field, energy issues should also be taken
into account. This is especially important for standard (re-

sistive) coils which dissipate energy due to the flow of the
current. Therefore, one of the design goals should be the
minimization of the energy dissipated in the coil. For stan-
dard coils the energy dissipated by the coil is proportional
to the sum of squares of currents of simple coils. For su-
perconducting coils this factor becomes important in the
case of an abnormal work of the device.

Assuming that the shape of the coil is fixed (for
example, the coil is composed of a fixed number of sim-
ple coils, and their positions are fixed), the problem under
study can be described as a system of linear equations.
Usually the number of simple coils is smaller than that of
points in the target region. Therefore, the linear problem is
overdetermined and the system of linear equations has no
solution. A standard approach to approximate the solution
of overdetermined systems is to use the Least-SQuares
(LSQ) method. It appears that the solutions found using
this method are often useless from the application point
of view. The currents found are very large and have op-
posite signs in neighboring simple coils (Garda and Ga-
lias, 2010).

In order to obtain solutions useful from a practi-
cal point of view, one has to introduce some additio-
nal constrains. One of the frequently used methods to
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give preference to a particular solution with desirable
properties is the Tikhonov regularization method (Sikora
et al., 1980; Zhu et al., 2012). This method of solving
LSQ problems is widely used when the linear system of
equations is ill-conditioned. Another approach is to intro-
duce additional constrains on the currents. The simplest
one is to assume that all currents should be non-negative
(Garda, 2012). This leads to the Non-Negative Least SQu-
ares (NNLSQ) problem. Garda and Galias (2012) show
that the NNLSQ approach outperforms the Tikhonov re-
gularization based method both in terms of the quality of
the solution and computation time. However, values of
currents found using the NNLSQ method are very large,
which makes the solution impractical because of the ener-
gy aspects. Heuristic methods (for example, genetic algo-
rithms) are sometimes used to solve the constrained coil
design problem (Fisher et al., 1997). However, in the pro-
blem of linear coil design these methods are outperformed
by standard linear algebra tools (Garda and Galias, 2010)
and will not be studied here.

In this work, we consider a constrained coil design
problem, where the additional assumption is that currents
in simple coils belong to a certain interval, i.e. ik ∈
[imin, imax]. In the simplest case, when one assumes that
all currents have the same sign, i.e., imin = 0, imax = ∞,
this problem reduces to the NNLSQ one. Using finite lo-
wer and upper bounds on currents limits the energy dis-
sipated in the coil (the energy is proportional to the sum
of squared currents), and therefore the energy aspect is
automatically addressed by this method. It is shown that
the problem considered can be solved using the Quadratic
Programming (QP) method with box constrains.

The structure of the paper is the following. In Sec-
tion 2, the coil design problem under study is defined. The
Tikhonov regularization approach and the quadratic pro-
gramming method are briefly described in Section 3. In
Section 4, the four methods (LSQ, Tikhonov regulariza-
tion, NNLSQ, and constrained QP) are compared in terms
of the homogeneity of the magnetic field obtained, and the
energy dissipated in the coil.

It is shown that the constrained quadratic program-
ming approach provides solutions with a more homogene-
ous magnetic field and lower power than the regularization
method.

2. Problem description

The coil design problem can be solved using the idea of
the “target field” approach (Turner, 1986). Figure 1 shows
the cross-section of the coil. It is assumed that the coil is
composed of n × k coaxial coils, called in the following
“simple coils”. Here n and k are the numbers of simple
coils in the z and r directions, respectively. The goal is to
excite the desired magnetic field in the target points. The
number of target points is denoted by m. In the example

Fig. 1. Structure of the coil and target points.

shown in Fig. 1, target points lie on the circle centered at
the origin of the coordinate system. We also consider the
case when target points are located on the z axis. Let xi

denote the current flowing in the i-th coil.
The design problem is to find the vector of currents

x = (x1, x2, . . . , xw)T , where w = n · k is the total num-
ber of simple coils. Throughout the paper, the cases k = 1
and k > 1 will be referred to as the one-dimensional (1D)
case and the two-dimensional (2D) case, respectively.

Each coil yields a contribution to the magnetic field
at each target point. For the system of coaxial circular co-
ils, only the Bz and Br components of the magnetic field
in the z and r directions need to be considered. Maco-
vski et al. (2000) show that Br is much smaller than Bz

and has negligible contribution to the total magnetic field.
Therefore, it is sufficient to consider the Bz component
only. The contribution from the i-th simple coil with the
current xi located at the position (ri, zi) to the magnetic
field at the target point (rj , zj) can be computed as

Bj,i =
μ0

2π
√

(ri + rj)2 + (zj − zi)2
(1)

·
(

K(k) − r2
i + r2

j + (zj − zi)2

(ri − rj)2 + (zi − zj)2
E(k)

)

xi,

where k =
√

4rirj/((ri + rj)2 + (zi − zj)2) and K(·),
E(·) denote the elliptic integrals of the first and second
kind, respectively. When the target point is located on the
z axis (rj = 0), (1) reduces to

Bj,i =
μ0r

2
i

2(r2
i + (zi − zj)2)

3
2
· xi. (2)

Let us denote by bj the desired value of the magnetic
field at the j-th target point. The goal is to find the values
of currents xi such that at each target point the difference

bj −
w∑

i=1

Bj,i
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between the desired field and the field exited at the target
point is as small as possible.

Since the relation between the field at target points
and the current at a given coil is linear, and m is larger than
w, one can formulate the problem as an overdetermined
set of linear equations,

A x = b, (3)

where A ∈ R
m×w is the coefficient matrix (the element

Aj,i is the coefficient at xi in (1) or (2)), x ∈ R
w is the

vector of the currents to be found, and b ∈ R
m is the

vector defining the required field at target points.

3. Design methods

3.1. Least squares method. The least squares solution
is the one that minimizes the sum of squared residual er-
rors for all target points. This can be expressed by

x̂ = argmin
x

‖A x − b‖2
2, (4)

where ‖ · ‖2 denotes the Euclidean norm.
It is well known that the minimum (4) can be found

by solving the set of normal equations

AT A x̂ = AT b. (5)

The matrix A is usually ill-conditioned (especially for lar-
ge w and m), which may lead to propagation of numerical
errors and wrong solutions. Moreover, the LSQ method
does not control the magnitude of the solution, and the-
refore solutions found in this way may be useless from
a practical point of view. Examples will be given in Sec-
tion 4.

3.2. Tikhonov regularization. Tikhonov regulariza-
tion is a method frequently used for solving ill-posed pro-
blems (Tikhonov and Arsenin, 1977; Hansen, 1998; Pra-
sath, 2011). In this method, the problem (4) is regularized
by introducing an additional term to the minimized func-
tion,

x̂ = argmin
x

(‖Ax − b‖2
2 + ‖Λx‖2

2

)
, (6)

where Λ is a suitably chosen Tikhonov matrix. Selecting
Λ = λI gives preferences to solutions with a lower Eucli-
dean norm.

Here, we use the Tikhonov method to solve the opti-
mization problem (4) with an additional constraint that
xi ≥ 0 for each i. This is achieved by finding a mini-
mum value of λ (called in the following λopt) such that
the solution of (6),

x̂(λ) = argmin
x

{‖Ax − b‖2
2 + λ2‖x‖2

2

}
,

satisfies the condition x̂i ≥ 0 for all i, i.e.,

λopt = min{λ : x̂i(λ) ≥ 0, ∀i}.

The coefficient λ controls the smoothness of the solu-
tion. By increasing λ we can easily obtain a solution with
all positive entries. However, we want to keep λ as small
as possible so that the term ‖Ax − b‖2 remains important
when finding x̂.

λopt can be found using the bisection algorithm. The
algorithm starts with two values of λ, denoted by λmin and
λmax. Initially, λmin is set to zero and λmax is selected so
that x̂i(λmax) ≥ 0 for each i. In each step of the algori-
thm, a new value λ = 0.5 · (λmin + λmax) is tested. If
x̂i(λ) ≥ 0 for each i, then we set λmax = λ. Otherwi-
se, we set λmin = λ. When the difference λmax − λmin

is sufficiently small, the computations are stopped and
λopt = λmax is returned.

3.3. Quadratic programming method. Since

‖Ax − b‖2
2 = 2

(
1
2
xT AT Ax − (AT b)T x +

1
2
bT b

)
,

defining Q = AT A ∈ R
w×w and q = −AT b ∈ R

w,
the problem of finding the minimum of ‖Ax − b‖2

2 with
the box constrains xi ∈ [xi, xi] can be formulated as a
constrained quadratic programming problem,

x̂ = arg min
x : x≤x≤x

1
2
xT Qx + qT x, (7)

where x, x ∈ R
w are the vectors of lower and upper con-

straints. The active-set algorithm can be used to solve the
problem formulated above (Voglis and Lagaris, 2004). For
the problem (7), the associated Lagrangian has the form

L(x, γ, α) =
1
2
xT Qx + qT x − γT (x − x) + αT (x − x),

where γ and α are the Lagrange coefficients representing
the upper and lower constraints, respectively.

The triple (x̂, γ̂, α̂) is the solution of the constra-
ined quadratic programming problem when it fulfills the
Karush–Kuhn–Tucker (KKT) conditions,

Qx̂ + q − γ̂ + α̂ = 0,

γ̂ ≥ 0, α̂ ≥ 0, (8)

γ̂(x̂ − x) = 0, α̂(x − x̂) = 0,

x ≤ x̂ ≤ x.

For these KKT conditions, the implementation of the
exterior point active set algorithm is presented by Voglis
and Lagaris (2004). In the algorithm, two active sets are
used. These two sets consist of indices of unknowns xi

which the algorithm tries to set outside the lower and up-
per constraints, respectively. The remaining indices con-
stitute the passive set. When a variable xi is in one of the
active sets, its value is xi = xi or xi = xi, depending on
which active set it belongs to. Note that in the algorithm,
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the solution is found only for the unknowns belonging to
the passive set. This set is usually significantly reduced
in the course of the algorithm. Therefore, the active set
approach has the advantage of limiting the dimensionali-
ty of the problem to be solved and is recommended for
the problem described in the paper (cf. Szynkiewicz and
Błaszczyk, 2011).

As mentioned before, the non-negative least squares
problem can be considered a special case of the quadra-
tic programming method with box constraints (the emp-
ty set of upper constraints and bounds x = (0, . . . , 0)T

are used). It follows that to solve the NNLSQ problem,
a single active set should be used. The original NNLSQ
algorithm was proposed by Lawson and Hanson (1987).
Its improved version can be found in the work of Bro and
Jong (1997).

4. Computational results and discussion

The problem of designing a coil of length zcoil is con-
sidered. Simple coils are coaxial circles of radius r ∈
[rmin, rmax] centered at the z axis. In the 1D case, all sim-
ple coils have the same radius rmin = rmax. In the 2D
case, radii of the simple coils change uniformly between
rmin and rmax. Two target areas are considered. In the first
case, target points are located on the interval of length zreq

enclosed in the z-axis and centered at the origin. In the
second case, target points are located on the circle of dia-
meter dSV (diameter spherical volume) positioned at the
center of the coordinate system. In all the tests, the desired
magnetic field is homogeneous (it is equal at all target po-
ints) and has the value μ0 being the magnetic permeability
of the vacuum. As mentioned in the Introduction, produ-
cing a homogeneous magnetic field in a certain spherical
volume is crucial from the application point of view, espe-
cially in the design of magnets for MRI devices. Parame-
ters of the design problem have been chosen according to
the relations proposed by Xu et al. (1999),

zcoil = 0.8d + 1.2dSV, (9)

where d = 2rmin is the interior diameter of the coil. The
above formula binds the relations of the length and diame-
ter of the coil with dSV. It was developed under the con-
straints to keep the high homogeneity and minimize the
cross-section area of the coil. Values of the construction
parameters used in simulations are presented in Table 1.
The proposed dimensions are typical for whole-body MRI
systems used nowadays.

The quality of the solution is assessed by three coef-
ficients. The first one, called the field quality coefficient, is
the square of the Euclidean norm of the difference betwe-
en the required field and the field excited by the coil,

f(x̂) = ‖b − Ax̂‖2
2. (10)

Table 1. Dimensions of the coil and target areas (in meters).
Target area zcoil rmin rmax dSV zreq

Case 1, 1D 1.02 0.3 – – 0.9
Case 2, 1D 1.02 0.3 – 0.45 –
Case 1, 2D 1.02 0.3 0.4 – 0.9
Case 2, 2D 1.02 0.3 0.4 0.45 –

This coefficient is equal to the cost function minimized
in the LSQ optimization process. The second coefficient,
called the energy coefficient, is the square of the Euclidean
norm of the solution,

‖x̂‖2
2 =

w∑

i=1

x̂2
i . (11)

This coefficient is proportional to the power dissipated in
the coil (in the case of standard resistive 1D coil). The
third coefficient used is the maximum value of the current,

‖x̂‖∞ = max
x∈1,...,w

|x̂i|. (12)

This coefficient is also very important form the application
point of view (the maximum value of the current is limited
by properties of the power supply).

4.1. Least squares method. First, let us study the case
when the problem dimension w is small. Let us consider
the case n = 6, k = 1, w = 6, m = 1000, and the
linear target area. The current distribution obtained using
the LSQ method and the corresponding magnetic field are
shown in Fig. 2. One can see that all currents are positive.
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Fig. 2. LSQ solution for n × k = 6 × 1 and the corresponding
field distribution for the linear target area.
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Fig. 3. LSQ solution for n × k = 20 × 10 and the linear target
area.

More generally, for small w (w ≤ 6 for the linear
target area and w ≤ 10 for the circular target area) the
non-negativity constrains for the LSQ solution are fulfil-
led and, in consequence, the NNLSQ method and the con-
strained QP method with sufficiently large upper bounds
produce the same results as the LSQ method.

Now, let us consider the case when the dimension w
is larger. Assume n = 20, k = 10, w = 200, m = 1000,
and the linear target area. The solution found using the
LSQ method is presented in Fig. 3. Let us note that in
many cases neighboring coils have currents of opposite
directions and they are much larger than for small w.

Another important observation is the lack of symme-
try of the solution. Since the problem is symmetric, we
expect a symmetric solution. The lack of symmetry indi-
cates instability of the computation procedure. These pro-
perties of the solution are consequences of the fact that
for larger w the problem becomes ill-posed. Although the
field quality coefficient for this solution is very small, the
solution is useless from the practical point of view, due
to its properties mentioned above. Its energy coefficient is
very large

(‖x̂‖2
2 ≈ 2.2 · 103

)
.

4.2. Tikhonov regularization. Let us now solve the
same problem (n = 20, k = 10, m = 1000, the line-
ar target area) using the Tikhonov regularization method.
To apply this method, first we have to select the value of
the parameter λ. The minimum value of the regulariza-
tion parameter λ satisfying the constraints x̂i ≥ 0 for all
i is found using the bisection algorithm presented in Sec-
tion 3.2. Figure 4 presents intermediate computation re-
sults as a function of the iteration number. After 37 itera-
tions an optimal regularization parameter is found with a
precision of 10−10.

Figure 5 presents the solution obtained using the Ti-
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λ
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Fig. 4. Convergence of the bisection algorithm to find the opti-
mal regularization parameter, n × k = 20 × 10, m =
1000.

khonov regularization method with the regularization pa-
rameter λopt and the corresponding magnetic field at the
target area. As expected, the solution is smooth and sym-
metric. Note that the field quality coefficient f(x̂) ≈ 0.2
is much worse than for the LSQ solution f(x̂) ≈ 3·10−24.
This can be regarded as a cost of smoothing the solution.
However, the energy coefficient is approximately 1.4 ·105

times smaller and the maximum current is approximately
640 times smaller than for the LSQ solution. These pro-
perties make the solution found using the Tikhonov regu-
larization method much better from the application point
of view.

For the same parameters of the coil, when the tar-
get points are located on the circle, the optimal value of
the regularization parameter is smaller (λopt ≈ 0.4683)
and the field quality coefficient is significantly smaller
(f(x̂) ≈ 1.8899 · 10−4). This means that, for the circular
target area, it is easier to obtain good solutions. However,
note that, due to a more complicated formula of the cost
function (it involves calculation of elliptic integrals), the
computation time for the circular case is larger (approxi-
mately four times) than for the linear case.

Figure 6 shows the solution obtained using the Ti-
khonov regularization method and the corresponding ma-
gnetic field in the circular target area for the 1D case
(n× k = 200× 1). This solution was obtained for the
optimal regularization parameter λopt = 1.764 · 10−2.
The current distribution in the coil is smooth and sym-
metric. Observe that the field quality coefficient f(x̂) ≈
3.77 · 10−7 is about 500 times smaller than for the 2D ca-
se (n×k = 20×10), although the total number of simple
coils is the same. This can be explained by noting that in-
creasing n makes it possible to obtain better control over
coils located closer to the target area.

4.3. Non-negative least squares method. Let us now
solve the same problem (n × k = 200 × 1, the circular
target area) using the NNLSQ method. The solution and
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Fig. 5. Solution for n × k = 20 × 10 and the linear target
area obtained with the Tikhonov regularization method
for the optimal regularization parameter and the corre-
sponding magnetic field.

the corresponding magnetic field are plotted in Fig. 7. One
can see that only 32 out of 200 simple coils have non-zero
currents. A general observation is that the number of coils
with a non-zero current when using the NNLSQ method
is usually small. This explains the efficiency of the active
set algorithm and its capability to solve high dimensional
problems. In this particular case, 168 variables belong to
the active set. At the final step of the algorithm, their va-
lues are set to zero and the optimization is performed with
the remaining 32 variables only. Note that the field quality
coefficient is better than for the Tikhonov regularization
technique. However, the maximum value of the current
‖x‖∞ is approximately 20 times larger than for the regu-
larization method. This results in an increase in the energy
coefficient, which is more than 19 times larger than for the
regularization method.

It is interesting to note that when the size of the pas-
sive set exceeds a certain limit, the standard NNLSQ algo-
rithm does not work properly. The solution contains nega-
tive currents; the energy factor and the maximum current
become extremely large. This is a consequence of the fact
that for a large size of the passive set the subproblem of
solving the unconstrained LSQ problem for the variables
from the passive set becomes ill-conditioned.
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Fig. 6. Solution for n × k = 200 × 1 and the circular target
area obtained with the Tikhonov regularization method,
λopt = 1.76 · 10−2.

4.4. Constrained quadratic programming method.
The constrained quadratic programming method makes it
possible to improve the field quality coefficient of the Ti-
khonov regularization method without degrading the ener-
gy coefficient. In order to compare the constrained QP me-
thod with the Tikhonov regularization method, the lower
and upper constraints for the solution are chosen to match
the bounds for the solution found with the regularization
method. The lower constraint ensures that the solution is
non-negative. The upper constraint ensures that currents
are not larger than the maximum current obtained with the
regularization technique. More precisely, we use xi = 0
and xi = ‖x̂(λopt)‖∞, where x̂(λopt) is the solution fo-
und by the regularization method with the optimum value
of λ.

Figure 8 shows the solution for the case n × k =
200× 1 and the circular target area obtained with the con-
strained QP method. The upper constraint is equal to the
maximum current of the solution presented in Fig. 6, i.e.,
xi = 1.791·10−2 A. In the solution shown in Fig. 8(a), the
active set representing the lower constraint (zero current)
contains 110 elements and the upper constraint active set
(maximum current) contains 78 elements. It follows that
the passive set contains 22 elements only. The field quality
coefficient is approximately 6.3 times smaller than for the
solution obtained with the regularization algorithm, while
the energy coefficient is approximately 0.6 times larger.
Obviously, the maximum value of the current is the sa-
me for both the methods. When we compare this solution
with the NNLSQ one, it can be seen that the quality of the
magnetic field is much worse (the field quality coefficient
is 1500 times larger). This is a consequence of additional
constraints (maximum value of currents). However, both
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Fig. 7. NNLSQ solution for n × k = 200 × 1 and the circular
target area.

the energy coefficient and the maximum current are ap-
proximately 20 times smaller than for the NNLSQ solu-
tion.
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Fig. 8. Constrained QP solution for n × k = 200 × 1 and the
circular target area

The results for the 2D case with n × k = 20 × 10
are shown in Fig. 9. The white, black and gray colors re-
present the variables from the lower active set, the upper
active set and the passive set, respectively. The lower ac-
tive set, the upper active set, and the passive set contain
120, 74, and 6 elements, respectively. The field quality co-
efficient is approximately 3.8 times smaller and the ener-
gy coefficient is approximately two times larger that than
for the solution obtained with the Tikhonov regularization

method shown in Fig. 5.
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Fig. 9. Constrained QP solution for n×k = 20×10 (shades of
gray represent values of currents, xi = 0: white, xi =
0.01: black)

4.5. Comparison of the methods. Table 2 presents re-
sults of a number of design tests carried out using all four
optimization methods considered in this work. Four de-
sign problems are taken into account. These are combina-
tions of one and two-dimensional versions of the coil, and
linear and circular target areas. Problems with the dimen-
sions w = n ·k ≤ 500 have been considered. As expected,
in all cases the best solution in terms of the field quality
coefficient is the one found using the unconstrained LSQ
method. However, as mentioned before for large w, these
solutions are characterized by a very large maximum cur-
rent, a very large energy coefficient, the lack of symmetry
and opposite currents in neighboring coils. Also note that
in some cases the coefficients oscillate when the dimen-
sion of the problem is increased. This is an indication of
the lack of numerical stability of the computational algori-
thm. All these properties make the LSQ solutions obtained
for large w useless from the application point of view.

The other three methods work by imposing some
constraints on solutions. As a consequence, algorithms be-
come numerically stable and lead to symmetric solutions.
In all cases, the evaluated coefficients change monotoni-
cally with the problem dimension. Out of the three me-
thods, the best solutions in terms of the quality of the ma-
gnetic field are the ones obtained using the non-negative
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Table 2. Comparison of performance of four optimization methods for different coil design problems, f(x) = ‖Ax−b‖2
2: field quality

coefficient, ‖x‖∞: maximum current, ‖x‖2
2: energy coefficient.

n×k
LSQ Tikhonov NNLSQ constrained QP

f(x) ‖x‖∞ ‖x‖2
2 f(x) ‖x‖∞ ‖x‖2

2 λopt f(x) ‖x‖∞ ‖x‖2
2 f(x) ‖x‖∞ ‖x‖2

2

1D, linear target area
10×1 3.93·10−3 0.566 1.126 0.027 0.420 0.433 0.458 2.46·10−2 0.428 0.462 0.026 0.420 0.443
25×1 1.27·10−9 50.036 4.38·104 0.034 0.191 0.158 0.956 3.03·10−3 0.418 0.465 0.019 0.191 0.236
50×1 5.16·10−18 76842 4.04·1010 0.035 0.098 0.078 1.404 1.50·10−3 0.413 0.437 0.016 0.098 0.134
150×1 2.34·10−19 12828 1.41·109 0.035 0.033 0.026 2.422 9.15·10−4 0.410 0.444 0.015 0.033 0.050
200×1 3.78·10−19 18514 1.53·109 0.035 0.025 0.019 2.807 8.58·10−4 0.410 0.436 0.015 0.025 0.037
250×1 1.13·10−19 15351 1.06·109 0.035 0.020 0.016 3.138 8.26·10−4 0.409 0.423 0.015 0.020 0.030
500×1 1.07·10−19 15747 1.49·109 0.035 0.010 0.008 4.438 7.64·10−4 0.409 0.425 0.014 0.010 0.015

1D, circular target area
10×1 1.19·10−2 0.351 0.3245 1.19·10−2 0.348 0.320 0.010 1.19·10−2 0.351 0.324 1.19·10−2 0.348 0.321
25×1 6.48·10−9 22.937 2.33·103 8.25·10−7 0.132 0.115 0.010 7.93·10−9 0.357 0.293 2.56·10−7 0.132 0.129
50×1 2.55·10−19 43653 5.98·109 4.68·10−7 0.070 0.060 0.010 6.35·10−11 0.362 0.302 8.43·10−8 0.070 0.080
150×1 1.18·10−26 10.493 656.0 3.80·10−7 0.024 0.020 0.015 1.54·10−11 0.363 0.302 6.09·10−8 0.024 0.032
200×1 7.46·10−27 9.733 551.2 3.77·10−7 0.018 0.015 0.018 1.33·10−11 0.363 0.299 5.97·10−8 0.018 0.025
250×1 9.11·10−27 10.716 559.3 3.74·10−7 0.014 0.012 0.020 1.19·10−11 0.787 1.303 5.95·10−8 0.014 0.020
500×1 9.65·10−27 8.047 472.2 3.79·10−7 0.007 0.006 0.028 1.02·10−11 0.669 0.970 6.01·10−8 0.007 0.010

2D, linear target area
5×2 3.95·10−5 2.602 26.35 0.2255 0.400 0.454 0.373 0.1961 0.582 0.803 0.2190 0.400 0.527
10×4 8.22·10−23 319.29 5.42·105 0.1624 0.097 0.085 3.089 1.86·10−2 0.401 0.446 6.93·10−2 0.097 0.140
15×10 1.77·10−24 21.797 3.68·103 0.1646 0.028 0.022 6.169 7.52·10−3 0.363 0.387 4.75·10−2 0.028 0.043
20×10 2.61·10−24 12.829 2.21·103 0.2018 0.020 0.016 8.261 4.43·10−3 0.527 0.633 5.28·10−2 0.020 0.031
25×5 1.97·10−24 11.665 1.89·103 0.1680 0.033 0.027 5.758 3.18·10−3 0.275 0.379 4.57·10−2 0.033 0.051
25×10 3.06·10−24 12.243 1.17·103 0.1977 0.016 0.013 9.132 2.89·10−3 0.269 0.384 4.88·10−2 0.016 0.025
50×5 1.13·10−24 7.174 520.5 0.1642 0.017 0.013 8.039 1.60·10−3 0.262 0.362 4.33·10−2 0.017 0.026
50×10 4.14·10−24 4.171 365.0 0.2002 0.008 0.006 13.059 1.48·10−3 0.305 0.373 4.84·10−2 0.008 0.013

2D, circular target area
5×2 1.05·10−4 0.700 1.757 3.81·10−2 0.240 0.238 0.828 1.99·10−2 0.311 0.380 2.29·10−2 0.240 0.284
10×4 1.03·10−21 69.562 1.67·104 5.72·10−5 0.097 0.078 0.068 2.52·10−7 0.234 0.247 4.25·10−6 0.097 0.137
15×10 8.11·10−27 3.265 107.1 3.10·10−4 0.019 0.016 0.508 3.97·10−8 0.356 0.338 1.22·10−5 0.019 0.028
20×10 4.77·10−27 2.984 52.36 1.89·10−4 0.015 0.013 0.468 5.96·10−9 0.354 0.294 9.66·10−6 0.015 0.022
25×5 3.13·10−27 4.044 81.75 3.35·10−4 0.022 0.020 0.511 1.56·10−9 0.371 0.323 1.80·10−5 0.022 0.032
25×10 3.01·10−27 2.518 41.19 5.66·10−4 0.011 0.009 0.978 1.09·10−9 0.364 0.306 1.93·10−5 0.011 0.016
50×5 1.38·10−27 1.621 18.72 3.08·10−4 0.011 0.010 0.688 2.27·10−10 0.375 0.316 1.51·10−5 0.011 0.017
50×10 1.93·10−27 0.994 14.73 6.54·10−4 0.005 0.005 1.501 1.12·10−10 0.369 0.313 2.18·10−5 0.005 0.008

least squares method.

For this method, the maximum current and the ener-
gy coefficient are considerably smaller than for the uncon-
strained LSQ problem. However, as mentioned before, the
NNLSQ approach usually produces solutions where on-
ly a few of the simple coils have non-zero currents. This
leads to a much larger maximum current and the energy
coefficient than for the other two methods.

The Tikhonov regularization method works by smo-
othing the solution. The method of choosing the opti-
mal value of the regularization parameter proposed in this
work ensures that all the currents are non-negative. This
approach provides a compromise between the field quality
coefficient, the energy coefficient, and the maximum value
of the current. From the results presented in Table 2, it fol-
lows that for the same value of the maximum current, the
constrained QP method outperforms the Tikhonov regula-

rization method in terms of the field quality coefficient.
This is achieved at the expense of a slight increase in

the energy coefficient. It should be also pointed out that
the constrained QP method is the most expensive one of
the four tested methods in terms of the computational ti-
me. For instance, the solution of the 1D problem with a
linear target area for n = 500 took approximately 8 mi-
nutes (62741 cost function evaluations). The non-negative
least squares method and the regularization method so-
lved the same problem in 0.04 seconds and 0.75 seconds,
respectively.

5. Conclusions

Several methods for the linear coil design problem have
been compared. This includes the least squares method,
the Tikhonov regularization method, the non-negative le-
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ast squares method and the quadratic programming me-
thod with box constrains. It has been shown that for a large
dimension of the problem the LSQ solutions are unusable
from the application point of view. The regularization me-
thod provides useful solutions. However, the constrained
quadratic programming method produces better results in
terms of the quality of the magnetic field for the same ma-
ximum value of the current.
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