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The paper concerns the problem of Boolean satisfiability checking, which is recognized as one of the most important issues
in the field of modern digital electronic system verification and design. The paper analyzes different strategies and scenarios
of the proving process, and presents a modified and extended version of the author’s FUDASAT algorithm. The original
FUDASAT methodology is an intuitive approach that employs a commonsense reasoning methodology. The main objective
of the work is to investigate the SAT-solving process and try to formulate a set of rules controlling the reasoning process of
the FUDASAT inference engine. In comparison with the author’s previous works, the paper introduces new mechanisms:
hypergraph analysis, multiple variable assignments and search space pruning algorithms. The approach considers only 3-
SAT class functions, although a generalization of the method is discussed as well. The presented approach has been tested
on various benchmarks and compared with the original pure FUDASAT algorithm as well as with other algorithms known
from the literature. Finally, the benefits of the proposed SAT solving technique are summarized.
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1. Introduction

The problem of Boolean SATisfiability (SAT) has been
defined since the beginning of the existence of logical
circuits and now is one of the most studied issues in
the field of combinatorial search and minimization as
well as artificial intelligence. Davis and Putnam (1960)
proposed the first formal approach to SAT problems.
They developed an algorithm for checking the validity
of first-order logic formulas using a resolution-based
decision procedure for propositional logic. In general,
the original DP (the acronym for the authors’ initials)
algorithm consists of three main steps: transformation
of the original formula into a special form (in particular,
CNF) and elimination of all quantifiers, generation of all
propositional ground instances (one by one), and checking
the satisfiability of all instances.

The DP algorithm appeared not to be very effective
and a modified version of the first approach, known as the
DPLL (Davis–Putnam–Logemann–Loveland) algorithm
(Davis et al., 1962) became, in fact, a first complete,
backtracking-based algorithm for deciding about the
satisfiability of propositional logic formulae expressed
in CNF, i.e., for solving the CNF-SAT problem. Since
then many mathematicians as well as engineers from all
over the world proposed various techniques in the field of

SAT (Suyama et al., 1999; Marques-Silva and Sakallah,
1999; Han et al., 2010; Moskewicz et al., 2001; Hu
et al., 2008; Yin et al., 2012). SAT solvers are commonly
used for testing in automated test patterns generators, and
many modern Electronic Design Automation (EDA) tools
contains appropriate SAT packages.

The work presented in the paper proposes some
modifications to existing approaches; in particular,
it introduces a new original SAT-solving algorithm
supported with optimal selection of variables and
backtrack search controlling mechanisms based on the
technique borrowed from AI, i.e., Fuzzy Default Logic
(FDL). After a short discussion of related works in
Section 2, the author points out the parallelism between
the non-monotonic reasoning and Boolean satisfiability
solving (Section 3). The FDL mechanism is briefly
recalled in Section 4. Section 5 presents the basic stages
of the original FUDASAT algorithm (Pułka, 2011), which
is the starting point for the discussion on the searching
strategies. Section 6 is the main part of the paper.
It analyzes the searching strategies and introduces the
methodology of pruning the searching space.

Section 7 summarizes the paper with concluding
remarks. All presented methodologies are exemplified on
various functions (problems) given in Appendices.
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2. Boolean satisfiability problem
formulation

One can express the problem of Boolean function
satisfiability as the verification and/or the mathematical
task that answers the question if there exists (or does not
exist) an assignment for a given function’s variables for
which this function is satisfied (i.e., this function gives
truth).

2.1. Standard specification of SAT problems. The
most convenient form of the description of the SAT
problems is the standard Conjunctive Normal Form
(CNF), i.e., a conjunction of clauses Ci, where each
clause is given as a disjunction of literals. Each
literal comprises the elementary logical unit of a given
Boolean function F (problem), being merely an instance
of a variable or its complement. Formally, for a
given Boolean function F (x1, . . . , xN ) of variables
X =

{
x1,¬x1, . . . , xN ,¬xN

}
(where the symbol ¬xi

denotes the complemented variable), the CNF form of the
function F is

F (x1,¬x1, . . . , xN ,¬xN ) = C1 ∧ C2 ∧ · · · ∧ CM . (1)

This form (CNF) of problem representation is very clear,
because in order to prove the satisfiability of the function
we have to satisfy all clauses included within the formula
(function). Very often SAT problems are restricted to
instances where all clauses have the same length k. Such
problems are denoted by k-SAT:

F k−SAT(x1,¬x1, . . . , xN ,¬xN ) = C1 ∧ · · · ∧CM , (2)

where every clause Ci is built of k variables (literals):

Ci = xi1 ∨ xi2 ∨ · · · ∨ ¬xik−1 ∨ ¬xik, (3)

and

{
xi1, . . .¬xik−1,¬xik

} ⊂ {
x1,¬x1, . . . , xN ,¬xN

}
.
(4)

It could be proved (and many experiments in the field
confirm it) that the smallest value of k for which the
k-SAT problem is NP-complete is three. This fact justifies
why 2-SAT and 3-SAT tasks are the most thoroughly
investigated problems in the field.

The former search algorithms for SAT problems
could be divided into static and dynamic ones. The
former are based on the predetermined (fixed) order of
the variables, while in the latter the order of variables
dynamically changes during the runtime. Moreover, static
algorithms are usually simple, but ineffective and slower
than dynamic search algorithms, which usually require
heuristic approaches.

Generally, we can distinguish several problems

occurring during the solving process: the appropriate
order of variables selection, conflict analysis and
registration process as well as the backtrack search
procedure in the case of a conflict. Very popular are
approaches to variable selection based on the MOM
(Maximum number of Occurrences in the Minimum
length clauses) philosophy (Suyama et al., 1999).
This methodology is intuitive, because we can simply
explain that variables constituting the shortest clauses
are the most constrained literals of the entire formula
(function). There exist at least several versions of the
MOM idea (Suyama et al., 1999), but many works
(Marques-Silva and Sakallah, 1999; Tille et al., 2010;
Han et al., 2010) show that there is no one universal
methodology of the variables’ order selection. The
Chaff technique (Moskewicz et al., 2001) uses a very
interesting decision heuristic, the VSIDS (Variable State
Independent Decaying Sum), which ranks variables by
literal counts and periodically divides all counts by an
empirical constant, and during the backtrack process
(forced by the conflict) another unassigned variable is
taken from the stack.

The GRASP technique (Marques-Silva and Sakallah,
1999) proposes an implication graph, in which every
variable has a node (similar to the technique based on
binary decision diagrams (Aloul et al., 2002)). The
implication graph keeps track of the values assigned
to variables and the dependencies of these assignments,
i.e., we can easy explain why a given variable has
been forced to true or false. The GRASP algorithm
also records conflict clauses and uses non-chronological
backtracking. Recently, Yin et al. (2012) presented
some interesting ideas improving the effectiveness of the
deductions trees by examination of the resolution process
during elimination of variables. As a result, implication
graphs could be improved.

3. Background of the approach

The author, in his previous works concerning SAT
problems (Pułka, 2011), pointed out some common
properties of nonmonotonic reasoning and Boolean
satisfiability problems. Let us briefly recall them.

(i) Satisfiability: looking for an assignment that satisfies
a given logical function (in SAT) can be compared to
searching for the extension of a given non-monotonic
theory (Brewka, 1991; Reiter, 1980).

(ii) Heuristic: both techniques are based on non-standard
inference schemes (experience), and both problems can be
classified as data mining and information reduction issues,
i.e., searching for unrecognized relationships between
elements hidden inside the database.

(iii) Selection of variable ordering: this property
corresponds to the problem of the variable assignment
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order in SAT solving and the preference operator proposed
in Answer Set Programming (ASP) (Balduccini et al.,
2006) based on disjunction logic.

(iv) Variable and conflict clauses recording: the analog
operation is also present in non-monotonic reasoning.
Brewka (1991) discussed the problem of consistency and
stability of extensions, which means that if we want to
have a stable, inconsistent system, we have to store the
assumed hypotheses. This property is sometimes called
cumulativity.

(v) Backtracking and conflict solving: In non-monotonic
logic, this process is called revision of beliefs. It occurs
when it is necessary to remove some previously assumed
hypotheses, which are inconsistent with a new piece of
information delivered to the system.

The inference engine of the FUDASAT algorithm
is based on Fuzzy Default Logic (FDL)—a mechanism
that combines the cumulative version of Reiter’s default
logic (Reiter, 1980) with Zadeh’s Generalized Theory of
Uncertainty (GTU) (Zadeh, 2006). A detailed description
of the FDL formalism is given by Pułka (2009).

FDL introduces Fuzzy Default Rules (FDRs)
(modified original Reiter defaults (Reiter, 1980)) in the
following form:

α : β1, β2, . . . , βN

Φλ
, (5)

where α, β1, β2, . . . , βN (i = 1, . . . , N ) are wffs (well
formulated formulas) in a given propositional language L,
and Φλ is a Fuzzy Hypothesis (FH):

Φλ =
{[

hλ
1 , Tw

(
hλ

1

)]
, . . . ,

[
hλ

m, Tw
(
hλ

m

)]}
, (6)

where hλ
i (i = 1, . . . , m) are wffs in a given propositional

language L, and Tw
(
hλ

i

)
denotes trustworthiness, i.e.,

one of the modality of generalized constraints in the
Zadeh sense (Zadeh, 2006) (bivalent, probabilistic, fuzzy,
veristic, etc.). For the simplest case, trustworthiness
can be treated as a membership function or probability
(Zadeh, 2008). In the application to the SAT technique,
a hypothesis hλ

i corresponds to a single variable of
the Boolean function. Additionally, we assume that a
prerequisite α (like in the work of Reiter (1980)) is
represented by strong information (facts in the sense
of Gelfond and Lifschitz (1988)), while the possible
uncertainty or missing information is represented by
justifications β1, β2, . . . , βN . Nonmonotonicity is present
thanks to two assumptions: NaF (Negation as a Failure)
and CWA (Closed World Assumption). This scheme
reduces the problem of inference path propagation and
tracing for trustworthiness. If we would like to have
an FDR based fully on ignorance and/or vagueness, the
prerequisite is an empty set (α ≡ �).

Fig. 1. Granular view of hypotheses generation from the FDR.

The interpretation of the FDR is very similar
to the standard DL rule except for the form of the
hypothesis (FH), which consists of different aspects
(views, extensions) of the same problem, and each of
these sub-hypothesis has its own Tw coefficient reflecting
the significance of the given solution. This significance
is usually subjective and can be modified. Elements
of a given FH Φλ, i.e., hλ

1 , hλ
2 , . . . , hλ

m, are mutually
exclusive. At a first glance it looks like inconsistency,
because we would like to derive different hypotheses
about the same world, but we should remember that
each of them has its own trustworthiness level, and
moreover, it is the preprocessing phase before the final
assessment of hypotheses. To eliminate some very weak
hypotheses, we can add an additional cut-off mechanism,
which preserves inferring a hypothesis with a small level
of trustworthiness. Such a solution of the inference
engine simplifies hypothesis derivation, and the problem
of priorities and existence of various extensions of default
theories (Reiter, 1980; Brewka, 1991) does not limit
the application. During the inference process, it is
possible to observe various options (debug the inference
engine), and their number can be controlled by the cut-off
level. A granular representation of the FDR reasoning
procedure is presented in Fig. 1 (the width of the arrows
corresponds to the values of trustworthiness). Selection of
the final hypothesis requires introduction of two additional
operations necessary for hypotheses assessment (Pułka,
2009), namely, the Credible Set (CS) and Hypotheses
Reduction (HR).

The credible set Hλ of a given fuzzy hypothesis Φλ

is a subset of Φλ consisting of elements hλ
j which have

appropriate (acceptable according to selected criteria)
trustworthiness, i.e.,

Hλ ⊆ Φλ ∧ ∀h1
j λ∈H1λ Tw

(
hλ

j

) ≥ cut off . (7)

Intuitively, we can say that the CS corresponds to
those hypotheses that can be considered during the
further inferring process. Certainly, the presented
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mechanisms of their selection may be more complicated
or set up dynamically according to other constraints.
The trustworthiness of hypotheses and its ordering
corresponds to the ordering of literals in the head of the
disjunction rules in answer set programming (literals l0 to
lk from the expression (4)) and preference rules (Gelfond
and Lifschitz, 1988; Balduccini et al., 2006; Lukasiewicz
and Straccia, 2008).

The assessment of hypotheses and selection of the
final solution require a mechanism allowing comparison
of hypotheses, so we need to analyze the credible sets and
reduce all values of trustworthiness to only one for every
hypothesis. This operation is called hypothesis reduction,
i.e.,

HR
{⋃

i

Hλ
i

}

=
{[

hλ
i , Tw

(
hλ

i

)]∣∣
∣∃Hλk

k : hλ
i ∈ Hλk

k

∧ Tw
(
hλ

i

)
= opt

(
Tw

(
h

∑
λk

i

))}
,

(8)

where opt
(
Tw

(
h

∑
λk

i

))
denotes the optimal value of

trustworthiness for a given element (hypothesis) selected
from all credible sets.

The problem of proper selection of the opt function
is very interesting and it can be a field for user interaction
to the inferring process. The optimal function can be
flexible, i.e., it can have different meanings for different
kinds of trustworthiness (bivalent, probabilistic, veristic,
fuzzy). An optimal function can be also rigid (the
same for every trustworthiness), which means that it
corresponds to one of the following cases: maximum
(optimistic approach), mean (no priorities), minimum
(worst case analysis), max-min (fuzzy approach), etc.
An example of FDR rule application and hypotheses
(variables) assessment is presented in the last subsection
of this section, while the details of the implementation as
well as the appropriate algorithms can be found in our
earlier work (Pułka, 2009).

Taking into account realistic problems, i.e., Boolean
functions consisting of hundreds or even thousands of
variables, we need to find more than one hypothesis
(variable). That is why the entire process must be
repeated, and we can show it as a multistage procedure.

Hypotheses can be generated directly from fuzzy
default rules (as their hypotheses), and then we call
them hypotheses of the zero level or we can deduce
given information based on the hypothesis which is a
result of a non-monotonic inference process (Reiter, 1980;
Brewka, 1991). The latter also has to be classified as
a non-monotonic hypothesis, because it is based not on
a strong fact but on another non-monotonic hypothesis
and can be invalidated later. So each hypothesis has
to remember its predecessor. Because of this deduction

structure, we can call the inference engine multilevel.
After the revision of beliefs the system is ready to check
the completeness of the basic extension and make any
necessary supplements, to have a full set of the design
information.

Consequently, the generated hypotheses form a kind
of deductive chain, and a given assumed hypothesis
‘remembers’ its ancestor Sourcei. The final assessment
and selection of the best hypothesis as a final conclusion
can be based on various schemes which depend on
chosen demands: we can take a simple criterion
of the trustworthiness value (like verity in veristic
modality of generalized constraints), analyze the entire
path (paths) from Source0 to Sourcei, and find the
global trustworthiness (regarding it as probabilities or
possibilities), or use fuzzy max(min) criteria (Zadeh,
2006). The following example shows that the assessment
mechanism gives an additional ability to control the model
(selected extension). The example concerns variable
selection in a SAT-solving procedure.

Example 1. Let us assume that at the λ − 1 level
the FUDASAT algorithm (described in the following
section) has selected variable xk , and the sequence of
previous assignments (from the first level to the level of
number λ − 1) indicates that the possibilities (values of
trustworthiness) of the selections for variables x1, x2 and
x3 are Tw(x1) = 0.2; Tw(x2) = 0.3 and Tw(x3) =
0.19, respectively. Moreover, from the other two FDR
(static set), the system is able to infer the hypotheses
(variables) with the following trustworthiness values:
Tw′(x1) = 0.33, Tw”(x1) = 0.22, Tw′(x2) = 0.35,
Tw”(x2) = 0.16 and Tw′(x3) = 0.4, Tw”(x1) = 0.11
(Fig. 2). So, we have three credible sets (Pułka, 2009)
for variables x1, x2 and x3: CS(x1) = 0.2, 0.33, 0.22,
CS(x2) = 0.3, 0.35, 0.16 and CS(x3) = 0.19, 0.4, 0.11.

The final choice depends on the assessment criteria.
If the maximal possible value is taken into account,
variable x3 (with the highest value 0.4) is the best choice.
In the case of the mean value we should take the variable
x2 (with the mean value 0.27), and in the worst case
(max-min) analysis suggests the variable x − 1. It is
also possible to neglect other rules and follow only the
hypotheses generated by the dynamic set (here the best
choice is x2). The assessment of the hypothesis in
generalized fuzzy default logic gives a lot of flexibility to

Fig. 2. Example of different possibilities of selecting the next
variable.
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Fig. 3. Block diagram of the basic (FUDASAT) algorithm.

the user and is application dependent. Moreover, we can
split the HR process into two steps: the first, responsible
for the selection of the optimal value of trustworthiness for
each hypothesis, and the next, making the final assessment
and selecting only one (‘the best’) solution. Moreover, we
can use different criteria for each step (level). �

4. Basic FUDASAT algorithm

The author proposed an approach based on fuzzy default
logic (Pułka, 2011) and called it the FUDASAT algorithm.
It uses the parallelism between non-monotonic reasoning
and logical satisfiability problems, a set of sophisticated
reasoning rules which aid the searching process, and
this justifies the name of the algorithm (an acronym for
FUzzy Default logic based Algorithm for SAT checking).
The block diagram, depicted in Fig. 3, presents the first
original version of the algorithm (Pułka, 2011). Because
the basic FUDASAT has already been described in detail
by Pułka (2011), its main steps are just briefly mentioned.

The first three stages can be called the preprocessing
phase of the algorithm. They eliminate possible
redundancy and check if a trivial case occurs. It is
assumed that the input data has a CNF form, and usually
the initial function consists of at least several clauses, so
the exhaustive proof of satisfiability of the function is
impossible at such early stages of the procedure. Stage 4
runs a set of procedures estimating and analyzing the
clauses. These procedures take into account various
criteria and priority functions (Suyama et al., 1999). As
a result, the system selects the variable assignment order
(Stage 5). Based on the results of Stage 4, Stage 5
selects the order of variable analysis. This order can
be neglected or canceled when a conflict is detected
and the knowledge-base is supplied with extra forbidden
combinations responsible for conflicts, so these variable
selections (assignments) will be called hypotheses.

Stage 6 performs a given assignment, function
reduction (via set of binary constraints propagation steps)
and consistency check. In the case of inconsistency of
the reduced function, i.e., the existence of two or more
mutually exclusive assignments (for example, xi = 1 and
xi = 0), the algorithm initiates procedures composing
backtrack scenarios (Stage 7). This stage was only
indicated and casually analyzed in the basic FUDASAT
algorithm (Pułka, 2011). The problem is addressed in
detail in the next section.

When the backtrack sequence is ready, the algorithm
performs the procedure of the revision of beliefs (Stage 8)
and, depending on the backtrack result, the satisfiability
proof is continued or is reported (Stages 9 and 10) (Fig. 3).

The example presented in Appendix A (based on the
benchmarks (DIMACS, 1993)) describes an example of
simple backtrack scenario generation.

The first experiments conducted with the
implementation of non-standard inference engines
to Boolean satisfiability problems have showed their
usefulness (Pułka, 2011), so the author has decided
to continue them and extend the set of procedures
responsible for effective conflict analysis. The next
section presents these issues.

5. Experiments for developing search
strategies

The searching strategy described in the example from
the previous section is not always optimal. The basic
FUDASAT algorithm has to be supplied with efficient
tools allowing pruning the searching space. The series of
experiments showed some regularities and relationships
between the average number of clauses and variables.
Figure 4 presents a diagram that summarizes results
obtained for the family of benchmark functions consisting
of 50 variables. It shows the relationship between
normalized (to the peak value) evaluation times and
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Fig. 4. Normalized evaluation times versus the number of
clauses per variable.

Fig. 5. Relationship between the average evaluation times and
the number of backtracks obtained for a family of func-
tions consisting of 50 variables.

the density of the function description expressed by a
number of clauses per variable. A similar tendency could
be observed for other cases and different benchmarks
containing more variables as well as more clauses.
Figure 5 shows that better results can be obtained by
appropriate composing of the backtrack scenarios and
minimizing their number. So the appropriate conflict
analysis seems to be very important and in many cases
decides about the success. The following point addresses
this problem.

5.1. Conflict analysis. The mechanisms of
conflict analysis introduced into the modified
FUDASAT algorithm will be described on an example
function borrowed from the DIMACS benchmarks
(DIMACS, 1993).

Example 2. The initial function f consists of 160 clauses
and has 60 variables. Each clause is built of 3 variables,
so it is a classical 3-SAT class problem. Below are listed

only those clauses which take part in the conflict presented
on the hypergraph diagram (Fig. 6). The function f =⋂160

i=1 Ci and some of its clauses are

C2 = ¬x1 ∨ x2 ∨ x3,

C17 = ¬x13 ∨ ¬x14 ∨ ¬x15,

C21 = ¬x16 ∨ ¬x17 ∨ ¬x18,

C50 = ¬x37 ∨ x38 ∨ x39,

C56 = x16 ∨ ¬x37 ∨ x40,

C57 = ¬x15 ∨ ¬x41 ∨ ¬x42,

C63 = x14 ∨ x41 ∨ ¬x43,

C66 = ¬x10 ∨ x18 ∨ x44,

C69 = ¬x13 ∨ ¬x17 ∨ ¬x44,

C148 = x3 ∨ ¬x58 ∨ x59,

C152 = ¬x39 ∨ x43 ∨ x60,

C157 = ¬x38 ∨ ¬x59 ∨ ¬x60,

During the first simulation, after the sequence of 22
assignments for 22 variables, we get

S

= {x1; x2; x24; x19; x5; x4; x21; x30; x25; x8; x7; x27;
x15; x13; x17; x10; x11; x33; x31; x37; x35; x38}.

The FUDASAT system has detected a conflict and,
moreover, the conflict has also occurred for a negative
assignment for the last variable x38 at level 22. If the
system acted as described in Example A1, i.e., it added
to the database the entire information about the sequence
combination containing all 21 (without x38) variables,
The analysis would never stop or would take long time
and consume many resources. This redundancy may
unnecessarily complicate the initial function and from a
practical point of view is useless. As a matter of fact, not
every of those 22 assignments that preceded the conflict
has an impact on the conflict situation.

Accordingly, the analysis of the conflict, which (if
it occurs) gives a lot of information, should be done
more carefully. The authors of the latest works in the
field (Han et al., 2010) have proposed a concept of the

Fig. 6. Example of the implication graph for clause Ci =
¬xA ∨ ¬xB ∨ xC .
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Fig. 7. Fragment of the implication hypergraph for a sequence of 22 assignments for the Example 2.

implication hypergraph. The hypergraph is a Directed
Acyclic Graph (DAG) consisting of nodes and branches
(directed arcs). The nodes show the assignments to
variables, while branches present the transformations
(reductions) of clauses. Figure 6 presents a fragment of
the implication hypergraph. It explains the mechanism
of graph construction. The assignments xA = ‘1’ and
xB = ‘1’ on the level 1 and on the level 4, respectively,
force (based on the clause Ci = ¬xA ∨ ¬xB ∨ xC ) the
assignment xC = ‘1’ (binary propagation of constraints).
Generally, in an implication hypergraph (Fig. 7), we
can distinguish edge nodes and intermediate nodes.
The former (gray shaded) represent the assignments of
variables generated by the algorithm (system selections),
while the latter reflect unit clauses as effects of binary
constraint propagation.

A set of branches pointing to the same intermediate
node is connected by the labeled arc corresponding to
the clause number. Specially constructed cuts allow
recognizing the source of the conflict. Figure 7 shows
the implication hypergraph illustrating the above sequence
of 22 assignments and their final effect—the conflict.
The picture contains also three different (alternative) cuts
drawn with dotted lines: γ1, γ2 and γ3.

Each cut ‘separates’ the conflict nodes from the
edge nodes. The arcs covered by a given cut show
the assignments responsible for the conflict (they are the
sources of the conflict). The conflict clauses describing
the cuts can be obtained from linear resolution, which can
be expressed by the following inference rule:

Fig. 8. Series of resolutions showing the process of generating
cut clauses γ1 and γ2.

A ∨ B ¬A ∨ C

B ∨ C
. (9)

The diagram depicted in Fig. 8 shows the series of
resolutions demonstrating the process of obtaining cuts γ1
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and γ2 from Fig. 7. Each operation of linear resolution
is denoted (in the corner) by the name of the removed
variable.

Consequently, the cuts from Fig. 7 can be described
by the following clauses:

γ1 = ¬x37 ∨ x38 ∨ x43 ∨ x39,

γ2 = x3 ∨ x14 ∨ ¬x37 ∨ x41 ∨ ¬x58,

γ3 = ¬x1 ∨ ¬x2 ∨ ¬x10 ∨ ¬x13 ∨ ¬x15

∨ ¬x17 ∨ ¬x37 ∨ x38 ∨ ¬x42.

(10)

However, there is still an open question: Which of
the clauses (10) should be added to the initial description?
There is no universal answer to this question. Moreover,
in such cases we can ask some other questions, like how
deeply the implication hypergraph should be investigated?
Should the initial function be extended by the conflict
clause (eventually the redundancy)? If yes, what is the
best length of the added conflict clause? How to construct
an optimal backtrack sequence? Unfortunately, as in the
analyzed example, there are no general solutions. The first
iterations of the main loop of most algorithms (and also of
FUDASAT) are based just on statistics and some general
factors like the frequency of variables appearance, so we
can say that this is a kind of semi-blind search. Conflicts
that come out during the proving process not only extend
the evaluation times, but they usually give a lot of valuable
information about the analyzed function.

Following many experiments with the previous
version of the FUDASAT algorithm has led us to some
interesting observations and regularities. When referring
to the results presented above (Fig. 4), it is clear that
an increase in the number of clauses not always favors
reducing the evaluation times. This redundancy may be
helpful with cutting the searching space and avoiding
repeatable iterations, i.e., passing through the same paths.
The answer to the question concerning the length of the
conflict clause is closely related to the depth of hypergraph
investigation. From the technical (precise) point of view,
the answer is very imprecise: the depth of the search
should be set reasonable. That is why we should use a
very sophisticated inference engine that would be able to
deal with vague information.

5.2. Introduction of dynamic rules. As mentioned
above, the FUDASAT algorithm uses fuzzy default logic
based on the FDR inference rules (5), which for a given
level λ of analysis (number of iteration) has the form

Initial conditions : Set(β)
Φλ

, (11)

where Initial conditions corresponds to the initial
prerequisites reflecting the current state and level
and forbidden (conflict) combinations, Set(β) denotes

variables not assigned (xi ∈ Set(β)) so far, while Φλ is a
fuzzy hypothesis (6), where hypotheses hλ

i are replaced
by Boolean variables xi. Example 1 from Section 5
introduces a new type of FDR called dynamic, i.e., values
of the possibilities within a given fuzzy hypothesis can be
dynamically updated during the analysis, after a conflict
analysis. In other words, we can say that the FUDASAT
system can contain a static set of FDRs, the so-called
general-purpose inference rules and dynamic FDRs that
keep data concerning the current state of the analysis. In
the simplest case, these possibilities may represent the
reverse of the frequencies of the choices that previously
led to conflicts, i.e., if a given variable had already been
selected before and this choice was recognized as a source
of the conflict. And finally, as has been shown, FDL
inference engine allows the final judging of the hypotheses
by using different evaluation schemes.

The results of conflict analysis have a strong impact
on the construction of backtrack scenarios. Some other
authors (Marques-Silva and Sakallah, 1999; Moskewicz
et al., 2001; Han et al., 2010) propose radical solutions in
the case of conflict detection: returning to the beginning
(first iterations) and starting again with different initial
conditions. However, the author’s experiments show that
such a solution is not optimal and in many cases we
lose ‘good’ assignments, which do not necessarily appear
to be a direct source of the conflict. Three solutions
of backtrack scenarios have been implemented within
the FUDASAT inference engine: the short or immediate
backtrack, the direct backtrack, and the long backtrack.

Example 2 presents all kinds of these backtrack
scenarios. The short backtrack is used if the system
finds a conflict for the first positive assignment at a given
level, then it tries negative assignments (complement of
the variable) and denotes this level as the conflict level

Fig. 9. Example of the FUDASAT program run in PROLOG.
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of the current run. In the example it takes place in level
22 (the assignment of the variable x38). If this change
keeps the analysis in the conflict, the algorithm builds
short backtrack sequences corresponding to the conflict
clauses (cuts). Usually, we have only one sequence,
although sometimes it is possible to record more. For the
hypergraph from Fig. 7, we have three possible backtrack
scenarios (numbers in brackets denote the return levels):
22, 20, 14 and 22, 20, 14, 2, and 22, 16, 15, 13, 12, 2, 1.
The long backtrack corresponds to the return to the highest
level of the current analysis. Therefore, the algorithm
sometimes needs to be restarted. The latter radical step
is used when the system tries to investigate one of the
previously searched paths and/or the backtrack procedure
has given no positive results. The best (reasonable) choice
for the case discussed within the example seems to be γ2

with the second backtrack sequence. However, not always
is the choice so obvious and intuitive.

5.3. Techniques of pruning the searching space.
This section addresses problems concerning search
optimization methods. Two algorithms allowing reducing
the number of iterations as well shrinking the searching
space will be discussed. Beforehand, the term cliques
should be defined.

Definition 1. A clique CQi is a set of all different clauses
{V1; V2; V3} containing identical variables, which identify

the clique. It could be denoted as CQi ≡ C
{V1;V2;V3}
i .

However, we usually use the shorter form CQi. Formally,

CQi ≡ C
{V1;V2;V3}
i ≡

{
C1

i , C2
i , . . . , CN

i

}

⇔
{

∀Ck
i ,Cm

i ∈CQi
Ck

i = Cm
i

}

∧
{

Ck
i = V k

1 ∨ V k
2 ∨ V k

3

Cm
i = V m

1 ∨ V m
2 ∨ V m

3

}

∧
{ V k

1 , V m
1 ∈ {x1;¬x1}

V k
2 , V m

2 ∈ {x2;¬x2}
V k

3 , V m
3 ∈ {x3;¬x3}

}

.

(12)

For example, the clauses C1 = x4 ∨ ¬x5 ∨ x8 and
C1 = ¬x4 ∨x5 ∨¬x8 belong to the same clique, while the
clauses C4 = x2 ∨¬x5 ∨¬x6 and C7 = x4 ∨ x5 ∨¬x8 are
members of different cliques.

In fact, every clause represents a forbidden
combination, namely, a given clause Ck = x2∨¬x4∨¬x8

corresponds to the forbidden combination Xk = ¬x2 ∧
x4 ∧ x8 (the sequence of assignments x2 = ’0’, x4 = ’1’
and x8 = ’1’). Based on this information, it is possible
to force the assignments to multiple variables at the same
moment (in the same iteration), reducing the number of
binary constraint propagations (Arangú and Salido, 2011).

There are two algorithms Pruning the Search Space
(PSS), namely, PSS1 and PSS2, described in Appendix B,
while the examples given in Appendix C show benefits
of the approach: the former addresses the problem of
search space pruning, while the latter concerns function
decomposition, which is a very common technique used in
various practical applications of Boolean functions (Opara
and Kania, 2010; Wyrwoł and Hrynkiewicz, 2013).

6. Concluding remarks

The experiments carried out with hundreds of benchmarks
allow modifying the set of inference rules (FDRs) in
order to obtain a more effective tool. This certifies
the openness of the FUDASAT system (especially its
FDL-based engine). The stars added to the block diagram
of the basic FUDASAT algorithm show those stages of
the methodology where the suggested modifications can
speed up the proving process. The most important is
the problem of conflict analysis, which delivers very
important information about the analyzed function. The
new elements that should be introduced to the original
algorithm include the analysis of implication hypergraphs,
introduction of two types of FDR inference rules: static
and dynamic (with dynamically changed trustworthiness),
flexible building backtrack strategies based on conflict
analysis and introduction of tools pruning the search
space with the idea of multiple variable assignment.
The modification of fuzzy hypotheses allows using
information coming from conflicts and we can call the
system a self-learning tool. The approach presented
in our previous works (Pułka, 2011) uses a simple
and rather intuitive investigation of the inference chain
to produce the backtrack trace (see the example in
Appendix A), while the experiments with implication
hypergraphs (suggested by Han et al. (2010)) have shown
that in many cases it is possible to construct the backtrack
trace with a controlled depth.

The mechanisms allowing pruning the search space
(algorithms PSS1 and PSS2) are relatively simple and
allow cutting the problem and reducing its amount to
reasonable sizes that can be analyzed in detail with
exhausted investigation of all states. For example,
problems consisting of 50 variables (over 1015 different
combinations) can be reduced to tasks requiring the
analysis of about 106 states. The algorithms PPS1
and PSS2 are introduced to the modified FUDASAT
analyzer and constitute a new tool that allows building
the optimal strategy replacing a single variable assignment
with a multiple variable assignment and reducing binary
constraint propagation. The FDL-based inference engine
always decides weather or not to add a conflict clause. It
is also responsible for cutting the search space.

Detailed analysis of some experiments shows that
in many cases the conflict can become apparent much
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Fig. 10. Evaluation times of different algorithms related to the number of variables (average values for selected benchmarks (DIMACS,
1993)).

earlier, i.e., at the previous levels of the search process.
Example A1 in Appendix A shows that, in fact, at the level
9’ we can prove unsatisfiability of the reduced function,
because it contains all 4 maxterms (Yin et al., 2012)
of variables x4 and x8. In other words, there is no
sense to go to the level 12 to discover the conflict.
To eliminate this weakness of the system, we have to
introduce an appropriate procedure checking the maxterm
covering. The modified version of the FUDASAT
algorithm contains such rules for 2-variable clauses.

7. Summary

The approach presented in the paper introduces some
modifications to a FUDASAT methodology that combines
non-monotonic reasoning with satisfiability analysis.
Thanks to a series of experiments and investigations, it
was possible to eliminate some weaknesses of the original
FUDASAT algorithm and optimize the inference process.

The obtained results, in comparison with other
approaches (GRASP, CHAFF), have already proved the
efficiency of the methodology (Pułka, 2011), and the
suggested modifications show optimization of the original
FUDASAT approach (Fig. 10). The evaluation times
for unsatisfied problems are usually several times bigger.
Theoretically, the proof that a given formula is unsatisfied
requires exhaustive search. However, in practice it is
sufficient to find a small subset of variables which do not
satisfy a given logical function. The experiments showed
that the best efficiency could be obtained with the mixed
static-dynamic variable selection scheme.

Very interesting seems the idea of mixing a single
variable assignment with multiple variable assignments,
i.e., if a number of combinations given by 2-SAT clauses

is too big, it is possible to go back to single variable
assignments (the standard FUDASAT mode). This
problem is currently being investigated by the author.

And, finally, we have the problem of the
generalization of the presented methodology to all
classes of SAT problems. The presented approach
focuses on 3-SAT problems, which are representative
of NP-hard SAT problems. However, without any
fundamental changes, it could be applied to all classes
of SAT problems. The main part of the system (its
shell) consists of universal rules handling clauses of any
length. Only the control part of PSS algorithms should
be modified and extended to be able to analyze clauses
of different lengths. The system has to be supplied with
the mechanisms controlling clauses reduction and the
clique cardinality assessment needs to be based on more
complicated factors. Moreover, after the first conflict
analysis, the function may not represent 3-SAT problems,
if the added conflict clause consists of more literals. Thus,
in this sense the methodology is universal.
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Appendix A

The following example presents the philosophy of
backtrack scenario construction in the basic FUDASAT
algorithm.

Example A1. The example is based on a 3-SAT problem
coming from benchmarks (DIMACS, 1993). Only the
fragment of the inference chain and a subset of clauses
will be analyzed. The interesting subset S consists of the
following clauses:

C1 = x4 ∨ ¬x7 ∨ x8, C2 = x4 ∨ x7 ∨ x8,

C3 = x1 ∨ x6 ∨ ¬x9, C4 = ¬x1 ∨ ¬x3 ∨ ¬x9,

C5 = x3 ∨ ¬x5 ∨ ¬x9, C6 = x5 ∨ ¬x7 ∨ ¬x9,

C7 = ¬x1 ∨ ¬x4 ∨ ¬x8, C8 = ¬x4 ∨ x8 ∨ x9,

C9 = x4 ∨ ¬x8 ∨ x9.

The analysis is reduced only to some interesting
levels of the inference chain—the fragment which is
important to observe the sources of conflicts. Let us
assume that the following variables are asserted: x7 at
Level 3, x7 at Level 7, x9 at Level 9 and x4 at Level 12.
The following transformations take place:

ftp://dimacs.rutgers.edu/pub/challenge
/sat/benchmarks/cnf/
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• At Level 3:
C2 is absorbed by x7, C1 → C3

1 = x4 ∨ x8,
C6 → C3

6 = x5 ∨ ¬x9, C7 → C3
7 = ¬x4 ∨ ¬x8.

• At Level 5:
C3 is absorbed by x1, C4 → C5

4 = ¬ x3 ∨ ¬x9.

• At Level 9:
C8 and C9 are absorbed by x9, C5

4 → C5,9
4 = ¬x3

(the unit clause),
C3

6 → C3,9
6 = x5 (the unit clause),

C5 → C9
5 = x3 ∨ ¬x5, so we have a conflict!

The conflict combination Conflict1 = x1 ∧ x7 ∧ x9

is recorded.

• At Level 9:
(for the variable assignment x9 = 0 and all previous
transformations for that level invalidated):
Three clauses are absorbed by ¬x9: C5

4 , C5 and
C3

6 are absorbed by ¬x9, C8 → C9
8 = ¬x4 ∨ x8,

C9 → C9
9 = x4 ∨ ¬x8.

• At Level 12:
C3

1 and C9
9 are absorbed by x4, C3

7 → C3,12
7 = ¬x8

(the unit clause),
C9

8 → C9,12
8 = x58 (the unit clause) and this causes

a conflict!
The conflict combination:
Conflict2 = x4 ∧ x7 ∧¬ x9 (since x9 has been
complemented at Level 9’) is recorded.

• At Level 12’
(for the variable assignment x4 = ’0’ and all previous
transformations for Level 12 invalidated):
C3

7 and C9
8 are absorbed by ¬x4; C9

8 → C9,12
8 = x8

(the unit clause),
C9

9 → C9,12
9 = ¬x8, so we have a conflict!

Conflict3 = ¬x4 ∧ ¬x9 is recorded.

This sequence of transformations shows that we have
found an unresolved conflict on Level 12, so a backtrack
is required. The basic FUDASAT algorithm generates at
Stage 7 possible backtrack scenarios: [Level9, Level12];
[Level3, Level9, Level12], and the algorithm tries to find
another assignment for the combination of variables x4,
x7 and x9 that are responsible for the conflict. �

Appendix B

PSS1 and PSS2 (Algorithms 1 and 2, respectively) are two
algorithms for searching space pruning.

Algorithm 1. PSS1.
Step 1.1: findall cliques CQi of Boolean function f ;

Step 1.2: Find the cliques CQsel of
the greatest cardinality: |CQsel| = max
(|CQ1| , |CQ2| , . . . , |CQN |);
Step 1.3: findall possible (allowed) combinations
Combk(V ′

1 ; V ′
2 ; V ′

3) of variables {V1, V2, V3} that identify

the selected clique CQ
{V1,V2,V3}
sel , i.e.

Combk(V ′
1 , V ′

2 , V ′
3) ⇒ ∀Ci∈CQsel

Ci(V ′
1 ; V ′

2 ; V ′
3) = ’1’;.

Step 1.4: Assign to the variables {V1; V2; V3} the first
combination Comb1.

Step 1.5: Remove all clauses belonging to the clique
CQ

{V1,V2,V3}
sel and findall possible reduction of the rest

clauses (see Step 6 of the FUDASAT algorithm).
In case of a conflict take next assignment for {V1, V2, V3}
and repeat Step 1.5.

1: if there is no other combination then
2: return UNSATISFIED stop
3: else
4: goto Step 1.6
5: end if

Step 1.6: SET the iteration level = 1 and run
Algorithm PSS2.

Step 1.7:
1: if Algorithm PSS2 returns DIVISION then
2: decompose the function and restart

perform the proof for each sub-function
independently;

3: else if Algorithm PSS2 returns SUCCESS then
4: return SATISFIED

stop
5: else if Algorithm PSS2 returns FAIL then
6: take next assignment for {V1; V2; V3}

and repeat Step 1.4.
7: else
8: there is no other combination, so

return UNSATISFIED
stop

9: end if
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Algorithm 2. PSS2.
Step 2.1: findall clauses reduced to the class 2-SAT, i.e.,
clauses consisting of 2 variables;

1: if there is no such clauses then
2: stop and return DIVISION

{The set of assigned variables and the set of
unassigned variables are strongly disjunctive}

3: else
4: continue
5: end if

Step 2.2: find set Γ consisting of all possible
(allowed) combinations of variables building 2-SAT
clauses

1: if Γ = ∅ then
2: stop and return FAIL

{The set of assigned variables and the set of
unassigned variables are strongly disjunctive}

3: else
4: Take the first assignment from set Γ and continue
5: end if

Step 2.3: Remove all 2-SAT clauses and findall possible
reduction of the rest clauses (see Step 6 of the FUDASAT
algorithm) in case of a conflict take the next assignment
from Γ and repeat Step 2.3.

1: if there is no other combination then
2: goto one iteration level up; i.e.

iteration level = iteration level − 1;
3: else if iteration level = 1 then
4: return FAIL
5: else if the set of unassigned variables is empty then
6: return SUCCESS
7: else
8: increment iteration level; i.e.

iteration level = iteration level + 1;
9: end if

Step 2.4: run Algorithm PSS2 for the remaining set of
clauses.

Appendix C

Two examples showing the benefits of the algorithms
pruning the search space.

Example C1. Let us assume the following set of clauses
that describes a given Boolean function f :

C1 = ¬x1 ∨ ¬x2 ∨ ¬x3,

C2 = ¬x1 ∨ x2 ∨ x3,

C3 = x1 ∨ x2 ∨ ¬x3,

C4 = x1 ∨ ¬x2 ∨ x3,

C5 = x1 ∨ x2 ∨ x3,

C6 = ¬x22 ∨ ¬x23 ∨ ¬x24,

C7 = ¬x22 ∨ x23 ∨ x24,

C8 = x22 ∨ x23 ∨ ¬x24,

C9 = x22 ∨ ¬x23 ∨ x24,

C10 = ¬x16 ∨ ¬x37 ∨ ¬x40,

C11 = ¬x16 ∨ x37 ∨ x40,

C12 = x16 ∨ x37 ∨ ¬x40,

C13 = x16 ∨ ¬x37 ∨ x40,

C14 = ¬x1 ∨ ¬x24 ∨ ¬x49,

C15 = ¬x1 ∨ x24 ∨ x49,

C16 = x1 ∨ x24 ∨ ¬x49,

C17 = x1 ∨ ¬x24 ∨ x49,

C18 = ¬x19 ∨ ¬x23 ∨ ¬x49,

C19 = ¬x19 ∨ x23 ∨ x49,

C20 = x19 ∨ x23 ∨ ¬x49,

C21 = x19 ∨ ¬x23 ∨ x49,

C22 = x3 ∨ x58 ∨ x59,

C23 = ¬x3 ∨ ¬x58 ∨ x59,

C24 = ¬x3 ∨ x58 ∨ ¬x59,

C25 = x3 ∨ ¬x58 ∨ ¬x59,

C26 = x2 ∨ x40 ∨ x58,

C27 = ¬x2 ∨ ¬x40 ∨ x58,

C28 = ¬x2 ∨ x40 ∨ ¬x58,

C29 = x2 ∨ ¬x40 ∨ ¬x58,

C30 = x38 ∨ x59 ∨ x60,

C31 = ¬x38 ∨ ¬x59 ∨ x60,

C32 = ¬x38 ∨ x59 ∨ ¬x60,

C33 = x38 ∨ ¬x59 ∨ ¬x60.

The first selected clique with the greatest
cardinality (equals 5) CQsel = CQ1 is identified by
the variables {x1, x2, x3} and consists of the clauses
C1, C2, C3, C4 and C5. So the set of allowed assignments
to variables x1, x2, x3 consists of 3 combinations: [“011”,
“101”, “110”]. All these combinations absorb (satisfy)
every clause of the clique CQ1. Taking the first one (Step
1.4 of Algorithm 1) we can run Algorithm 2. Step 2.1 of
the algorithm removes clauses C14, C15, C22, C25, C26

and C29, while six clauses are reduced,

C16 → C1
16 = x24 ∨ ¬x49,

C17 → C1
17 = ¬x24 ∨ x49,

C23 → C1
23 = ¬x58 ∨ x59,

C24 → C1
24 = x58 ∨ ¬x59,

C27 → C1
27 = ¬x40 ∨ x58,

C28 → C1
28 = x40 ∨ ¬x58.
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These clause creates 3 2-SAT cliques with the
following allowed combinations: {x24, x49} = [“00”,
“11”]; {x58, x59} = [“00”, “11”] and {x40, x58} = [“00”,
“11”].

Accordingly, we get the set

Γ = {[“00000”], [“01011”], [“10100”], [“11111”]}

or, in other words, there exist four possible assignments
for variables x24, x40, x49, x58 and x59, namely,

assign 2.1: {x24, x40, x49, x58, x59} = [“00000”],
assign 2.2: {x24, x40, x49, x58, x59} = [“01011”],
assign 2.3: {x24, x40, x49, x58, x59} = [“10100”],
assign 2.4: {x24, x40, x49, x58, x59} = [“11111”].

Thus, after one assignment we reduced the search
space to 4×4 = 16 combinations, instead of investigating
28 different states (for 8 variables).

Executing the first assignment assign 2.1, we can
eliminate all 2-SAT clauses (as for the other three
assignments in this step) and also the following clauses:
C6, C8, C10, C12, C18, C20, C31 and C33. Eight clauses
are reduced to 2-SAT clauses, namely,

C7 → C2
7 = ¬x22 ∨ x23,

C9 → C2
9 = x22 ∨ ¬x23,

C11 → C2
11 = ¬x16 ∨ x37,

C13 → C2
13 = x16 ∨ ¬x37,

C19 → C2
19 = ¬x19 ∨ x23,

C21 → C2
21 = x19 ∨ ¬x23,

C30 → C2
30 = x38 ∨ x60,

C32 → C2
32 = ¬x38 ∨ ¬x60.

Finally, after these transformation the set Γ consists
of eight possible combinations that correspond to the
following assignments for seven variables:
assign 3.1:

{x16, x19, x22, x23, x37, x38, x60} = [“0000001”],
assign 3.2:

{x16, x19, x22, x23, x37, x38, x60} = [“0000010”],
assign 3.3:

{x16, x19, x22, x23, x37, x38, x60} = [“0111001”],
assign 3.4:

{x16, x19, x22, x23, x37, x38, x60} = [“0111010”],
assign 3.5:

{x16, x19, x22, x23, x37, x38, x60} = [“1000101”],
assign 3.6:

{x16, x19, x22, x23, x37, x38, x60} = [“1000110”],
assign 3.7:

{x16, x19, x22, x23, x37, x38, x60} = [“1111101”],
assign 3.8:

{x16, x19, x22, x23, x37, x38, x60} = [“1111110”].

If the set of 33 clauses is a full description of
the function f, we have just proved that the function
is satisfied, otherwise we have to continue the search.
However, the search space has been pruned to 4×4×8 =
128 different states, so for the total number of variables
being 15, this gives the reduction by the factor 28 = 256
for the exhausted search. �
Example C2. The Boolean function f =

⋃29
i=1 Ci

consists of the following clauses:

C1 = ¬x1 ∨ ¬x2 ∨ ¬x3,

C2 = ¬x1 ∨ x2 ∨ x3,

C3 = x1 ∨ x2 ∨ ¬x3,

C4 = x1 ∨ ¬x2 ∨ x3,

C5 = x4 ∨ x10 ∨ x17,

C6 = ¬x4 ∨ ¬x5 ∨ ¬x7,

C7 = ¬x4 ∨ x5 ∨ x7,

C8 = x4 ∨ x5 ∨ ¬x7,

C9 = x4 ∨ ¬x5 ∨ x7,

C10 = ¬x16 ∨ ¬x17 ∨ ¬x10,

C11 = ¬x10 ∨ x16 ∨ x17,

C12 = x10 ∨ x16 ∨ ¬x17,

C13 = x10 ∨ ¬x16 ∨ x17,

C14 = ¬x1 ∨ ¬x6 ∨ ¬x9,

C15 = ¬x1 ∨ x6 ∨ x9,

C16 = x1 ∨ x6 ∨ ¬x9,

C17 = x1 ∨ ¬x6 ∨ x9,

C18 = ¬x7 ∨ ¬x8 ∨ ¬x10,

C19 = ¬x7 ∨ x8 ∨ x10,

C20 = x7 ∨ x8 ∨ ¬x10,

C21 = x7 ∨ ¬x8 ∨ x10,

C22 = x3 ∨ x9 ∨ x11,

C23 = ¬x3 ∨ ¬x11 ∨ x9,

C24 = ¬x3 ∨ x11 ∨ ¬x9,

C25 = x3 ∨ ¬x6 ∨ ¬x9,

C26 = x2 ∨ x6 ∨ x11,

C27 = ¬x2 ∨ ¬x6 ∨ x11,

C28 = ¬x2 ∨ x6 ∨ ¬x11,

C29 = x2 ∨ ¬x6 ∨ ¬x11.

The first selected clique with the greatest cardinality
(equals 4) CQ1 is identified by variables {x1, x2, x3}
and consists of the clauses C1, C2, C3 and C4.
Consequently, the set of allowed assignments to variables
x1, x2, x3 consists of four combinations: [“011”,
“101”, “110”,“000”]. All these combination absorb
(satisfy) every clause of the clique CQ1. Taking
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the first one (Step 1.4 of Algorithm 1), we can run
Algorithm 2. Step 2.1 of the algorithm removes the
clauses: C14, C15, C22, C25, C26 and C29, while six
clauses are reduced:

C16 → C1
16 = x9 ∨ ¬x11,

C17 → C1
17 = ¬x6 ∨ x9,

C23 → C1
23 = ¬x9 ∨ x11,

C24 → C1
24 = x11 ∨ ¬x9,

C27 → C1
27 = ¬x6 ∨ x11,

C28 → C1
28 = x6 ∨ ¬x11.

These clauses from three 2-SAT cliques with the
following allowed combinations: {x6, x9} = [“00”,
“11”]; {x9, x11} = [“00”, “11”] and {x6, x11} = [“00”,
“11”]. Because all clauses have common elements Γ =
{[“000”], [“111”]} (only two combinations satisfy 2-SAT
clauses), two assignments are possible:

assign 2.1: {x6, x9, x11} = [“000”],
assign 2.2: {x6, x9, x11} = [“111”].

Any of the above two assignments produce no
further reductions, so we have found that a set of clauses
C1, C2, C3, C4, C14, C15, C16, C17, C22, C23, C24, C25,
C26, C27, C28 and C29 constitutes the independent
sub-function f1, which is a part of the function strongly
disjunctive from the remaining part of the original
function f . In other words, the set of the variables
{x1, x2, x3, x6, x9, x11} can be analyzed separately. As a
side effect of the search space pruning algorithm, function
decomposition has been achieved. �
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