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The work concerns formal verification of workflow-oriented software models using the deductive approach. The formal
correctness of a model’s behaviour is considered. Manually building logical specifications, which are regarded as a set of
temporal logic formulas, seems to be a significant obstacle for an inexperienced user when applying the deductive approach.
A system, along with its architecture, for deduction-based verification of workflow-oriented models is proposed. The
process inference is based on the semantic tableaux method, which has some advantages when compared with traditional
deduction strategies. The algorithm for automatic generation of logical specifications is proposed. The generation procedure
is based on predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of
business processes. The main idea behind the approach is to consider patterns, defined in terms of temporal logic, as a
kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical
specification. Automation of the generation process is crucial for bridging the gap between the intuitiveness of deductive
reasoning and the difficulty of its practical application when logical specifications are built manually. This approach has
gone some way towards supporting, hopefully enhancing, our understanding of deduction-based formal verification of
workflow-oriented models.
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1. Introduction

Software modeling enables better understanding of do-
main problems and developed systems through goal-
oriented abstractions in all phases of software develop-
ment. Software models require careful verification us-
ing mature tools to make sure that the received software
products are reliable. Formal methods are intended to
systematize and introduce a rigorous approach to soft-
ware modeling and development by providing precise
and unambiguous description mechanisms. A formal ap-
proach can be applied at any phase of the software-life cy-
cle (Woodcock et al., 2009), i.e., from the requirements
of engineering to verification/validation as well as test-
ing (Hierons et al., 2009). A key issue in formal meth-
ods and software engineering is the correctness problem.
“Program testing can be used to show the presence of
bugs, but never to show their absence” (Dijkstra, 1972,
Corollary). Formal specification and formal verification
are two important and closely related parts of the for-
mal approach. Formal specification establishes funda-

mental system properties and invariants. Formal verifi-
cation is the act of proving the correctness of the sys-
tem. The importance of the formal approach increases
and there are many examples of its successful application
(e.g., Abrial, 2007).

This work concerns logical inference used for for-
mal verification of software models and practical possibil-
ities of building tools for an appropriate verification pro-
cedure. There are two fundamental and well-established
approaches to formal verification of systems (Clarke and
Wing, 1996). The first one is algorithmically oriented and
based on state exploration, and the second one is logi-
cally oriented and based on deductive reasoning. Now, the
state exploration approach, i.e., model checking (Clarke
et al., 1999), wins over the deductive approach due to the
significant progress observed during recent years in the
field of model checking. However, model checking is a
kind of simulation for all reachable paths of computation
and constitutes an operational rather than an analytic ap-
proach. On the other hand, deductive reasoning plays an
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important role in the formal approach as a “top-down” and
sustainable way of thinking, with reasoning moving from
more general facts to more specific ones to reach a certain
conclusion which is logically valid. Let us consider some
arguments in favor of the deductive approach:

• The main argument is the fact that deductive reason-
ing enables the analysis of infinite sequences of com-
putations.

• Another argument is naturalness and common use of
deductive reasoning in everyday life. It also domi-
nates in scientific works.

• A kind of informal argument is an analogy between
natural languages and the logical approach, i.e., the
application and knowledge of strict and formal gram-
matical rules, although not necessary, raises the qual-
ity and culture of statements in a natural language,
while, by analogy, there is no doubt that applying
strict logical rules for reasoning increases the qual-
ity of verification procedures and makes them more
reliable.

Obtaining logical specifications which are regarded
as a set of temporal logic formulas �F1, . . . , Fn� is an im-
portant and crucial issue for any deductive system. If n is
large, which is not a rare situation even in the case of an
average-size system, then in practice it is not possible to
build a logical specification manually, and therefore there
is a need to automate this process. However, software
models could be organized into some predefined workflow
patterns which constitute a kind of primitives that enable
the transformation of software models to logical specifica-
tions. Automation of this process allows bridging the gap
between the naturalness of deductive verification and the
difficulty of its practical application. The lack of automa-
tion is a significant obstacle to the practical use of logical
inference for formal verification. The choice of a deduc-
tive system, which is natural and intuitive enough for in-
experienced users, is another important aspect. Although
the work is not based on a particular method of reason-
ing, the semantic tableaux method for temporal logic is
selected since it is intuitive and has some advantages in
comparison with other deduction strategies.

Business models are considered in this work. The
significance of business models and their workflows in-
creases in the context of the service oriented architec-
ture (SOA), which is a paradigm that gained important
attention within information technology (IT) and business
communities. All arguments mentioned in this section are
important for research and constitute a challenge to the
deductive approach.

1.1. Motivation and contribution. The motivation
behind this work is the lack of tools for automatic gen-
eration/extraction of logical specifications, regarded as

sets of temporal logic formulas, as well as practical
use of deduction-based formal verification for workflow-
oriented models. Business models expressed in BPMN
(business process modeling notation), a standard and
dominant notation for business processes, are an impor-
tant class of systems suitable for the discussed method
of deductive reasoning about system properties and seem
to be an intellectual challenge that software engineers are
faced with when they try to obtain trustworthy and reliable
models.

The aim of this work is to provide a conceptual
theoretical framework supporting deduction-based formal
verification of workflow-oriented models. The contribu-
tion is a complete deduction-based system, including its
architecture and components, which enables automated
and formal verification of business models. The main
contribution is an algorithm for the generation of logi-
cal specifications providing the method of extracting log-
ical specifications from workflow models. Theoretical
possibilities of such automation and the completeness is-
sue for this process are discussed. The application of a
non-standard method for deduction which is the semantic
tableaux method for temporal logic in the area of business
models is another contribution. The proposed approach
is characterized by the following advantages: introducing
predefined patterns as primitives to logical modeling, and
logical patterns once defined, e.g., by a logician or a per-
son with good skills in logic, then widely used, e.g., by
analysts and developers with fewer skills in logic.

This work shows theoretical solutions to some prob-
lems as outlined above, allowing for future preparation of
workable practical solutions. It also opens new research
areas as shown in the last section.

1.2. Related works. Workflow technologies are al-
ways important for the scientific world (cf. Barker and
Van Hemert, 2008), providing a kind of glue for dis-
tributed services, for example, service-oriented architec-
tures which constitute a number of loosely coupled and
independent services, to obtain more flexible than tradi-
tional and strictly coupled applications. Thus, the impor-
tance of workflow technologies increases both for scien-
tific and business domains. Dehnert and van der Aalst
(2004) present a kind of bridge between business pro-
cess modeling and workflow specification. The proposed
methodology consists of some steps which are designed to
provide and include a remedy for intuitive description and
informal languages. A proliferation of business process
management modeling languages is discussed by Ko et al.
(2009). Languages and notation are classified into groups
of execution, interchange, graphical standards, and diag-
nostics providing identification and an answer for some
common misunderstandings, and also discussing future
trends. The dominant language, and de facto standard, for
business process modeling becomes BPMN, see remarks
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at the beginning of Section 6. Formal semantics of a sub-
set of BPMN using the process algebra CSP formalism are
proposed by Wong and Gibbons (2011). Such a formalism
allows comparing BPMN models prepared by developers.
A pattern-based method expressing behavioural properties
is considered in the work. A translation into a bounded
fragment of linear temporal logic is also presented. In the
work of Dijkman et al. (2008), a mapping from BPMN to
Petri nets is proposed to obtain analysis techniques using
existing Petri net-based tools, and to enable the static anal-
ysis of BPMN models. Leuxner et al. (2010) present a for-
mal model for workflows based on a transition system and
discuss some algebraic properties. A meta-model for for-
mal specification of functional requirements in business
process models, which is not well covered in literature, is
proposed by Frece and Juric (2012). Specific extensions
to the BPMN semantic and diagram elements are intro-
duced. YAWL (van der Aalst and ter Hofstede, 2005) is a
workflow language supporting complex data transforma-
tions. It is a graphical language but has a well-defined
formal semantics defined as a transition system providing
a firm basis for by formal analysis of real-world services.

Business models are also subject to formal verifica-
tion. Dury et al. (2007) discuss business workflows for
formal verification using model checking. Eshuis and
Wieringa (2004) address the issues of workflows, but they
are specified in UML activity diagrams and the goal is to
translate diagrams into a format that allows model check-
ing. Some aspects of workflows and temporal logic are
considered by Brambilla et al. (2005), but the formulas
are created manually and formal verification is not dis-
cussed very widely. However, these considerations may
constitute a kind of starting point for this work. Another
important direction of research is verifying business pro-
cesses using Petri nets (van der Aalst, 2002). In the work
of Zha et al. (2011), a translation of workflows to Petri
nets is proposed to perform analysis using existing tools.

An interesting direction of analysis is π-calculus,
which enables efficient reasoning (e.g., Ma et al., 2008),
and is designed for business processes and BPEL. The pa-
per by Bryans and Wei (2010) is another work that con-
siders an algorithmic translation from BPMN to Event-B
notation, which is based on abstract machine notation, for
system modeling and analysis. Morimoto (2008) presents
a survey of formal verification for business processes. The
author discusses automata, model checking, communicat-
ing sequential processes, Petri nets, and Markov networks.
All these issues are discussed in the context of business
process management and web services. In the general
work by Shankar (2009), automated deduction for veri-
fication is discussed. There are studied some important
issues for symbolic logical reasoning, e.g., satisfiability
procedures, automated proof search, and a variety of ap-
plications in the case of propositional and fragments of
first-order logic. However, even though the work contains

a review of symbolic reasoning, modal and temporal log-
ics are omitted. Xu et al. (2012) discuss formal verifica-
tion of workflows. A special language is developed but
algorithms refer only to propositional logic. A deductive
system for workflow models is proposed by Rasmussen
and Brown (2012). Even though for present a solid math-
ematical framework and some deductive work is done, the
theoretical background is like for Petri nets and not formal
logic.

In the work of Duan and Ma (2005), a method and a
management system for specification workflows by tem-
poral logic based workflow specification model are pro-
posed. Yu and Li (2007) put forward a workflow and a
linear temporal logic model. It enables formal verifica-
tion of workflows and is oriented towards model check-
ing. Rao et al. (2008) propose a process model of a work-
flow management system for which specification of con-
straints is expressed in linear temporal logic. Another pa-
per that focuses on constraint specification using linear
temporal logic is that by Maggi et al. (2011). A transla-
tion of declarative workflow languages to linear temporal
logic and finite automata are considered by Westergaard
(2011). Improved algorithms for such a translation pro-
cess are proposed. In an interesting paper by Taibi and
Ngo (2003), design patterns are discussed. A simple lan-
guage for pattern specification, combining first-order and
temporal logic of actions, is proposed.

However, all of the research themes mentioned above
are different from the approach presented in this paper,
which focuses on formal verification of business pro-
cesses using deductive-based reasoning with temporal
logic. While formal verification is discussed in some of
the papers, the application of temporal logic for this pur-
pose is relatively rare. Moreover, the deductive approach
used for this domain is quite rare.

1.3. Structure. The rest of the paper is organized as
follows. Logical preliminaries, which are temporal logic
and logical inference using the semantic tableaux method,
are discussed in Section 2. Temporal logic is an estab-
lished standard for the specification and verification of
reactive systems, and the semantic tableaux method is a
natural and valuable method of inference. The deduc-
tion system and its architecture are proposed in Section 3.
The system enables formal verification of business mod-
els. It consists of several software components, and some
of them may be treated as interchangeable. Workflow pat-
terns are discussed in Section 4. They are treated as (logi-
cal) primitives which allow automating the entire process
of generating logical specifications. The algorithm for
extracting logical specifications is proposed in Section 5.
A general example of generating logical specifications is
presented in Section 6. The work is summarized and fur-
ther research is discussed in Section 7.
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2. Logical preliminaries

Formal logic is a symbolic language that supports the rea-
soning process with statements to be evaluated as true
or false. There is a need for a rigorous and logic-based
tool that enables formal reasoning about software models.
Natural languages that do not belong to formal logic can
be expressive, but they are very imprecise and ambigu-
ous. On the other hand, formal languages, such as formal
logic, are not expressive but they are precise, and program
properties expressed formally are clearly and commonly
understood.

Temporal logic (TL) is a branch of symbolic logic
that focusses on statements whose evaluations depend
on time flows, i.e., it is a formal language which al-
lows expression of temporal properties. Temporal logic
is a valuable formalism (e.g., Venema, 2001; Wolter and
Wooldridge, 2011), which is widely applied in the area of
software engineering for the specification and verification
of software models and reactive systems. It is used for sys-
tem analysis where behaviors of events are of interest. TL
exists in many varieties, but the discussion in this paper is
limited to linear temporal logic (LTL), i.e., the logic for
which the time structure is considered linear. This means
that each state has exactly one future.

The syntax of LTL is formulated over a countable
set of atomic formulas AP � �p, q, r, . . . � and the set of
temporal operators M � ��,��. Atomic formulas are
those with no propositional sub-structure, or with no sub-
formulas, or variables from propositional calculus. Syntax
rules allow the definition of syntactically correct, or well-
formed, temporal logic formulas.

Definition 1. An LTL formula is the one which is built
using the following rules:

• if p � AP , then p is an LTL formula,

• if p and q are formulas, then�p, p� q, p� q, p� q,
p	 q are LTL formulas

• if p is a formula, then � p, where � � M, is also an
LTL formula.

Thus, the whole LTL alphabet consists of the follow-
ing symbols: AP , M and classical logic symbols like �,
�, �, etc. It is relatively easy to introduce other symbols,
e.g., parentheses, which are omitted here to simplify the
presentation. The M set consists two fundamental and
unary temporal logic operators, where � means “some-
time (or eventually) in the future” and � means “always
in the future”. The operators are dual, i.e., �� is, infor-
mally, equal to ��, and � to ��� and � to ���. The
M set can be extended to other temporal logic operators.
The discussion in the work are focused on the LTL, and
particulary on propositional linear temporal logic (PLTL).
Propositions are statements that could affirm something

about members of a class, i.e., workflow activities con-
sidered in the work. Thus, propositions AP are used as
atomic formulas in Definitions 1 and 4, as well as atomic
formulas in the predefined set P in Figs. 3 and 4. How-
ever, notions introduced in these figures are described in
Section 6.

The semantics of LTL are traditionally defined using
the concept of the Kripke structure, which is considered
a graph, or a path, whose nodes represent the reachable
states w � s0, s1, s2, . . . or, in other words, the reachable
worlds, and a labeling function which maps each node to
a set of atomic formulas 2AP that are satisfied in a state.
A valuation function ν
w
i�� � 2AP , where i � 0,
and w
i� means the i-th element of the path w, allows
defining the satisfaction �� relation between a path and an
LTL formula, e.g., w �� p iff p � w
0�, w �� �p iff it is
not p � w
0� and w �� �p iff p � w
i�, where i0, etc.
Theorems and laws of LTL can be found in the work of
Emerson (1990).

Deductive reasoning is a kind of “top-down” way
of thinking that links premises and conclusions. This is
a typical and natural procedure in everyday life. Logic
and reasoning are cognitive skills. Logical reasoning
is the process of applying sound mathematical proce-
dures to given statements to arrive at conclusions. For-
mal and logic-based inference enables reliable verifica-
tion of the desired properties. There are some techniques,
or proof procedures, which are systematic methods pro-
ducing proofs in some calculus, or provable statements.
In other words, they are decision procedures for logic
which enable determining formula satisfiability. There are
some examples of deductive reasoning: sequent calculi,
resolution-based techniques or semantic tableaux. The
resolution technique is based on the observation that ev-
ery logical formula can be transformed into a conjunc-
tive normal form. The interesting feature of the resolution
method is that it has only one inference rule, the resolu-
tion rule. On the other hand, the method can be employed
to formulas (sub-formulas) in conjunctive normal form.
The essence of the procedure is to prove the validity of a
sub-formula by establishing that the negation of this sub-
formula is unsatisfiable. Another proof procedure is the
semantic tableaux method, which is based on the obser-
vation that it is not possible for an argument to be true
while the conclusion is false. The essence of the proce-
dure is finding counterexamples in branches of a tree after
breaking down formulas. Semantic tableaux are global,
goal-oriented and “backward”, while resolution is local
and “forward”.

Although the work is not based on any particular
method of reasoning, the method of semantic tableaux is
presented in a more detailed way. The method of seman-
tic tableaux, or the truth tree, is well known in classical
logic but it can be applied in modal logic (d’Agostino
et al., 1999). It is a decision procedure for formula sat-
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1 : ����p� q� ���q � �r� ���r � s� � ��p� �s��

1 : ��p� q� ���q � �r� ���r � s� ���p���s�

1 : ��p���s�

1 : ��p � q�

1 : ��q � �r�

1 : ��r � s�

1.�a� : p���s

1 : p

1.�x� : �s

1.�y� : p� q

1 : �p

�

1 : q

1.�z� : q � �r

1 : �q

�

1.�b� : r

1.�w� : r � s

1 : �r

�

1 : s

�

Fig. 1. Truth tree of the semantic tableaux method.

isfiability checking and represents reasoning by contra-
diction, i.e., reductio ad absurdum. The method is based
on formula decomposition using predefined decomposi-
tion rules. At each step of the well-defined procedure, for-
mulas become simpler as logical connectives are removed.
The tree is finished if every (sub-)formula is decomposed
and every leaf contains an atomic formula or the negation
of an atomic formula. At the end of the decomposition
procedure, all branches of the received tree are searched
for contradictions. When the branch of the truth tree con-
tains a contradiction, it means that the branch is closed.
When the branch of the truth tree does not contain a con-
tradiction, it means that the branch is open.

When all branches are closed, it means that the tree
is closed. In the classical approach, starting from axioms,
longer and more complicated formulas are generated and
derived. Formulas are getting longer and longer with ev-
ery step, and only one of them will lead to the verified
formula. The method of semantic tableaux is character-
ized by the reverse strategy. Though we start with a long
and complex formula, it becomes less complex and shorter
with every step of the decomposition procedure. The open
branches of the semantic tree provide information about
the source of an error, if one is found, which is an advan-
tage of this method.

Example 1. A simple example of an inference tree for
a temporal logic formula is shown in Fig. 1. The for-
mula of minimal temporal logic (Chellas, 1980; van Ben-

them, 1993–95) is considered. The adopted decomposi-
tion procedure, as well as labeling, refers to the first-order
predicate calculus and can be found in the work of Hähnle
(1998). Each node contains a (sub-)formula which is ei-
ther already decomposed or will be subjected to decom-
position in the process of building a tree. Each formula
is preceded by a label referring to the current world refer-
ence. Label “1 :” represents the initial world in which a
formula is true. Label “1.
x�”, where x is a free variable,
represents all possible worlds that are consequent of the
world 1. On the other hand, label “1.�p�”, where p is an
atomic formula, represents one of the possible worlds, i.e.,
a successor of the world 1, where formula p is true. Let
us note that all branches of the analyzed trees are closed
(�). It means there is no valuation that satisfies the root
formula. This consequently means that the formula before
the negation, i.e.,�
p� q���
q � �r���
r � s� �
�
p � �s�, is always satisfied, i.e., the formula is valid.

�
The semantic tableaux method can be treated as a de-

cision procedure, i.e., an algorithm that can produce the
Yes/No answer as a response to some important questions.
Let F be an examined formula and T a truth tree built for
a formula. Then the following conclusions can be drawn.

Corollary 1. The semantic tableaux method gives an-
swers to the following questions related to the satisfiabil-
ity problem:

• formula F is not satisfied iff the finished T 
F � is
closed,

• formula F is satisfiable iff the finished T 
F � is open,

• formula F is always valid iff finished T 
�F � is
closed.

Proof. The semantic tableaux method is based on sys-
tematic search for models that satisfy a formula. To show
that a formula is unsatisfiable, it needs to show that all
branches are closed. Hence, if the tree is closed, this
means there is no model that satisfies a formula. To show
that a formula is satisfiable, it needs to find one open
branch. If the tree is open, this means there exists a model
that satisfies a formula. If the tree for the negation of a for-
mula is closed, this means there is no model that satisfies
a formula, and, as a result of the fact that this is proving
by contradiction, it leads to the conclusion that the initial
formula is always valid. �

3. Deduction system

The architecture of the proposed inference system is pre-
sented and discussed below. The system consists of some
independent components and is shown in Fig. 2. A sim-
pler version of the system is shown by Klimek (2012).
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Fig. 2. Architecture of a deduction-based verification system.

The system has two inputs. The data stream with soft-
ware models to be analyzed is the first input. The ap-
proach is based on organizing models into predefined pat-
terns whose temporal properties are once defined, e.g., by
a person with good skills in logic, then widely used, e.g.,
by analysts with fewer skills in logic. The second input
is the analyzed property/properties expressed in terms of
temporal logic formulas. The easiest way to introduce
such formulas is to use a plain text editor and to build
them manually. Such a formula, or formulas, is iden-
tified by an analyst and describes the expected/desired
properties for the investigated software model. Although
specifying properties still requires knowledge of temporal
logic, formulas for properties are usually much easier to
formulate. The output of the whole deductive system is
the “Yes/No” answer in response to a new verified prop-
erty. The whole system can be synthesized informally as
System
Model ,Property� � Y �N . Such a process of
inference can be performed many times in response to any
new formulas describing the desired and analyzed prop-
erty. There is another output that is called “Aux”. This
is a point which enables outputting the auxiliary infor-
mation depending on the particular method of inference,
e.g., open branches in the case of the semantics tableaux
method.

The proposed system is based on deductive reasoning
and enables examining whether a formula logically “fol-
lows” from some statements (formulas).

Definition 2. Let U be a set of formulas and G a formula.
If for every model of U , the formula G is satisfied, i.e., the
logical value of the formula is equal to the truth, then G is
a logical consequence, i.e., U �� G.

Theorem 1. (Deduction theorem) Let U �
�F1, F2, . . . , Fn�. U �� G iff �� F � G,
where F1 � . . .� Fn � F .

This is a well-known statement about the equivalence

of logical consequence and logical implication. The proof
could be found in the work of Kleene (1952). Summing
up, the examined formula G is a logical consequence of F
iff statement F � G is a tautology, i.e., a statement that
is always true. It provides the important relation between
the notions of logical consequence and validity. The con-
junction of all premises leads to the conclusion of the ex-
amined formula’s validity.

The system works automatically and consists of
some important elements. Some of them can be treated
as software components/plugins, i.e., they are designed
to work as part of a larger system introducing a specific
feature, and can be exchanged for one another with sim-
ilar features if necessary. The first component G gener-
ates logical specifications, i.e., it performs mapping from
software models to logical specifications. This process
depends also on the predefined workflow property set P
which describes the temporal properties for every work-
flow, and is discussed in the next sections and shown in
Fig. 3 and 4. A logical specification is a set of a (usually)
large number of temporal logic formulas and is defined in
Section 5. The generation of formulas is performed auto-
matically by extracting logical specifications from work-
flow patterns contained in a workflow model. Formulas
regarded as a logical specification are collected in the S

module (data warehouse, i.e., a file or a database) that
stores the specification of a system. It can be treated as
a conjunction of formulas p1 � . . . � pn � S, where pi
is a specification formula generated during the extraction
process. The R module provides the desired and exam-
ined properties of the system, as described above, which
are expressed in temporal logic. Both the specification of
a system and the examined properties constitute an input
to the T component, i.e., temporal (logic) prover, which
enables the automated reasoning in temporal logic. The
input for this component is usually formed in the form of
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the formula S � Q, or, more precisely,

p1 � . . .� pn � Q. (1)

Since the semantic tableaux method is an indirect
proof, after the negation of the formula (1), it is placed at
the root of the inference tree and decomposed using well-
defined rules of the semantic tableaux method. If the infer-
ence tree is closed, this means that the initial formula (1)
is true. The output of the T component and therefore also
the output of the whole deductive system are the answer
Yes/No in response to any new verified property.

The whole verification procedure can be summarized
as follows:

1. automatic generation of system specifications (the
G component), then stored in the S module,

2. introduction of an examined property of a model (the
R module) as a temporal logic formula (formulas),

3. automatic inference using semantic tableaux (the T

component) for the whole complex formula 1.

Steps from 1 to 3, together or individually, may be pro-
cessed many times, whenever the specification of the
model is changed (step 1) or there is a need for a new in-
ference due to the revised system’s specification (steps 2
or 3).

4. Workflows as primitives

Workflows regarded as primitives are discussed in this
section. Primitives are primary or basic units not de-
veloped from anything else. In the case of workflows,
they can be recognized as a low-level objects that lead to
higher-level constructions. In the case of logic, they can
be recognized as underived logical elements that lead to
more complex logical specifications. A combination of
these two primitives is presented below.

Workflows play an important role in computer sci-
ence and software engineering. Broadly speaking, the
workflow is a series of tasks, or procedural steps or activi-
ties, requiring an input and producing an output, i.e., some
added value to the whole activity. In other words, the
workflow enables observable progress of the work done
by a person, a computer system, or a company. There
are many examples of workflows and their notations that
influence computer science, and one of them is business
models, discussed in Section 6, or activity diagrams of
UML (Booch et al., 1999; Pender, 2003). An important
feature of workflows is the fact that they are focused on
processes rather than documents. This feature is espe-
cially important for the approach presented in this paper.
One can say that the flow of processes is not disturbed
by any data. This gives hope to automate the process of
generating logical specifications from workflow-oriented

software models which are organized in predefined struc-
tures. The main idea is to associate workflows with tem-
poral logic formulas that describe the dynamic aspects of
workflows. On the other hand, modeling should be lim-
ited to a set of predefined workflows and then models can
be developed using only these workflow patterns as dis-
cussed in Section 6.

If the last rule of Definition 1 is removed, then the
definition of a classical logic formula is obtained. These
formulas do not contain modal operators M. Let us
present it more formally.

Definition 3. The classical logic, or point, formula is a
formula which is built using the following rules:

• if p � AP , then p is a point formula,

• if p and q are formulas, then�p, p�q, p�q are point
formulas.

Point formulas allow describing (logical) circum-
stances without considering a time flow, i.e., in a point.
Only when they are preceded by a temporal operator (e.g.,
Algorithm 1 or proof in Theorem 2) are they considered
in the time context.

Every workflow is linked to logical formulas, both
temporal and classical ones. Temporal logic formulas en-
able describing the internal properties of workflows. Clas-
sical logic formulas enable describing workflows from the
outside. These aspects are discussed in greater detail be-
low.

Definition 4. The workflow set of formulas denoted by
wrf 
a1, . . . , an�, or simply wrf 
�, over atomic formulas
a1, . . . , an, is a set of formulas fen, fex, f1, . . . , fm such
that all formulas are syntactically correct, and fen and fex
are point formulas, and f1, . . . , fm are temporal logic for-
mulas, i.e., wrf 
� � �fen, fex, f1, . . . , fm�.

Formulas a1, . . . , an are arguments of a workflow
constituting, informally speaking, its input, i.e., these
atomic formulas are used to build both point and temporal
formulas of a workflow. Workflow sets are formed in such
a way that the first two formulas are classical logic ones
and further formulas are LTL ones. The interpretation of
such an organization is the following:

1. Classical logic formulas (Definition 3) describe (log-
ical) entry or exit points called entry formula fen or
exit formula fex of a workflow, i.e., they enable rep-
resentation of a workflow considered as a whole, in
other words, describing the logical circumstances of
respectively the start and the termination of the whole
workflow execution, or they show which activities of
a workflow are executed first or last, respectively, cf.
the predefined workflow property set P given in Sec-
tion 6. Thus, these formulas should not be confused
with the well-known precondition or postcondition,
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respectively. Let wrf 
�.fen and wrf 
�.fex be entry
and exit formulas, respectively, from a workflow set
wrf 
�; if it does not lead to ambiguity, then formulas
are written shortly as fen and fex.

2. Temporal logic formulas (Definition 1) describe the
internal behavior of the workflow f1, . . . , fm, show-
ing dynamic aspects of a workflow pattern. Every
property can be characterized using a liveness prop-
erty and a safety property (cf. Alpern and Schnei-
der, 1985), thus the aim is to obtain a decomposition
expressed in terms of temporal logic formulas.

Summing up, point formulas allow consideration of a
workflow as a whole, i.e., from the outside point of view,
while temporal formulas show the internal behavior of a
workflow.

Some restrictions on atomic formulas a1, . . . , an of
the workflow set wrf 
� in Definition 4, due to the partial
order, are introduced.

Definition 5. The set of atomic formulas is divided into
three subsets which are pairwise disjointed and the fol-
lowing rules must be valid:

1. the first subset, which contains at least one element,
consists of entry arguments, and all of these argu-
ments, and no other, form the fen formula,

2. the second subset, which may be empty, consists of
ordinary arguments,

3. the third subset, which contains at least one element,
consists of exit arguments, and all these arguments,
and no other, form the fex formula.

Example 2. Let us discuss some examples of work-
flow sets for hypothetical workflow patterns: W1
a, b� �
�a, b, a� �b,��
a� b��, W2
a, b, c� � �a, b� c, a�
�b � �c,��
a� 
b � c���, and W3
a, b, c, d� � �a �
b, d, a � �c, b � �c,��c � ��d,��

a � b� �

c � d���. In the case of W1 and W2 the a proposi-
tion is a (logical) starting point for the whole workflow,
i.e., it means that when a is satisfied then workflows are
started. W1 probably refers to a workflow for a sequence
of two tasks a � �b (liveness), and therefore it is also
not possible (safety) that these two task are satisfied si-
multaneously ��
a� b�. W2 probably shows a parallel
split of two task, and therefore the b� c formula describes
the fact that when the workflow ends then b or c are satis-
fied. In the case of W3, the disjunction a� b is a (logical)
starting point. The d task is always the last activity of the
workflow. The set of formulas for W3 is a more complex
and interesting case. It describes a reactive and fair ser-
vice (liveness)��c� ��d, i.e., when c is satisfied then
always follow d. The service is ready to work after the
initiation of the whole workflow (a� b), and after starting

a service (liveness) a� �c or b� �c. It is mandatory to
ensure the safety of the workflow, i.e., the start formulas
and service formulas cannot be satisfied at the same time
��

a� b� � 
c� d��. �
Corollary 2. The definition of the workflow set wrf 
� and
further remarks lead to the following valid statements:

• none of the ordinary arguments of a workflow set are
included either in the fen or the fex formula,

• every workflow contains, and its logical formulas de-
scribe, the structure that consists of at least two ac-
tivities (or tasks).

Proof. The proof is relatively simple and, for example,
the second statements follows from the fact that the en-
tire set of atomic formulas a1, . . . , an as arguments for a
workflow set must contain at least two arguments which
constitute activities (tasks). �

The whole software model comprising workflows
can be quite complex including nesting workflows, and
this is why there is a need to define symbolic notation
which enables to represent any potentially complex struc-
ture.

Definition 6. The workflow expression W is a structure
built using the following rules:

• every workflow set wrf 
a1, . . . , ai, . . . , an�, where
every ai is an atomic formula, is a workflow expres-
sion,

• every wrf 
A1, . . . , Ai, . . . , Am�, where every Ai is
either

– an atomic formula ak, where k � 0, or

– a workflow set wrf 
aj�, where j � 0 and every
aj is an atomic formula, or

– a workflow expression wrf
Aj�, where j � 0

is also a workflow expression.

Every ai (lower case letters) represents only atomic
formulas. Every Ai (upper case letters) represents either
atomic formulas or workflows. These rules allow defin-
ing an arbitrary complex workflow expression. Due to the
partial order relation described above and Corollary 2, it
should be noted that, in regard to the workflow expres-
sion, there is a similar valid restriction on the number of
arguments, i.e., there are at least two arguments for every
workflow expression, which is informally shown through
the way of indexing for a workflow expression that takes
values i, j � 1, 2, . . . .

The notion of aggregated entry/exit formulas is in-
troduced which is a result of nested and complex work-
flows, as well as the need to transfer, informally speaking,
the logical signal to all start/termination points of a nested
workflow.
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Definition 7. Let wc for a workflow expression w with
the upper index c � e (or x, respectively) be the aggre-
gated entry formula (or the aggregated exit formula, re-
spectively) when the aggregated formula is calculated us-
ing the following (recursive) rules:

1. if there is no workflow itself in the place of any
atomic formula/argument which syntactically be-
longs to the fen formula (or the fex formula, respec-
tively) w, then we is equal to fen (wx is equal to fex,
respectively),

2. if there is a workflow, say t
�, in place of any atomic
argument, say r, which syntactically belongs to the
fen formula (or the fex formula, respectively) of w,
then r is replaced by te (or tx, respectively) for every
such case.

These rules allow defining aggregated point formulas
for an arbitrary complex workflow expression.

Example 3. Let us supplement Definitions 6 and 7 by
some examples. Let Σ be a predefined workflow set, e.g.,

Σ � �Seq,Concur ,Branch,Loop�, (2)

properties whose might be described and stored in the P
set, cf. Figs. 3 and 4, modeling sequence, concurrency,
branching and iteration, respectively. However, they are
defined here in a different (simpler) way compared the P
set, i.e., through direct introduction of all necessary for-
mulas. Thus, Seq
a, b� � �a, b, a � �b,��
a � b��,
Concur
a, b, c� � �a, b � c, a � �b � �c,��
a �

b � c���, Branch
a, b, c� � �a, b � c, a � 
�b �
��c��
��b��c�,��
b� c��, and Loop
a, b, c, d� �
�a, d, a � 
�b � ��d� � 
��b � �d�, b � �c, c �

�b���d� � 
��b��d��.

The meaning of Seq seems obvious. The Concur
and Branch workflows model concurrency and branch-
ing, respectively, for two activities b and c, which are pre-
ceded by another activity a. The Loop workflow models a
while-cycle case that has exactly one input activity a and
exactly one output activity d, which are located before and
after, respectively, the main loop. The sequence of two ac-
tivities b and c constitutes the entire body of a loop, where
b is a main instruction of the body, and c is an incrementa-
tion for the body. Formal definitions in terms of temporal
logic formulas for these patterns are proposed above. If it
is necessary to model concurrency and branching without
a preceding activity, then it can be obtained using the pro-
vided patterns Concur or Branch , and assuming that the
preceding activity a may be, informally, the null task, that
is, the execution of which consumes zero time. �

Workflow expressions may represent an ar-
bitrary structure, and an example of this is
Seq
a, Seq
Concur 
b, c, d�,Branch
e, f, g��� whose
meaning is intuitive, i.e., it might shows the sequence

that leads to another sequence of concurrent execution
of some activities and then the branch by selecting an
activity.

Example 4. Examples of aggregated formulas are
given as follows. For w � Seq
a, b� the formu-
las are we � a and wx � b (step 1). For w �
Concur
a, b,Seq
c, d�� the formulas are we � a (step 1)
and wx � b � d (step 1 gives “b�” and step 2
gives Seqx �“d” which is aggregated to “b � d”).
For w � Concur
a, b,Concur
c, d, e�� the formula is
wx � b � 
d � e� (step 1 gives “b�” and step 2 gives
Concurx �“d� e” which is aggregated to “b�
d� e�”).
For w � Concur
a,Concur
b, c, d�,Concur 
e, f, g��
the formula is wx � 
c � d� � 
f � g� (step 2 gives
Concurx � c � d and f � g, and after aggregation
“
c� d� � 
f � g�” is obtained). �

An important property of workflow expressions is
their internal and nested structure. Parentheses are the best
illustration for it. Suppose that all instances of “wrf 
”
and “,wrf 
”, where “wrf ” is the symbol of an arbitrary
workflow, were substituted by “
”. Then, for example, the
above workflow expression gives the parenthesis structure

a
b, c, d�
e, f, g��. This in turn leads to the following
theorem.

Theorem 2. For any workflow expression and for any
two workflow patterns wrfi
� and wrfj
�, where i � j,
only one of the following three situations holds:

1. wrf i
� and wrf j
� are completely disjoint,

2. wrf i
� is completely contained in wrf j
�,

3. wrf j
� is completely contained in wrf i
�.

Proof. Firstly, let us note that Definition 6 is recursive.
For the first case of the definition, a simple pattern with
atomic formulas is considered, and it is consistent with
the theorem in an obvious way. For the second case, two
subcases are considered. For the first subcase, if the argu-
ment is an atomic formula, then it is clear that no paren-
theses are introduced. For the second subcase, recursive
application of the rule introduces a new pattern with cor-
rectly paired parenthesis, and this subcase guarantees the
complete contain (nesting) of patterns. If correctly paired
patterns are introduced/substituted in place of different ar-
guments of a pattern, then it guarantees the disjointedness
of the paired patterns. �

5. Generating specifications

The process of generating logical specifications is de-
scribed below. Informally speaking, logical specification
is a counterpart of formal generalization understood as an
act of taking some facts and making broader statements,
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i.e., formal derivation of a general statement from a partic-
ular one. In this work, logical specification is expressed as
a set of temporal logic formulas. These formulas are gen-
erated from workflow expressions using predefined work-
flows as logical primitives. Let us define it formally and
then present an algorithm.

Definition 8. The logical specification L is a set of
temporal logic formulas derived from a workflow expres-
sion W and a predefined set P using the algorithm Π, i.e.,
L
W � � �fi : i � 0 � fi � Π
W,P ��, where fi is an
LTL formula.

Generating logical specifications is not a simple
union of predefined formula collections resulting from
patterns used in a workflow expression. The generation
algorithm Π is given as Algorithm 1. The generation pro-
cess has two inputs. The first one is a workflow expres-
sion W , which is a kind of variable, i.e., it varies for every
workflow model. The second one is a workflow property
set P , which is a kind of constant since it is predefined
and fixed containing definitions of workflows in terms of
temporal logic formulas. More detailed information about
this set including its examples is given in Section 6. The
output of the generation algorithm is a logical specifica-
tion understood as a set of temporal logic formulas.

Let wrf 
�T represent a set of all temporal formu-
las extracted from a workflow set (i.e., without point
formulas). Algorithm 1 refers to similar ideas in the

Algorithm 1 Generating logical specifications (Π).
Input: Logical expression WL (non-empty), predefined

set P (non-empty)
Output: Logical specification L

1: L :� � � initiating specification
2: for every workflow wrf
� of WL from left to right do
3: if all arguments of wrf 
� are atomic then
4: L :� L� wrf 
�T

5: end if
6: if any argument of wrf 
� is a workflow itself then
7: for every such an argument, say r
�, substitute
8: disjunction of its aggregated entry and exit
9: formulas in all places where the argument

10: occurs in the wrf 
� temporal formulas, i.e.,
11: L :� L� 

wrf 
�T � � “r
�e � r
�x”�
12: end if
13: end for

works of Klimek (2013) and Klimek et al. (2013); how-
ever, the case considered here is more general and not
focused on specific patterns. All workflows of the
workflow expression are processed one by one and the
algorithm always halts. All parentheses are paired.
Let p4
h, p2
d, p1
a, b, c�, e�, p3
f, g�� be a hypothetical
workflow expression, where p1, p2, p3, and p4 are work-
flow patterns. Pattern p3 has two arguments, and other

patterns have three arguments. Considering the loop in
the line 2 of Algorithm 1, the processing order of patterns
is the following: p4, p2, p1, and p3, where p4 and p2 are
processed in lines 6–12, and p1 and p3 are processed in
lines 3–5.

Example 5. Considering the predefined workflow set
given by the formula 2 and its definitions of workflows,
let us supplement Algorithm 1 by some examples. The
example for lines 3–5: Seq
a, b� gives L � �a �
�b,��
a � b�� and Branch
a, b, c� gives L � �a �

�b � ��c� � 
��b � �c�,��
b � c��. The ex-
ample for lines 6–12: Concur
Seq
a, b�, c, d� leads to
L � �
a�b� � �c��d,��

a�b��
c�d�����a�
�b,��
a� b��. Other examples are shown in Section 6.

�
Algorithm 1 comprises two main parts. In the first

one, lines 3–5, logical specifications are rewritten from a
predefined set, cf. Figs. 3 and 4, without any modification
and summed with the resulting specification. In the sec-
ond part, lines 6–12, the workflow formulas fen and fex
are taken into account since they allow consideration of
the nested workflow as a whole, i.e., without analyzing
its internal behavior, which is itself and separately taken
into account in the first part. Consideration of both fen
and fex seems a bit redundant for a single workflow but,
on the other hand, informally speaking, these two formu-
las have equal rights to represent a workflow, and line 11
contains their disjunction which is substituted, and then
modified temporal formulas are summed with the result-
ing specification.

Algorithm 1 allows automating the process of gener-
ating logical specifications. Logical expressions are trans-
lated into logical specifications, which are expressed in
terms of temporal logic formulas. Logical expressions can
be arbitrarily complex and nested. Moreover, the list of
predefined patterns can be arbitrarily, that is, in any way
and at any time extended by new patterns. The only re-
quirement is to define behaviour, cf. Figs. 3 and 4, for
new patterns in terms of temporal logic prior to their first
use. Thus, the general idea that logical patterns are once
defined and then widely used is satisfied.

The completeness problem is a fundamental issue
for logical systems and constitutes their key requirement
in many fields. Informally speaking, completeness is in
some opposition to the fragmentation. In other words,
completeness means having all elements and lacking noth-
ing while fragmentation means not having all elements
and lacking something. Generally speaking, an object,
or a set of objects, is complete if nothing more needs to
be added to it. In formal logic systems, completeness
means that if a formula is valid it can be proven (Gries
and Schneider, 1993, p. 128). In algorithms, it refers to
the ability of finding a solution if one exists.
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This paper discusses both predefined logical speci-
fications and the algorithm for generating logical specifi-
cations using predefined specifications. This requires an
integrated perspective towards completeness by consider-
ing two aspects:

1. completeness of possessed logical specifications,
which is contained in a predefined set of patterns, cf.
Figs. 3 and 4, and

2. completeness of the generation algorithm, i.e., Algo-
rithm 1.

Firstly, the completeness of the predefined set P is consid-
ered. The set consists of logical specifications that refer
to particular patterns or, in other words, every pattern is
defined in terms of temporal logic formulas. These speci-
fications should be examined, one by one, for compliance
with the relevant logical properties. However, as has al-
ready been said in Section 1.1 (motivation), logical pat-
terns are predefined by a logician or a person with good
skills in logic for further use by an ordinary analyst or a
developer. This leads to the conclusion that the logician is
responsible for proving the correctness and logical prop-
erties of predefined specifications, and some decision pro-
cedures, cf. Corollary 1, might be helpful for this process.

Predefined logical specifications constitute an input
for the generation of Algorithm 1. Thus, it is reasonable
to question whether the algorithm preserves the complete-
ness when generating the resulting logical specification,
i.e., obtained as an output of Algorithm 1.

Definition 9. The algorithm of generating logical spec-
ification is relatively complete if it preserves the com-
pleteness of the generated logical specification or, in other
words, if it does not introduce itself incompleteness to the
output logical specifications with respect to predefined in-
put specifications.

Theorem 3. Suppose that a predefined workflow set is
non-empty, and every pattern of the P set is non-empty,
and every two patterns have disjointed sets of atomic for-
mulas, and the workflow expression W is non-empty. Then
the logical specification obtained for Algorithm 1 is rela-
tively complete.

Proof. Let us note that, due to the parentheses in The-
orem 2, patterns are nested entirely/completely, i.e., it is
not possible to obtain a partial nesting that might provide
undesirable crossing of patterns. Furthermore, every two
patterns contain disjointed sets of atomic formulas. Ev-
ery system can be described in terms of safety and live-
ness properties/formulas (Alpern and Schneider, 1985).
If a predefined logical specification is complete, then in-
completeness cannot be introduced while generating the
output logical specification when using liveness formulas.
The most general form for liveness is formula P � �Q.
Let us consider two cases for Algorithm 1.

Case 1 (lines 3–5). Specifications are only rewritten from
a predefined set, cf. Figs. 3 and 4. Then if the input spec-
ification is complete, the completeness property is pre-
served.
Case 2 (lines 6–12). The entry and exit formulas are
considered. They are generalization for a nested pat-
tern and allow bypassing/skipping its internal behaviour.
They enable considering both the beginning and the end
of a workflow. Let us note that for any workflow pat-
tern w
�, due to Corollary 2, there is always satisfied
��
w
�.fen � w
�.fex�. On the other hand, there is also
valid �
w
�.fen � �w
�.fex�. However, due to the
nature of entry and exit points, they are both either sat-
isfied or not satisfied, mapping a kind of logical propa-
gation, which leads to the third, and additional, formula
�
�w
�.fen � ��w
�.fex�.

Completeness refers to the reachability of all formu-
las and properties of a logical specification. Let us con-
sider the sequence of two workflows Seq
g
�, h
�� for the
predefined set expressed by the formula 2 and further def-
initions. Let g
�.fen � ge, g
�.fex � gx, h
�.fen � he,
and h
�.fex � hx. Let us return to the three formulas
introduced above. After considering them in the context
of workflows g
� and h
�, they are gathered as premises.
Now, due to the ordinary liveness formula a � �b, e.g.,
definition of Seq for the formula (2) where a refers to
g
� and b refers to h
� for the mentioned Seq
g
�, h
��,
and the substitution in the 11-th line of Algorithm 1,
the following formula that is added to the premises set
is obtained: �

ge � gx� � �
he � hx���. Formula
�
gx � �he� is a requirement that expresses the demand
to pass from one exit point directly to the next entry point
that allows covering all properties/formulas from the be-
ginning of the next workflow. Gathering all premises and
the demand, the resulting formula is


�
ge � �gx� ��
�ge � ��gx� �

��
ge � gx� ��
he � �hx� �

�
�he � ��hx� ���
he � hx� �

�

ge � gx� � �
he � hx���

� �
gx � �he�. (3)

While analyzing the above formula using the semantic
tableaux method, the obtained truth tree, similar to the
small tree from Fig. 1, contains many hundreds of nodes,
and is closed, which means that the formula (3) is always
satisfied (tautology).

Considering both cases is sufficient for the entire al-
gorithm. �

6. Model analysis and verification

A method of formal verification of business models is dis-
cussed in this section. The method follows from the ap-
proach provided in this work. Firstly, business systems



952 R. Klimek

are modeled using predefined workflow patterns, i.e., pro-
cesses associated with logical patterns. In other words,
workflow patterns are predefined in terms of temporal
logic formulas, and then logical specifications are auto-
matically generated using Algorithm 1. The introduced
deduction-based verification system allows performing
verification of business models in a formal way.

Workflow patterns are crucial for the approach in-
troduced in this work as they lead to the automation of
the logical specification generation process. Informally
speaking, a pattern is a distinctive formation created and
used as an archetype. Creating and using patterns pro-
motes software reuse, which is always a kind of idée fixe in
software engineering. Riehle and Züllighoven (1996) de-
scribed patterns as “the abstraction from a concrete form
which keeps recurring in specific non-arbitrary contexts”.
Patterns might constitute a kind of primitives which en-
able the mapping of workflow patterns to logical specifi-
cations. Business process modeling notation is a standard
and dominant graphical notation (e.g., OMG, 2011), for
the modeling of business processes.

The primary goal of BPMN is to provide notation
that is understandable by all business users, from busi-
ness analysts to technical developers and business peo-
ple who will manage and monitor these processes. An
important part of BPMN is 21 patterns which are intro-
duced by van der Aalst et al. (2003). Gradually building
in complexity, process patterns were broken down into
six categories, and the Basic Control Flow Patterns cat-
egory is considered in this work. The proposed method
of automatic extraction of logical specifications is based
on the assumption that the whole business model is built
using only the well-known workflow patterns of BPMN.
This assumption is fundamental to the consideration of the
work and is not a restriction since it enables receiving cor-
rect and well-composed business models.

Let the predefined workflow set of patterns
be Σ � �Sequence,ParallelSplit , Synchronization,
ExclusiveChoice, SimpleMerge�. This set might be ex-
tended using other patterns described by van der Aalst
et al. (2003). Definitions of all potentially used work-
flow patterns are expressed in terms of temporal logic and
stored in the set P , which is predefined and fixed. It is
assumed that the defining process is performed by a per-
son with good skills in logic. The process should contain
a discussion and proofs of the logical properties for every
pattern. Furthermore, the defining process is performed
once, and then logical primitives can be widely used. An
example of such a predefined workflow set P is shown in
Fig. 3. The way to define formally the individual work-
flow patterns, the type of the formulas used, is itself an
interesting problem. However, it is not discussed here ex-
actly, and should be the subject of research for all patterns
in a separate work, cf. remarks in the Section 7, where the
syntax of the presentation language shown in the figure is

/* version 25.10.2013
/* Basic Control Patterns
Sequence(f1,f2):
f1
f2
[](f1 => <>f2) / [](˜f1 => ˜<>f2)
[]˜(f1 & f2)
ParallelSplit(f1,f2,f3):
f1
f2 | f3
[](f1 => <>f2 & <>f3) / [](˜f1 => ˜<>f2 & ˜<>f3)
[]˜(f1&(f2|f3))
Synchronization(f1,f2,f3):
f1 | f2
f3
[](f1 & f2 => <>f3) / []( ˜(f1 & f2) => ˜<>f3)
[]˜((f1|f2)&f3)
ExclusiveChoice(f1,f2,f3):
f1
f2 | f3
[](f1 => (<>f2 & ˜<>f3)|(˜<>f2 & <>f3))
[](˜f1 => ˜<>f2 & ˜<>f3)
[]˜(f1&(f2|f3)) / []˜(f2 & f3)
SimpleMerge(f1,f2,f3):
f1 | f2
f3
[](f1|f2 => <>f3) / [](˜(f1|f2) => ˜<>f3)
[]˜(f1|f2) / []˜((f1|f2)&f3)

/* ..... [other] Business Patterns

Fig. 3. Sample predefined set P .

expected to be defined formally. Now, it is presented in-
formally in the following way. Most elements of the P set,
i.e., two temporal logic operators, classical logic opera-
tors, are not in doubt in understanding. The slash allows
placing more than one formula in a single line. Here f1,
f2, etc. are atomic formulas and constitute a kind of for-
mal arguments for a pattern. Every pattern has two point
formulas which are located at the beginning of the set de-
scribing the start and the final, respectively, logical con-
ditions/circumstances of the execution of a pattern. The
content of the P set is shown as a plain ASCII text to il-
lustrate its participation in the real processing, cf. Fig. 2.
Though the above set contains a relatively small number
of patterns, a justification for this is only to present a gen-
eral idea for pattern-oriented generation of logical spec-
ifications, and there is no difficulty with defining a set
of workflow formulas for any other process patterns, as
well as for the 21 patterns mentioned above (van der Aalst
et al., 2003; White, 2004).

Although formal definitions for all patterns exceed
the volume and goal of this paper, the predefined set of
workflows P is to be extended by the ArbitraryCycles
pattern (cf. White, 2004, pp. 11–12; Fig. 4), which
is perhaps the most complex process pattern, and Σ :�
Σ��ArbitraryCycles�. The pattern represents cycles that
have more than one entry or exit points. There are no spe-
cial restrictions on the types of loops used. A new notation
linked with tested loop conditions is introduced. If exp is
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ArbitraryCycles(Alfa,Beta,Chi,A,B,C,D,F,E,G):
Alfa
E | G
/* first loop (Alfa)
[](x(Alfa) & c(Alfa) => <>B & ˜<>A)
[](x(Alfa) & ˜c(Alfa) => <>A & ˜<>B)
[](˜x(Alfa) => ˜<>A & ˜<>B)
[]˜(x(Alfa)&(A|B)) / []˜(A|B|C)
[](A => <>C) / [](˜A => ˜<>C)
[](B | C => <>D) / [](˜(B | C) => ˜<>D)
[]˜((B|C)&D)
/* second loop (Beta)
[](D => <>x(Beta)) / [](˜D => ˜<>x(Beta))
[]˜(D&x(Beta))
[](x(Beta) & c(Beta) => <>E & ˜<>F)
[](x(Beta) & ˜c(Beta) => ˜<>E & <>F)
[](˜x(Beta) => ˜<>E & ˜<>F)
[]˜(x(Beta)&(E|F)) / []˜(E|F)
/* towards outside (Chi,G)
[](F => <>x(Chi)) / [](˜F => ˜<>x(Chi))
[]˜(F&x(Chi))
[](x(Chi) & c(Chi) => <>G & ˜<>C)
[](x(Chi) & ˜c(Chi) => ˜<>G & <>C)
[]˜(x(Chi)&(G|C)) / []˜(G|C)

Fig. 4. ArbitraryCycles pattern for a predefined set P .

a condition (logical expression) to be tested, which is as-
sociated with a certain activity, then c
exp� means that
the logical expression exp is evaluated and is true. x
exp�
means that the activity associated with the expression exp
is satisfied, i.e., the activity is executed (from the ris-
ing/positive edge to the falling/negative edge). Here exp
can be evaluated only when x
exp� is satisfied, and the
following sentence is valid: x
exp��
c
exp���c
exp��;
otherwise, when�x
exp�, the value of the c
exp� expres-
sion is undefined. An example of an extended part of the
P set is shown in Fig. 4. Alfa , Beta , Chi , A, B, C, etc.
are formal arguments for the workflow pattern, where the
first three arguments refer to some conditions. The work-
flow has one entry argument, two exit arguments, and six
ordinary arguments. Temporal formulas of the workflow
set describe both safety and liveness properties for the pat-
tern.

Example 6. Let us consider a simple yet illustrative ex-
ample to present the approach of the work. The example is
somewhat abstract, but the main purpose is to demonstrate
the key idea which is the deployment of predefined pat-
terns for modeling and generating logical specifications,
and formal verification of business models. Let us sup-
pose that workflow expression W is

Sequence
ExclusiveChoice
Sequence
a, b�,

Sequence
c, d�, Sequence
ParallelSplit 
e, f, g�,

Synchronization
h, i, j���, SimpleMerge
k, l,m��

The logical specification L is built in the follow-
ing steps. At the beginning, the specification is
L � �. The patterns are processed in the fol-
lowing order: Sequence, ExclusiveChoice , Sequence,

Sequence, Sequence, ParallelSplit , Synchronization ,
and SimpleMerge .

The following sub-sets are generated: the first
Sequence gives L1 � ��
a � 
d � j�� � �

k � l� �
m�,�
�
a � 
d � j�� � ��

k � l� � m�,��

a �

d� j�� � 

k� l��m���, ExclusiveChoice gives L2 �
��

a�b� � 
�
c�d����
e�j���
��
c�d���
e�
j���,�
�
a� b� � ��
c� d� ���
e� j��,��

a�
b� � 

c � d� � 
e � j���,��

c � d� � 
e � j���, the
second Sequence gives L3 � ��
a � �b�,�
�a �
��b�,��
a � b��, the third Sequence gives L4 �
��
c � �d�,�
�c � ��d�,��
c � d��, the fourth
Sequence gives L5 � ��

e� 
f � g�� � �

h � i� �
j��,�
�
e�
f�g�� � ��

h�i��j��,��

e�
f�
g�� � 

h� i� � j���, ParallelSplit gives L6 � ��
e�
�f � �g�,�
�e� ��f � ��g�,��
e� 
f � g���,
Synchronization gives L7 � ��
h� i� �j�,�
�
h�
i� � ��j�,��

h� i� � j��, and SimpleMerge gives
L8 � ��
k� l� �m�,�
�
k� l� � ��m�,��
k�
l�,��

k� l� �m��. Thus, the resulting specification is
L � L1 � � � � � L8 and contains the formulas

L � ��
a� 
d� j�� � �

k � l� �m�,

�
�
a� 
d� j�� � ��

k � l� �m�,

��

a� 
d� j�� � 

k � l� �m��,

�

a� b� � 
�
c� d� � ��
e� j�� �


��
c� d� ��
e� j���,

�
�
a� b� � ��
c� d� � ��
e� j��,

��

a� b� � 

c� d� � 
e� j���,

��

c� d� � 
e� j��,�
a� �b�,

�
�a� ��b�,��
a� b�,

�
c� �d�,�
�c� ��d�,��
c� d�,

�

e� 
f � g�� � �

h� i� � j��,

�
�
e� 
f � g�� � ��

h� i� � j��,

��

e� 
f � g�� � 

h� i� � j��,

�
e� �f ��g�,�
�e� ��f ���g�,

��
e� 
f � g��,�
h� i� �j�,

�
�
h� i� � ��j�,��

h� i� � j�,

�
k � l � �m�,�
�
k � l� � ��m�,

��
k � l�,��

k � l� �m�� (4)

The resulting logical specification can be used for formal
verification of a system. �

Liveness and safety are a standard taxonomy of prop-
erties when specifying and verifying systems. Liveness
means that the computational process achieves its goals,
i.e., something good eventually happens, or its counterex-
ample has a prefix extended to infinity. Safety means that
the computational process avoids undesirable situations,
i.e., nothing bad ever happens, or its counterexample has
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a finite prefix. The liveness property for the model can be

�
b� �j�, (5)

which means that always if b is satisfied then sometime in
the future the j activity is satisfied. The safety property
for the examined model can be

��
c� g�, (6)

what means that it never happens that c and g are satisfied
in the same time.

The whole formula to be analyzed using the seman-
tic tableaux method for the property expressed by the for-
mula (5) is


�
a� 
d� j�� � �

k � l� �m� � . . .�

��

k � l� �m�� � �
b� �j�. (7)

The formula (4) represents the output of the G compo-
nent in Fig. 2. The formula (7) provides a combined input
for the T component in Fig. 2. When considering the
property expressed by the formula (6), then the whole for-
mula is constructed in a similar way as


�
a� 
d� j�� � �

k � l� �m� � . . .�

��

k � l� �m�� � 
��
c� g��. (8)

The full reasoning tree for both cases contains hundreds
of nodes. Formulas are valid and the examined properties
are satisfied in the model considered.

The prover is an important component of the archi-
tecture for the deduction-based system shown in Fig. 2. It
enables automation of the inferencing process and formal
verification of the developed models. Reasoning engines
are more available, especially in recent years when a num-
ber of provers for modal logics has become accessible,
(cf. Schmidt, 2014). Selection of an appropriate existing
prover, or building one’s own, constitutes a separate task
that exceeds the scope and main objectives of this work,
cf. also the concluding remarks in the last Section.

7. Conclusions

A method of pattern-oriented automatic generation of
logical specifications for business models expressed in
BPMN is proposed. Logical specifications are regarded
as a set of temporal logic formulas and obtaining it is a
crucial aspect in the case of practical use of deduction-
based formal verification. An algorithm as a method for
automatic generation of logical specifications from pre-
defined logical patterns/primitives is proposed. The archi-
tecture of a deduction-based system for formal verification
of business models is presented.

The generating method enables a kind of scaling up,
migration from small problems to real-world problems

in the sense that they are having more and more nesting
patterns. This gives hope for practical use in problems
of any size. The proposed approach introduces the con-
cept of logical primitives, workflow patterns predefined in
terms of temporal logic formulas. They might be once
well-defined and could be widely used by an inexperi-
enced user. The proposed system enables formal verifi-
cation of business models using temporal logic and se-
mantic tableaux provers. The advantage of the method is
to provide an innovative concept for process verification,
which might be done for any given business model cre-
ated using BPMN. The aim of this work has been to pro-
vide a conceptual theoretical framework to prepare work-
able solutions for deduction-based formal verification of
workflow-oriented models.

Future research should extend the results in some
directions, e.g., other logical properties of the approach
should be explored. The fundamental issue for the ap-
proach is to define formally all workflow patterns (van der
Aalst et al., 2003) in terms of temporal logic formulas
to provide temporal logic-based semantics for workflows.
The literature review argues that there is a lack of such
comprehensive and formal definitions. Definitions pro-
posed in Section 6, i.e., the predefined set P , might be
considered the beginning of such work. Another impor-
tant issue is detailed analysis of the existing and available
provers (Schmidt, 2014) which could be useful for the ap-
proach and applied as a prover component (Fig. 2). Future
works may also include both the implementation of the
generation component (Fig. 2) and its own temporal logic
prover (Section 2) using the semantic tableaux method.
Implementation works in both of these cases are carried
out and are relatively advanced. This should result in be-
ing CASE software providing industrial-proof tools, that
is, implementing another part of formal methods, hope
promising, in industrial practice.
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