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1. Introduction

The quality of computing system (CS) diagnosis
critically affects the system performance. Therefore,
an improvement of diagnostic tools remains a pressing
problem which has various aspects (Patton et al.,
2000; Zhirabok, 2009; Chanthery and Pencole, 2009).
Possible solutions rely on a set of tools, among
which the monitoring of computations is of considerable
importance. In practice, in most cases we have to
deal with the monitoring of distributed, i.e., parallel
computations. The aim of the monitoring considered in
this paper is to detect faults in data exchanges between
the program modules (PMs) of which the CS software
consists. Faults can be caused not only by hardware
failures, but they may also result from design errors in the
organization of computations and the software used.

Assume that the organization of computations in
a computing system is based on an asynchronous
approach (Cheng, 2002). This means that the PMs
of the system process the data as soon as they are
ready, rather than according to a predefined schedule,
that is, asynchronously. If the executive processor
is busy, the data are queued up. The asynchronous
approach is formalized by a Petri net (Peterson, 1981),
initially proposed to describe asynchronous interaction
of computation modules. No wonder that it is this
model that is widely used in solving the problem of
computation monitoring, whose different versions are
discussed in numerous publications (Kolesov, 1988; Wu
and Hadrjicostis, 2005; Cabasino et al., 2011; Lefebvre,
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2012; Chanthery and Pencole, 2009; Zhirabok, 2009).
The object of monitoring is a discrete event system, with
the system operation represented as a sequence of events.

We also use a model of a discrete event system in
which the analyzed events are reception and output of
the data from the system PMs. A specific feature of our
approach is that the monitoring problem is solved within
the test diagnosis concept. The system is made redundant
due to the introduction of an event model.

The authors apply the described approach to
real-time systems, although it can be extended to other
systems as well. A feature of real-time systems is
periodicity of input data flows and their processing.

This paper is structured as follows. Section 2
considers the problem statement, Section 3 is concerned
with the synthesis of the computation model, and
Sections 4 and 5 discuss some relevant results from the
theory of diagnosis of periodically time-varying discrete
systems. We also give an example to illustrate the problem
solution.

2. Problem statement

To explain the principle of the proposed approach, let
us consider a structure (an information graph) of a
hypothetical system S (Fig. 1). The three functionally
related program modules PM 1, PM 2, and PM 3

implemented in the system can be located either in the
same or in different processors. Each program module
generates output data (y1 for PM 1, y2 for PM 2, and y3
for PM 3) from the input data (u1 for PM 1, u2 and y3 for
PM 2, and y1 and y2 for PM 3). The input data periods are
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equal. The queues at the PM input are shown as hatched
rectangles.

Figure 2 shows the functional structure of event
monitoring for the example under consideration. The
monitoring system (MS) is represented as a combination
of three traditional modules: a test data generator (TDG),
a sample response generator (SRG) and a comparator (C).
The MS generates tests (data words) for system S and
analyzes its response. Real data words are processed
by standard algorithms PM 1, PM 2, and PM 3 in each
of the redundant PMs (PM ′

1, PM ′
2, and PM ′

3). At
the same time, test data words are processed by special
supplementary algorithms fm1, fm2, and fm3 responding
to data reception/output events. The processing results are
included in the output data. The test data are transmitted
together with the real data. As a result, any fault in
the transmission of real data would mean also a fault in
the transmission of test data. Thus, diagnosing the test
data processing we can detect faults in the procedures
of data exchange. The class of faults includes different
changes in the sets of the PMs involved in data exchange,
in particular, miss and emergence of new exchanges,
which may result in rearrangement of PMs in a certain
computational path. Formally, the class of faults is defined
in terms of the dynamic periodically time-varying model
proposed below, namely, the MS detects any fault that
causes changes in the matrix of this model. Consequently,
a challenge is to select proper test data and an algorithm
for their processing in the PM.

Thus, the problem of designing supplementary
algorithms is considered below. The issue of testing these
algorithms is also discussed in the paper.

Fig. 1. Structure (an information graph) of a system.

3. Synthesis of a system event model

One of the critical issues of the problem discussed here
is proper selection of a test data processing algorithm in
each PM, which is not a trivial task. Note, first of all,
that the combined test data processing algorithm fΣ in S
is a composition of the algorithms in the PMs. Like the
main processing algorithm, it is implemented as a parallel
computation process in accordance with the asynchronous
approach. In a sense, the test data processing algorithm
is an event model of a real data processing algorithm,

and therefore, a system model. Needless to say that the
observable result of test data processing is not the events
themselves, but the output symbolic sequence which can
be used to restore the sequence of analyzed events and
to determine whether it is correct or incorrect. From the
above it follows that the problem of the synthesis of a test
data processing algorithm can be formulated as a problem
of the synthesis of a system model.

However, the algorithm fΣ is inconvenient as a
system model to be used for the solution of the monitoring
problem. In our opinion, the model should meet the
following three requirements. Firstly, it should be simple
enough in order not to involve significant computational
resources and to allow a synthesis for any graph of
intermodule data communication. Secondly, it is desirable
that it should be dynamic because the algorithms for
designing tests for dynamic systems are known. Thirdly, it
should be adequate so that the test designed in accordance
with the model could detect all the faults considered in
this paper.

Below, we propose a universal approach to the
synthesis of fΣ, suitable for any graph of intermodule
information communication. Using special techniques,

Fig. 2. Functional structure of event monitoring.

Fig. 3. System event model.
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we reduce the analysis of arbitrary information graphs to
the analysis of some standard (primitive) graphs, namely,
chains.

To construct the system model, let us use the
following procedure. At the first step, analyzing the
information graph, we find a set of computation paths
covering its edges. By a computation path, we mean a
sequence of edges and nodes connecting the input and
output of the graph. At the second step of the procedure,
a chain of M dynamic elements in the system model is
assigned to each path, where M is the number of PMs
through which the path goes. If PM i is included in the
path and it is an l-th PM in the chain, element Mil is
assigned to this PM i.

For the example considered in Fig. 1, the cover
is provided by two paths with edges u

′
1, y

′
1, y

′
3 and

u
′
2, y

′
2, y

′
3, y

′
2, y

′
3. The primed letters denote the test data

transmitted in arrays. The second path includes the
cycle in order to cover the information feedback from the
system output to the input PM 2. Thus, the system model
becomes a set of independent chains.

By independence, we mean that the result of
computation in one chain does not depend on the results
of computation in the other chains. It can be inferred that
the result of model computation is formed as an array
of the values of the arguments that were subjected to
independent processing.

Since the model of the system consists of M
independent chains, it is possible to provide its own
algorithm for the monitoring of each chain in the MS.
Therefore, the problem of system monitoring is reduced
to chain monitoring, which is much easier to solve.

Figure 3 shows the system event model for the
example under consideration, where modelPM 1 contains
one element M11, model PM 2—two elements M21 and
M22, and model PM 3—three elements M31, M32, and
M33. Array y

′
3, the output of the third system, has a

specific structure: it consists of two parts, one formed in
elements M31 and M33 intended for the MS, and the other
formed in M32 intended for PM 2.

Let us refine the model for the supplementary
algorithm. From technical diagnosis theory (Patton et al.,
2000; Zhirabok, 2009) it is known that tests for linear
objects are rather simple. It is clear that since we deal
with the analysis of an event sequence (a sequence of task
solutions), this algorithm should be dynamic. As a result,
we come to the conclusion that a linear dynamic model
for an element is preferred,

xi,l(t+ 1) = fi,lxi,l(t) + gi,lui,l(t),

yi,l(t) = hi,lxi,l(t), i = 1,m, l = 1,mi, (1)

where xi,l, ui,l and yi,l are the state, input and output
vectors, respectively, fi,l, gi,l and hi,l are the matrices of
dynamics, input and output of the l-th element in the i-th

PM model, m is the number of PMs, and mi is the number
of elements in PM i.

Each element of the PM model processes data
only from one array using the same algorithm. Unlike
an element, a PM generally processes several arrays;
therefore, its model (additional algorithm) contains a
parallel composition of several elements.

The transmitted arrays may have different
dimensions depending on the number and structure
of the elements forming the PM model. The elements of
the PM model trigger at different instants of time and, in
a general case, process data by different algorithms. This
means that the PM model is time-varying.

In refining the system model, remember that it
consists of several chains; thus, by refining the chain
model, we refine the system model. For simplicity,
it makes sense to reduce the analysis for monitoring
to the analysis of a dynamic system, the more so that
the monitoring of dynamic systems is well understood.
However, describing a chain as a dynamic system cannot
be considered quite adequate because in this case the
parallel process (the chain working as a pipeline) is
described as a sequential one, in which only one operation
is possible at each time instant.

Nevertheless, this description can be used to solve
the event-monitoring problem. For the monitoring
problem it is essential that, under nominal behavior, the
sequence and contents of output events generated by the
system and calculated on the basis of a sequential dynamic
model should coincide, but they should be different at
faults considered here. In what follows, we show how to
provide this condition.

Now, let us make a temporary assumption that only
one data exchange is possible at a certain instant of time.
Later on, we will give up this unreal assumption. Consider
a chain of L elements, each of them described by Eqn. (1).
In view of the above assumption, we represent a chain
as a linear dynamic system in which the state vector is
the vector x(t) consisting of the state vectors of elements
xi(t), i = 1, L comprised in the chain.

Now, let us describe the data exchange between two
adjacent elements: data reception from the MS to the
chain input element and data output from the chain output
element to the MS.

Assume that information is transmitted from the
PM i element to the element PM j . Let us write down the
equation of chain for the exchange considered assuming
that the number of PMs is L. This process is described by
the following equation with the block dynamic matrix (we
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omit the zero elements of the dynamic matrix)

x(t+ 1)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t+ 1)
x2(t+ 1)

...
xi(t+ 1)

...
xj(t+ 1)

...
xL(t+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
E

. . .
fi

. . .
gjhi fj

. . .
E

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)

...
xi(t)

...
xj(t)

...
xL(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The transformation changes only the states of the
elements of the interacting PMs (PM i and PM j). Hence
the states of other elements remain unchanged. The fact
that the PM state remains unchanged is described by the
identity diagonal matrix E in the corresponding block of
the block matrix diagonal. It is assumed that both PM i

and PM j element models trigger in accordance with (1)
when information is transmitted from PM i to PM j . In
this case, PM j does not receive information; therefore,
the second summand in the dynamics equation is zero
(gi = 0), i.e.,

xi(t+ 1) = fixi(t), yi(t) = hixi(t).

The second index of variables denoting the element
number in the PM is omitted for simplicity.

After the information uj = yi = hi(xi) is received,
there is no data output from PMj , so the output is zero (hj

= 0) and the dynamic equation

xj(t+ 1) = fjxj(t) + gjuj(t)

= fjxj(t) + gjhjxi(t)

corresponds to the j-th row of Eqn. (2).
The equation describing data reception from the MS

looks simpler because the model of only one receiving
PM j takes part in the exchange and triggers

x(t+ 1)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1(t+ 1)
...

xj(t+ 1)
...

xL(t+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E
. . .

fj
. . .

E

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1(t)
...

xj(t)
...

xL(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...
gj
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
u(t).

Since the data are not output to the MS (hj = 0), the
output is zero.

The equation describing data output to the MS looks
simpler, too, because the model of only one output PM s

takes part in the exchange and triggers

x(t+ 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1(t+ 1)
...

xs(t+ 1)
...

xL(t+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E
. . .

fs
. . .

E

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1(t)
...

xs(t)
...

xL(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

y(t) =
[
0 · · · hs · · · 0

]

⎡
⎢⎢⎢⎢⎢⎢⎣

x1(t)
...

xs(t)
...

xL(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Let us write the equations of the chain in general
form:

x(t+ 1) = F̃ (j)x(t) + G̃(j)u(t),

y(t) = H̃(j)x(t), j = 1, L+ 1.
(3)
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These equations describe L − 1 interelement
exchanges and two exchanges with the MS (data reception
and output). The matrices in these equations depend on
the number of the cycle (exchange), i.e., the model is
time-varying. Since we consider real-time systems in
which the input data flow and information processing or
control are periodic, the above model is a periodically
time-varying one with a period of L + 1. If the system
model has M chains, its description is given by

x(t + 1) = F̃k(j)x(t) + G̃k(j)u(t),

y(t) = H̃k(j)x(t) j = 1, L+ 1, k = 1,M.
(4)

Example 1. Consider general matrices of the model (4)
of the distributed system for the example in Fig. 1. The
description of the system includes two chains, with two
elements in the first one and four in the second:

(i) the first chain,

F̃1(1) =

[
f1,1 0
0 E

]
,

F̃1(2) =

[
f1,1 0

g1,2h1,1 f1,2

]

F̃1(3) =

[
E 0
0 f1,2

]
,

G̃1(1) =

[
g1,1
0

]
,

G̃1(j) = 0, j = 2, 3,

H̃1(j) = 0, j = 1, 2,

H̃1(3) =
[
0 h2

]
,

(ii) the second chain,

F̃2(1) =

⎡
⎢⎢⎣

f2,1 0 0 0
0 E 0 0
0 0 E 0
0 0 0 E

⎤
⎥⎥⎦ ,

F̃2(2) =

⎡
⎢⎢⎣

f2,1 0 0 0
g2,1h2,2 f2,2 0 0

0 0 E 0
0 0 0 E

⎤
⎥⎥⎦ ,

F̃2(3) =

⎡
⎢⎢⎣

E 0 0 0
0 f2,2 0 0
0 g2,2h2,1 f2,3 0
0 0 0 E

⎤
⎥⎥⎦ ,

F̃2(4) =

⎡
⎢⎢⎣

E 0 0 0
0 E 0 0
0 0 f2,3 0
0 0 g2,4h2,3 f2,4

⎤
⎥⎥⎦ ,

F̃2(5) =

⎡
⎢⎢⎣

E 0 0 0
0 E 0 0
0 0 E 0
0 0 0 f2,4

⎤
⎥⎥⎦ ,

G̃2(1) =

⎡
⎢⎢⎣

g2,1
0
0
0

⎤
⎥⎥⎦ ,

G̃2(j) = 0, j = 2, 5,

H̃2(j) = 0, j = 1, 4,

H̃2(5) =
[
0 0 0 h2,4

]
.

Now, we give up the assumption that only one
exchange is possible in the system at each instant of
time. Let us show that, in this case, the design of system
monitoring is nonetheless possible with the periodically
time-varying model described above.

To proceed to the proposed dynamic description of
the model, all elements of the chain are formally replaced
by one element with variable matrices, repeated with a
period of data input. Thus, we come to a periodically
time-varying description of the chain. This replacement is
illustrated in Fig. 4 for the simplest case of a two-element
chain. The chain provides for three exchanges: reception
to element 1, transmission from element 1 to element 2,
output from element 2. Computations in the chain are
actually realized in parallel, which is shown in Fig. 4(a) by
two time diagrams for two portions of input data separated
by period T . Here, all three stages of computations in
the chain are of the same duration. The intervals limited
by broken lines correspond to different exchanges with
the matrices indicating these intervals. In the model
applied in the MS, these computations are performed
sequentially (Fig. 4(b)). The intervals shown by broken
lines correspond to a fixed set of element matrices for a
fixed portion of input data. For clarity, we use different
time scales in Figs. 4(a) and 4(b).

Let us show a possibility of using this model
for designing a system test, namely, the adequacy of
this model. Firstly, note that a model composed of
independent chains corresponds to both a fault-free
system and a faulty system. In the second case, the
model of at least one chain will be distorted, as compared
with the first case. Any fault considered causes changes
in the matrix of this model, because the class of faults
includes different changes in the sets of the PMs involved
in data exchange. Secondly, as a response to equal input
sequences, any chain and its model form equal output
sequences that are only different in the time position of the
output vectors of these sequences. This difference is due
to the fact that, for a chain, the time position depends on
how long the basic information is processed in the system
PM. This time is usually long and not known in advance,
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(a) (b)

Fig. 4. Transformation of a model for parallel computation (a) into a sequential periodic time-varying model (b).

whereas for a model the time position depends on the time
needed to calculate it, which is usually small.

This fact is no obstacle for correct comparison of
these sequences when they are represented as queues
compared symbol-by-symbol without reference to times
of their generation. The equality of the corresponding
output vectors of sequences is explained by the identity
of the algorithms for the processing of the input test
vectors in a chain and in a model. The coincidence is due
to the pipeline implementation of the chain, where each
exchange changes only the state vectors of the interacting
elements of the chain. The change only affects the vectors
of the subsequent elements, but has no effect on the
vectors of preceding elements. This is how each portion
of input data is processed. This makes it possible to
calculate the output sequence under the assumption that
portions of information are processed strictly sequentially,
i.e., processing the (i + 1)-th portion starts only after the
i-th portion has been processed (Fig. 4(b)). From this it
follows that, if an input sequence is a test for the chain
model, it will be a test for the chain itself. �

Let us discuss the requirements for the models of
chains and elements. From diagnosis theory (Patton
et al., 2000; Zhirabok, 2009) it is known that observability
and controllability of a diagnosed system are the keys to
effective diagnosis (monitoring). It is also true for the case
under consideration, namely, when synthesizing a system
model, we should ensure that this model should possess
these two features. However, in our case, for a system
model to be observable and controllable, it is necessary
and sufficient that each of the model chains should be
observable and controllable.

It has been shown above that a model of a
periodically time-varying dynamic system can be applied
to describe a chain in monitoring. Since the rules
of synthesis for observable and controllable chains and
the rules for designing tests periodically time-varying
dynamic systems are known (Kolesov, 1988; 1990), they
are briefly outlined in the next section.

In the meanwhile, we should call an additional
requirement a chain model should meet. It is clear that
any rearrangement of PMs leads to rearrangement of
elements, at least, in one chain. Therefore, it will suffice to
detect any rearrangement of the chain elements. Clearly,
rearrangements of identical element models do not change
the chain model and, consequently, in principle they
cannot be detected. On the contrary, if the models of all
chain elements are different, detection of rearrangements
in the test is guaranteed because this leads to changes
in model matrices. Therefore, it can be inferred that it
is necessary to fulfill the following condition: element
models corresponding to different PMs should be different
to allow detection of PM rearrangements, whereas the
elements forming the model of one PM can be identical.

4. Observability and controllability of
a chain

First of all, it makes sense to mention a complicating
circumstance. Usually, when discussing observation
and control problems, we assume these processes to be
continuous in time (for a discrete system, observation
and control are realized in all cycles). However, in
many practical situations, this condition does not hold
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for the problem considered here because observation is
performed only during data transmission from the output
element to the MS, whereas control takes place during
data transmission from the MS to input elements. Often
there are only two such data exchanges on the processing
interval: one for observation and the other for control.
Therefore, further on we will focus on observability
and controllability with respect to a limited number of
observation and control points.

It is clear that such properties of any time-varying
systems as observability and controllability depend on
the time interval on which they are estimated. Refer to
Fig. 4(b) showing a diagram of matrices for a periodically
time-varying system. Generally, different periodic matrix
sequences, and therefore different observability and
controllability characteristics, correspond to start times of
observation or control. Each sequence of matrices has
its own index sequence Γ = {γr|r = 1, L} . Their
initial segment over a period-long interval is determined
by the cyclic shift of the index sequence 1, 2, . . . , L.
When L = 3, we have three index sequences: Γ =
{1, 2, 3; 2, 3, 1; 3, 1, 2}.

The system is called γr-controllable (observable) if
it is controllable (observable) for matrix sequence γr. The
most favourable conditions for monitoring (diagnosis) is
the case when the system is controllable (observable) for
any matrix sequence, i.e., completely controllable and
observable. The criterion for γr-controllability (Kolesov,
1988) is rankPγr = n, where Pγr is γr-controllability
matrix, with

Pγr =
[
G̃(γr(N)); . . . F̃n−1

nγr
F̃ (γr(N))F̃ (γr(N − 1))

. . . F̃ (γr(3))G̃(γr(2));

F̃n−1
pγr

F̃ (γr(N))F̃ (γr(N − 1))

. . . F̃ (γr(2))G̃(γr(1))
]
.

Here, F̃pγr = F̃ (γr(N))F̃ (γr(N−1)) . . . F̃ (γr(1)) is the
product of all matrices corresponding to the sequence γr.

The criterion for γr-observability (Kolesov, 1988) is
rankQγr = n, where Qγr is the γr-observability matrix,
with

Qγr =
[
(H̃)T (γr(1)); (H̃(γr(2))F̃ (γr(1)))

T ;

(H̃(γr(3))F̃ (γr(2))F̃ (γr(1)))
T ;

· · · ;
(H̃(γr(N))F̃ (γr(N − 1))F̃ (γr(N − 2))

. . . F̃ (γr(1))F̃
n−1
pγr

)T
]
.

Complete observability and controllability can be
provided much easier if the matrices F̃k, k = 1, N
of the system model are nonsingular. Let the model
be γi-observable and γj-controllable. The state xi of

the system (at the beginning of the sequence γi) can
be determined from the model output if the model is
γi-observable. Each period includes only one such
moment. But since the matrices F̃k, k = 1, N are
nonsingular, xi can be used to determine not only any
subsequent but also any previous state. This fact is
indicative of the complete observability of the system.
Obviously, the same conclusion is true for controllability.
Thus, we can state that a periodically time-varying
system is completely observable and controllable if it is
γi-observable, γj-controllable, and its matrices F̃k, k =
1, N are nonsingular.

Assume that each element of the r-th chain outputs
and receives data only once within a chain schedule
period. The chains can be homogenous (containing only
identical elements) and heterogeneous. Two options,
extreme, in a sense, are possible. First, the chain consists
of elements (vector elements) with input and output
vectors of maximum dimensions equal to the dimension
m of the element; second, the chain consists of scalar
elements. In the first, the information for monitoring
transmitted within a period is maximal; in the second case,
the information is minimal. In the first instance, however,
observability and controllability indices (and therefore the
test length) are minimum, and in the second one, these
parameters are maximum.

Suppose that all elements are observable and
controllable in both cases. Then the following is true.

Proposition 1. (Kolesov, 1990) A chain com-
posed of q vector elements of the same dimensions
(hj , fj , gj), j = 1, q is completely observable and con-
trollable with any order of exchanges if matrices fj , j =
1, q are nonsingular.

The same statement as applied to a chain of scalar
elements requires more stringent conditions.

Proposition 2. (Kolesov, 1990) A chain composed of q
scalar elements of the same dimensions (hj , fj , gj), j =
1, q is completely observable and controllable with any
order of exchanges if

1. the characteristic polynomials ϕf2
j

of matrices

f2
j , j = 1, q are irreducible;

2. the scalar elements (h1,s, f2
1 , g11), s = 1, 2;

(h′
q, f2

q , gq,t), t = 1, 2; {(hj,s, f
2
j , gj,t)| j =

2, q − 1, s = 1, 2, t = 1, 2}, where h′
q =

[0 . . . 0α1q]; hj,1 = [0 . . . 01]; hj,2 = [0 . . . 10],
g′1 = [010 . . . 0]T , gj,1 = [10 . . . 0]T , gj,2 =
[αmj−1,j10 . . . 0]

T , j = 1, q are observable and con-
trollable.

In the scalar case, the element requirements are
stricter due to worse observability and controllability of
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elements. Squared matrices fj j = 1, q appear in the
conditions 1 and 2 because the elements are assumed
to trigger twice within a chain period. In both cases,
observability and controllability are independent of the
order of exchanges in the chain. It is this detail that
makes the condition 2 cumbersome. This independence
is critical for designing monitoring tools, since in this
case inevitable transformations of the exchange order in
the course of the design do not affect observability and
controllability of the model.

Example 2. Consider a simple example. Let us solve the
monitoring problem for the first chain of the model shown
in Fig. 3. Assume that the chain contains vector binary
elements.

1. Select the following element structure:

f1,1 =

[
1 1
0 1

]
, f1,2 =

[
0 1
1 1

]
,

h1,1 = h1,2 = g1,1 = g1,2 =

[
1 0
0 1

]
.

2. Calculate the following matrices for reception,
transmission and output of the equation for the chain:

F̃1(1) =

[
f1,1 0
0 E

]
=

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

F̃1(2) =

[
f1,1 0

g1,2h1,1 f1,2

]
=

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
1 0 0 1
0 1 1 1

⎤
⎥⎥⎦ ,

F̃1(3) =

[
E 0
0 f1,2

]
=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 1

⎤
⎥⎥⎦ ,

G̃1(1) =

[
g1,1
0

]
=

⎡
⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ ,

H̃1(3) =
[
0 h1,2

]
=

[
0 0 1 0
0 0 0 1

]
,

G̃1(j) = 0, j = 2, 3, H̃1(j) = 0, j = 1, 2.

It is obvious that all the dynamic matrices are
nonsingular.

3. Calculate the products of all dynamic matrices within a
period for all initial moments:

F̃p,γ1 = F̃p,γ2 = F̃p,γ3

= F̃ (1)F̃ (2)F̃ (3) =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
1 0 1 1
0 1 1 0

⎤
⎥⎥⎦ .

4. Calculate the observability matrix generally given by

Qγr = [(H̃(γr(1)))
T ,

(H̃(γr(2))F̃ (γr(1)))
T ,

(H̃(γr(3))F̃ (γr(2))F̃ (γr(1)))
T ,

· · · ,
(H̃(γr(N))F̃ (γr(N − 1))F̃ (γr(N − 2)))

. . . F̃ (γr(1))F̃
n−1
pγr

)T ].

However, for the chain, this expression is
substantially simplified because there remain only
elements containing H̃(γ(N)) N = L+ 1. Therefore,

Qγr

= [(H̃(γr(N))F̃ (γr(N − 1)) . . . F̃ (γr(2))F̃ (γr(1)))
T ,

· · · ,
(H̃(γr(N))F̃ (γr(N − 1))F̃ (γr(N − 2))

. . . F̃ (γr(1))F̃
n−1
pγr

)T ].

In this case, N = 3 (the number of exchanges), n =
4 (the dimension of the chain model state vector). Then,
for γ1 = 1, 2, 3,

Qγ1 = [(H̃(γ1(3))F̃ (γ1(2))F̃ (γ1(1)))
T ;

(H̃(γ1(3))F̃ (γ1(2))F̃ (γ1(1))F̃pγ1)
T ;

(H̃(γ1(3))F̃ (γ1(2))F̃ (γ1(1))F̃
2
pγ1

)T ]

= [(H̃(3)F̃ (2)F̃ (1))T ;

(H̃(3)F̃ (2)F̃ (1)F̃pγ1)
T ;

(H̃(3)F̃ (2)F̃ (1)F̃ 2
pγ1

)T ]

=

⎡
⎢⎢⎣
1 0 1 1
1 1 0 0
0 1 1 0
1 1 0 1

⎤
⎥⎥⎦ .

Here, the first two elements were sufficient to obtain
a complete set of linearly independent columns of the
observability matrix, i.e., the system observability index
is 2. Thus, the chain is γ1-observable.

Similar operations show that the chain is completely
observable.
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5. Calculate the controllability matrix generally given by

Pγr = [G̃(γr(N));

. . . F̃n−1
pγr

F̃ (γr(N))F̃ (γr(N − 1))

F̃ (γr(3))G̃(γr(2));

F̃n−1
pγr

F̃ (γr(N))F̃ (γr(N − 1))

. . . F̃ (γr(2))G̃(γr(1))].

However, for the chain considered, this expression
is substantially simplified because there remain only
elements containing G̃(γ(1)). Therefore, for γ1 = 1, 2, 3,

Pγ1 = [F̃ (γ1(3))F̃ (γ1(2))G̃(γ1(1));

F̃pγ1 F̃ (γ1(3))F̃ (γ1(2))G̃(γ1(1));

F̃ 2
pγ1

F̃ (γ1(3))F̃ (γ1(2))G̃(γ1(1))]

= [F̃ (3)F̃ (2)G̃(1);

F̃pγ1 F̃ (3)F̃ (2)G̃(1);

F̃ 2
pγ1

F̃ (3)F̃ (2)G̃(1)]

=

⎡
⎢⎢⎣
1 1 1 1
0 1 0 1
0 1 1 1
1 1 0 0

⎤
⎥⎥⎦ .

Here, the first two elements were sufficient to obtain
a complete set of linearly independent columns of the
controllability matrix, i.e., the system controllability index
is 2. Thus, the chain is γ1-controllable. Similar operations
show that the chain is completely controllable. �

5. Design of a test for a periodically
time-varying model of a chain

Let us briefly discuss the design of a fault detection
test for a periodically time-varying system. The test
UT consists of L + 1 pairs Uγr = (U1,γr , U2,γr)
of fragments UT = Uγ1Uγ2 . . . UγL+1 (Kolesov, 1988).
The nominal reaction of the system at an r-th pair
indicates the absence of distortions in the matrices
F̃ (γr(1)), G̃(γr(1)), H̃(γr(1)), r = 1, L+ 1.

In the first fragmentU1,γr of the pair, which confirms
or refutes the absence of distortion in matrix F̃ (γr(1)),
the system model in state space passes the states of some
arbitrary selected basis {xi|i = 1, n}. For each state
xi, the fragment includes homing sequence ui∗

γr
and free

motion interval (at the input of system of n(L+1) zeroes
denoted as 0n(L+1)).

Thus, the first fragment of the pair has the following
structure:

U1γr = u∗
1γr

0n(L+1)u∗
2γr

0n(L+1) . . . u∗
nγr

0n(L+1). (5)

In the second fragment U2,γr of the pair, which
confirms or refutes the absence of of distortion in

matrices G̃(γr(1)) and H̃(γr(1)), vectors ui,γr , i = 1,m
consisting of zero components, except for one component
equal to 1 in the i-th bit, are fed to the system input
sequentially. After each vector, the system is in free
motion on n(L + 1) cycles. Therefore, the second
fragment of the pair Uγr has the following structure:

U2γr = u∗
1γr

0n(L+1)u∗
2γr

0n(L+1) . . . u∗
mγr

0n(L+1). (6)

Example 3. Design the first pair Uγr = (U1,γ1 , U2,γ1) of
test fragment for the first chain from Example 2. Design
the first fragment U1,γ1 of the pair.

1. Generate a basis in the state space:

x1 =

[
x1
1

x1
2

]
=

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

x2 =

[
x2
1

x2
2

]
=

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,

x3 =

[
x3
1

x3
2

]
=

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,

x4 =

[
x4
1

x4
2

]
=

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ,

where xj
i is the state vector of an i-th element in a j-th

vector of the basis.

2. Generate the homing sequences for these states
on the sequence of matrices γ1, that is to say,
on the sequence of matrices with initial segment
(F̃1(1), G̃1(1), H̃1(1)), (F̃1(2), G̃1(2), H̃1(2)), (F̃1(3),
G̃1(3), H̃1(3)),

u1∗ = P−1
γr

[x(nN)⊕ F̃n
pγr

x(0)]

= P−1
γ1

[x(12)⊕ F̃ 2
pγ1

x(0)]

=

⎡
⎢⎢⎣

u1
1,1

u1
1,2

u1
2,1

u1
2,2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
1 0 1 0
1 0 1 1
0 1 1 0
1 1 1 1

⎤
⎥⎥⎦

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦⊕

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
1 1 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣
1
1
0
1

⎤
⎥⎥⎦ .
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Here, ⊕ denotes the sum in the binary field (modulo 2
sum), u1

k,l is the value of the l-th input in the k-th element
of the first homing sequence u1∗, and the matrix inverse
to the controllability matrix is given by

P−1
γ1

=

⎡
⎢⎢⎣

1 0 1 0
1 0 1 1
0 1 1 0
1 1 1 1

⎤
⎥⎥⎦ .

The test fragment following u1∗ will be a sequence
of 8 zeros (free motion), which brings the model to some
final state x1

k. Then, we form homing sequence u∗
2 from

this state to the second state of the basis x2, etc.
Design the second fragment U2,γ1 of the pair.

3. Form the test vectors

u1,γ1 =

[
1
0

]
, u2,γ1 =

[
0
1

]
.

After each of them, the sequence of 12 zeros is placed
in accordance with (6) (free movement). �

6. Conclusions

This paper discusses the monitoring of parallel
computations. It is assumed that computations are
implemented by a set of program modules and are
based on an asynchronous organization. The monitoring
procedure falls into a set of algorithms, each of them
matched with a computation path in the program
information graph. It was shown that the model of a
periodically time-varying dynamic system can be used
for monitoring. A test design algorithm for this model
was described.
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