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CAN INTERESTINGNESS MEASURES BE USEFULLY VISUALIZED?
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The paper presents visualization techniques for interestingness measures. The process of measure visualization provides
useful insights into different domain areas of the visualized measures and thus effectively assists their comprehension and
selection for different knowledge discovery tasks. Assuming a common domain form of the visualized measures, a set of
contingency tables, which consists of all possible tables having the same total number of observations, is constructed. These
originally four-dimensional data may be effectively represented in three dimensions using a tetrahedron-based barycentric
coordinate system. At the same time, an additional, scalar function of the data (referred to as the operational function, e.g.,
any interestingness measure) may be rendered using colour. Throughout the paper a particular group of interestingness
measures, known as confirmation measures, is used to demonstrate the capabilities of the visualization techniques. They
cover a wide spectrum of possibilities, ranging from the determination of specific values (extremes, zeros, etc.) of a single
measure, to the localization of pre-defined regions of interest, e.g., such domain areas for which two or more measures do
not differ at all or differ the most.
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1. Introduction

Rapid progress in data mining and knowledge discovery
techniques has increased, over the recent years, our
ability to extract answers from data. Presenting these
answers in meaningful ways, a task difficult in itself,
may employ means like data visualization techniques.
Data visualization can provide graphical metaphors for
data manipulation and comprehension; it is thus natural
that the development of different tools within knowledge
discovery in databases (KDD) and machine learning
(ML), like association/decision rule inductors, regression
model generators, classifiers, etc., is accompanied by the
development of various visualization approaches (Ware,
2004).

Following that trend, we propose some visualization
techniques to facilitate and support the analyses of
interestingness measures, commonly used to evaluate rule
patterns mined from data (Geng and Hamilton, 2006; Tan
et al., 2002; Shaikh et al., 2013). The induction of if-
then rules from data sets usually requires an evaluation
step to limit the number of rules presented to the user,
and quantitative measures of interest are often used for
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such a filtration process (Agrawal et al., 1993; Morzy
and Zakrzewicz, 2003). It is not easy, though, to choose
an appropriate measure for a particular application. The
visualization techniques that we propose aim at revealing
the recesses of interestingness measures, and thus at
directing the users toward the measures that act according
to their expectations. It is done by visualizing the
values obtained by a measure for an exhaustive and
non-redundant set of contingency tables. This way we
gain an insight into all areas of the domain that the
visualized measure can possibly occupy, and which could
otherwise be omitted and thus remain undiscovered while
working on real-life data.

The analyses facilitated by our visualization
techniques cover a wide spectrum of possibilities, ranging
from determination of a measure’s extremes or the areas
for which its value is undefined, to visualization of the
areas of the data set for which two or more measures
differ the most. One could then, e.g., decide to work with
a couple of measures that react to different (types of)
objects in the data set, or could choose to use measures
that are not ordinally equivalent. Thus, the visualization
enriches our knowledge on the features and the behaviour
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of the visualized measures. Moreover, it eases defining
new measures and facilitates the analyses of the newly
developed ones (e.g., automatically generated).

In this paper, the illustrative application of our
techniques, as exemplified through a MATLAB-based
implementation, is presented for a particular group of
interestingness measures, called confirmation measures.
These particular measures are designed for the evaluation
of decision rules in the form of “if premise, then
conclusion”. The confirmation measures are characterised
by the fact that they obtain

• positive values, when the premise of a rule confirms
its conclusion,

• zero values, when the rule’s premise and conclusion
are neutral to each other,

• negative values, when the premise of a rule
disconfirms its conclusion.

This paper builds on the main ideas proposed by Susmaga
and Szczęch (2013), regarded as our preliminary results,
which are now extended and refined. In particular, the
description of the proposed visualization techniques,
including the idea of barycentric coordinates, both in
two and three dimensions, has been presented in more
detail. Moreover, the group of the described and analysed
confirmation measures is extended. The range of analyses
applied to these measures now also includes specialized
views of coefficients specific to groups of measures (e.g.,
their standard deviations). The proposed approach is also
the basis for investigating the measures with regard to
their selected properties (monotonicity, symmetry, etc.),
further described in Susmaga and Szczęch (2014).

Let us observe that the techniques presented in
this paper are in many aspects different from data
visualization approaches commonly applied in KDD and
ML, which are basically concerned with representing
graphically selected evaluations of employed tools, e.g.,
the performance of classifiers. In most typical applications
these are usually two-dimensional characteristics, e.g.,
ROC curves (Alaíz-Rodríguez et al., 2008; Drummond
and Holte, 2006; Hernández-Orallo et al., 2011; Zhou
et al., 2014), although more dimensional approaches are
also attempted (Everson and Fieldsend, 2006). These
characteristics are constructed for particular data sets and
particular data analysis tools, with the main purpose of
describing and controlling the data analysis process (e.g.,
the convergence of classification results).

The proposed approach, on the other hand, focuses
on visualizing the whole domains of different measures
that are used in the data analysis process. This
may concern measures applied at early stages, e.g.,
interestingness measures used to evaluate and filter
patterns (e.g., decision rules) that contribute to the
classifiers under construction, but also performance
measures used to evaluate the classifiers that are already

constructed. The required feature of the measures to
be visualized is a four-dimensional, real-valued domain.
Incidentally, this makes them also actually difficult to
represent visually. Our approach solves this particular
difficulty by rendering the originally four-dimensional
domains in three dimensions using a tetrahedron-based
barycentric coordinate system. The techniques applied are
comprehensively illustrated by their sample application to
a set of selected confirmation measures.

The rest of the paper is organized as follows.
Section 2 demonstrates the proposed visualization
techniques. Section 3 defines popular confirmation
measures and presents the application of the visualization
techniques to those measures. It also recounts some
conclusions drawn from the visualization-based analyses.
A summary of the approach and final remarks are
contained in Section 4.

2. Visualization techniques

Our visualization techniques aim at facilitating and
supporting the analyses of various characteristics of
interestingness measures. Such measures are commonly
used to evaluate rules induced from a sample of a larger
reality, represented in the form of a set of objects. A
rule induced from such a set consists of a premise “if
E” (referring to an existing piece of evidence, E), and a
conclusion “then H” (referring to a hypothesised piece of
evidence, H). Below, we shall use the common, shortened
denotation E → H (read as “if E, then H”).

In the context of a particular set of objects, the
relation between E and H may be quantified by four
non-negative integers a, b, c and d, briefly represented
in a 2 × 2 table (see Table 1). The number of all objects
in the set satisfying both the premise and the conclusion
of a rule is expressed by a, b stands for the number of
objects for which the premise in not satisfied, but the
conclusion is, etc. Let us observe that a, b, c and d can
also be used to estimate probabilities, e.g., the probability
of the premise is expressed as P (E) = (a + c)/n,
the conditional probability of the conclusion given the
premise is P (H |E) = P (H ∩ E)/P (E) = a/(a + c)
(which, however, is only defined when a + c > 0). The
notation based on a, b, c and d can be effectively used
for defining interestingness measures, e.g., support and
confidence (Agrawal et al., 1993), lift (IBM, 1996), gain
(Fukuda et al., 1996) or measures of confirmation (see
Section 3).

There exist a great deal of different
features/parameters of interestingness measures, e.g.,
characterization of their extreme values, zero values,
non-numeric values (e.g., ∞), gradients, etc., which,
when well comprehended, allow the users to choose a
measure for a particular application more competently.

In this article we focus on the characteristics of
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Table 1. Contingency table of the rule’s premise E and conclu-
sion H .

H ¬H Σ

E a c a+ c

¬E b d b+ d

Σ a+ b c+ d n

interestingness measures that can best be demonstrated
with regard to particular data. For the purpose of our
visualization, an exhaustive and non-redundant set of
contingency tables shall be used. Given a constant n > 0
(the total number of observations), it is generated as the set
of all possible [ a c

b d ] tables satisfying a + b + c + d = n.
The set thus contains exactly one copy of each such table.
The total number of contingency tables t in the set is given
by t = (n+1)(n+2)(n+3)/6. We use n reaching up to
256 (for which t = 2862209) in further analyses.

The resulting data set comprises thus t rows and
4 columns, with the columns representing a, b, c
and d. Because, in general, four independent columns
correspond to four degrees of freedom, visualization of
such data in the form of a scatter-plot would formally
require four dimensions. Owing to the condition a + b +
c + d = n, however, the number of degrees of freedom
is reduced to three, which means that it is possible to
visualize such data in three dimensions using barycentric
(Floater et al., 2006; Warren, 2003) coordinates.

The general idea of barycentric coordinates in two
dimensions is as follows. Let δ(P,XY ) denote the
(Euclidean) distance from a point P to a segment XY .
Given an equilateral triangleXY Z with the length of each
side equal to s = 2/

√
3, the equality

δ(P,XY ) + δ(P, Y Z) + δ(P,ZX)

=

√
3

2
s =

√
3

2
· 2√

3
= 1

holds for all points P inside the triangle. At the same
time, for each such a point, the combination of values
δ(P,XY ), δ(P, Y Z) and δ(P,ZX) differs (with each
distance ranging from 0 to 1). This means that these
distances can in general represent three variables, e.g., x,
y and z, provided these variables range from 0 to r, where
r > 0 is a constant, and they satisfy x + y + z = r. This
is because, given values x0, y0 and z0, satisfying x0 +
y0 + z0 = r, it is always possible to find a point P inside
XY Z , such that the distances δ(P,XY ), δ(P, Y Z) and
δ(P,ZX) are equal to x0/r, y0/r and z0/r, respectively,
and thus proportional to the values x0, y0 and z0.

Conversely, the position of each point inside the
triangle represents three values, known as the barycentric
coordinates of this point. In particular,

• x0+y0 = 0. In this case z0 = r. This corresponds to
a point that is situated in the vertex Z of the triangle.

• x0 = 0. In this case y0 + z0 = r. This corresponds
to a point that is situated at the edge Y Z of the
tetrahedron.

Otherwise, i.e., when x0 > 0, y0 > 0 and z0 > 0, the
corresponding point is situated strictly inside the triangle.
In particular, if x0 = y0 = z0, the point occupies the
centre of the shape, otherwise it is not at the centre. For
example, if x0 > y0, then the point is closer to the vertex
X than to the vertex Y .

In particular, for any real r > 0,

• the point X has coordinates [r, 0, 0],
• the point Y has coordinates [0, r, 0],
• the point Z has coordinates [0, 0, r].

Now, consider points P0, P1 and P2, visualized in
barycentric coordinates in Fig. 1:

• point P0, located in the middle of the triangle, has
coordinates [r/3, r/3, r/3],

• point P1, located in the middle of the Y Z edge, has
coordinates [0, r/2, r/2],

• point P2, located towards the vertex X , has
coordinates [r/2, r/4, r/4],

Notice the reduction of the dimensionality (degrees
of freedom) in the underlying data: while each of
the depicted points has three original (barycentric)
coordinates, it has only two planar ones, which allows
representing it on a two-dimensional plane. The reduction
is implied by the fact that each set [x0, y0, z0] of the
original coordinates satisfies x0+y0+z0 = r (every such
a constraint reduces the number of degrees of freedom by
one).

X Y

Z

P
0

P
1

P
2

Fig. 1. P0, P1 and P2 in a barycentric coordinate system.

The barycentric coordinates may also be applied
to four variables, resulting in a three-dimensional
representation, in which case the equilateral triangle must
be replaced with a regular tetrahedron (further shortly
referred to as a ‘tetrahedron’). The tetrahedron ABCD
consists of four vertices A, B, C and D, six edges AB,
AC, AD, BC, BD and CD, and four faces ABC, BCD,
CDA and DAB. A sample tetrahedron is depicted in
Fig. 2.



326 R. Susmaga and I. Szczęch

The corresponding barycentric interpretations of
exemplary cases are as follows:

• a+ b+ c = 0. In this case d = n. The corresponding
data matrix is then of the form [ 0 0

0 n ] and, as such,
corresponds to a point that is situated at the vertex D
of the tetrahedron.

• a+ b = 0. In this case c+ d = n. The corresponding
data matrix is then of the form

[
0 n1
0 n2

]
, where n1 +

n2 = n and, as such, corresponds to a point that is
situated at the edge CD of the tetrahedron.

• a = 0. In this case b+ c+ d = n. The corresponding
data matrix is then of the form

[
0 n2
n1 n3

]
, where n1 +

n2+n3 = n and, as such, corresponds to a point that
is situated in the face BCD of the tetrahedron.

Otherwise, i.e., when n1 > 0, n2 > 0, n3 > 0 and
n4 > 0, the point corresponding to table [ n1 n3

n2 n4 ] is
situated strictly inside the tetrahedron. In particular, if
n1 = n2 = n3 = n4, the point occupies the centre of
the shape, otherwise it is not in the centre. In general, if
ni > nj (with i �= j), then the point is closer to the vertex
corresponding to ni than to that corresponding to nj (e.g.,
if n1 > n2, then the point is closer to vertex A than to
vertex B).

−1
0

+1

−1

0

+1
−1

0

+1

D

A

C

B

Fig. 2. Skeleton visualizations of the tetrahedron.

The particular, three-dimensional (3D) view of the
tetrahedron, as used throughout the paper (and referred to

as the standard view), is constructed as follows. Let
[
x
y
z

]

be a vector representing a point in 3D space. In this space,
imagine a 2× 2× 2 cube of the following coordinates:

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
1
−1
1

⎤

⎦ ,

⎡

⎣
−1
−1
1

⎤

⎦ ,

⎡

⎣
−1
1
1

⎤

⎦ ,

⎡

⎣
1
1
−1

⎤

⎦ ,

⎡

⎣
1
−1
−1

⎤

⎦ ,

⎡

⎣
−1
−1
−1

⎤

⎦ ,

⎡

⎣
−1
1
−1

⎤

⎦ .

The tetrahedron in question, with its four vertices A,

B, C and D, is inscribed into this cube so that

A :

⎡

⎣
1
1
1

⎤

⎦ , B :

⎡

⎣
−1
1
−1

⎤

⎦ , C :

⎡

⎣
−1
−1
1

⎤

⎦ , D :

⎡

⎣
1
−1
−1

⎤

⎦ .

The combination of the viewing angles (azimuth,
elevation) in the standard view is (−35 ◦, 22 ◦). The
standard view is accompanied by the so-called rotated
view, angles (145 ◦, 22 ◦), designed to depict the DAB
face of the tetrahedron (not visible in the standard
view). The combination of these two views will be
collectively referred to as the 2-view 3D visualization of
the tetrahedron.

The described procedure makes it possible
to visualize the four-dimensional data set in three
dimensions. This leaves room for an additional variable,
which may be represented as colour. It is thus possible to
visualize a function f(a, b, c, d), further referred to as the
operational function (e.g., an interestingness measure).
In the following, it is additionally assumed that the value
set of this function is a real interval [r, s], with r < s,
so that its values may be rendered using a pre-defined
colour map (see, e.g., Healey (1996) and Ware (2004)
for a discussion of colour maps and data visualization in
general).

The actual colour map1 (see Fig. 3) used in
the following visualizations ranges from black
(corresponding to r), through grey, up to white
(corresponding to s). The number of shades in the
map is limited to 16 only in order to emphasize the
value changes. Non-numeric values, i.e., +∞, NaN
and −∞, if generated by a particular function, may
be depicted as special characters. In this paper the
only occurring undefined values are NaN ’s. They are
consistently depicted as ‘*’; however, to avoid massive
and thus incomprehensible overlapping, these characters
are interspaced with blanks.

A sample 2-view 3D visualization for the function
f(a, b, c, d) = ad − bc, with a + b + c + d = n = 64,
is shown in Fig. 4. In this particular case r = −1024,
s = 1024 and there are no undefined values.

An alternative to the 3D visualization of the
tetrahedron is a two-dimensional (2D) view of the net
(i.e., a set of planar triangles, which, when folded along
selected edges, become the faces) of the tetrahedron. A
sample ‘parallelogram’ visualization of the net of the
tetrahedron is presented in Fig. 5.

Notice that both the 3D visualization (Fig. 4) as well
as the 2D ‘parallelogram’ visualization (Fig. 5) of a ‘solid’
tetrahedron show only extreme values of the arguments
of the visualized function. If areas located strictly inside

1Grey scale is used throughout this paper. For colour renderings of
the figures, see http://www.cs.put.poznan.pl/iszczech/
publications/amcs-2014.pdf.

http://www.cs.put.poznan.pl/iszczech/
publications/amcs-2014.pdf.
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min mid max

Fig. 3. Colour map for the defined values of the operational function.

the tetrahedron have to be additionally visualized, various
variants of the visualization may be generated, see Fig. 6.

Summarizing, the capabilities of the visualization
techniques include

• regular views of any operational function,

• specialized views of a region of interest, i.e., only
points satisfying some pre-defined conditions, e.g.,
f(a, b, c, d) = 0, of any operational function,

• specialized views of multiple operational functions:

– differences between two functions,
– standard deviations/variances/means of a num-

ber of functions.

3. Application of the visualization
techniques

In this paper the application of the visualization
techniques is performed on a particular group of
interestingness measures called Bayesian confirmation
measures. They quantify the degree to which the evidence
in the rule’s premise E provides support for or against the
hypothesised piece of evidence in the rule’s conclusion
H (Fitelson, 2001). More formally, for a rule E → H ,
an interestingness measure c(H,E) has the property of
Bayesian confirmation (i.e., it is a confirmation measure)
when it satisfies the following conditions (1):

c(H,E)

⎧
⎨

⎩

> 0 when P (H |E) > P (H),
= 0 when P (H |E) = P (H),
< 0 when P (H |E) < P (H).

(1)

The same conditions may be equivalently formulated in
terms of the a, b, c and d:

c(H,E)

⎧
⎨

⎩

> 0 when a
a+c > a+b

n ,

= 0 when a
a+c = a+b

n ,

< 0 when a
a+c < a+b

n .

Thus, the confirmation is interpreted as an increase in the
probability of the conclusion H provided by the premise
E (similarly for the neutrality and the disconfirmation).

The research on using confirmation measures for
evaluation of rules shows that those measures play an
important part in identification of the most interesting
rules (Greco et al., 2004; Pawlak, 2002; 2004). Let us
stress that the list of alternative, ordinally non-equivalent

measures of confirmation is quite large (Crupi et al.,
2007; Fitelson, 1999) due to the fact that the property of
Bayesian confirmation does not favour any single measure
as the most adequate. Definitions of 12 commonly used
confirmation measures are listed in Table 2.

The 12 selected confirmation measures obtain values
ranging from −1 to +1, except for measures D(H,E)
and M(H,E), whose values approach −1 or +1 only
for n approaching +∞. Moreover, the measure C(H,E)
originally gets values from −1/4 to +1/4 (regardless of
n), so a simple linear transformation (a multiplication by
4) has been introduced and all further results concern
the transformed C(H,E). For the brevity and clarity
of presentation, the definitions of measures Z(H,E),
A(H,E), c1(H,E), c2(H,E), c3(H,E) and c4(H,E)
in Table 2 omit the situation of neutrality, in which the
measures default to 0. Finally, the parametrized measures
c1(H,E) and c2(H,E) are computed for the values of
α = β = 1/2.

3.1. Regular views of confirmation measures. Taking
particular confirmation measures as operational functions,
the regular views of the measures may be used
to practically compare their general configurations of
values and gradient profiles. Consider 2D ‘parallelogram’
visualizations for measures C(H,E) and F (H,E) in
Figs. 7 and 8, which depict the external areas of the
tetrahedron2. Such visualizations allow us to instantly
notice fundamental differences in the measures, e.g.,
between their gradient profiles. Observe that while
C(H,E) manifests a ‘concentric’ gradient in pairs of
faces, the measure F (H,E) is characterized by constant
values (and thus no gradient) in two faces and a
‘radial’ gradient in the other two. Such a regular view
based analysis allows us to tentatively conclude about
the ordinal equivalence of the visualized measures, an
especially important issue for multi-criteria evaluation
of the rules. In the case of C(H,E) and F (H,E),
the different gradient profiles in the external areas
of the corresponding tetrahedrons constitute conclusive
counterexamples to the ordinal equivalence of those
measures. In general, however, this kind of equivalence
analysis may require an insight into the tetrahedra.

2Notice that the ‘*’ characters are interspaced with blanks only to
increase the figure’s comprehensibility, and in fact the edges AB, BD
and CD in F (H,E) consist entirely of NaN ’s.
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Fig. 4. 2-view 3D visualization of f(a, b, c, d) = ad− bc.
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Fig. 5. 2D ‘parallelogram’ visualization of f(a, b, c, d) = ad− bc.
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Fig. 6. Three specialized visualizations of the inside of the tetrahedron for f(a, b, c, d) = ad− bc.
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Table 2. Popular confirmation measures.

D(H,E) = P (H |E)− P (H) =
a

a+ c
− a+ b

n
=

ad− bc

n(a+ c)
Eells, 1982

M(H,E) = P (E|H)− P (E) =
a

a+ b
− a+ c

n
=

ad− bc

n(a+ b)
Mortimer, 1988

S(H,E) = P (H |E)− P (H |¬E) =
a

a+ c
− b

b+ d
=

ad− bc

(a+ c)(b+ d)
Christensen, 1999

N(H,E) = P (E|H)− P (E|¬H) =
a

a+ b
− c

c+ d
=

ad− bc

(a+ b)(c+ d)
Nozick, 1981

C(H,E) = P (E ∧H)− P (E)P (H) =
a

n
− (a+ c)(a+ b)

n2
=

ad− bc

n2
Carnap, 1962

F (H,E) =
P (E|H)− P (E|¬H)

P (E|H) + P (E|¬H)
=

a

a + b
− c

c+ d
a

a + b
+

c

c + d

=
ad− bc

ad+ bc+ 2ac
Kemeny and Oppenheim, 1952

Z(H,E) =

⎧
⎪⎪⎨

⎪⎪⎩

1− P (¬H |E)

P (¬H)
=

ad− bc

(a+ c)(c+ d)
in the case of confirmation

P (H |E)

P (H)
− 1 =

ad− bc

(a+ c)(a+ b)
in the case of disconfirmation

Crupi et al., 2007

A(H,E) =

⎧
⎪⎪⎨

⎪⎪⎩

P (E|H)− P (E)

1− P (E)
=

ad− bc

(a+ b)(b+ d)
in the case of confirmation

P (H)− P (H |¬E)

1− P (H)
=

ad− bc

(b+ d)(c+ d)
in the case of disconfirmation

Greco et al., 2012

c1(H,E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α+ βA(H,E) in the case of confirmation when c = 0

αZ(H,E) in the case of confirmation when c > 0

αZ(H,E) in the case of disconfirmation when a > 0

−α+ βA(H,E) in the case of disconfirmation when a = 0

Greco et al., 2012

c2(H,E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α+ βZ(H,E) in the case of confirmation when b = 0

αA(H,E) in the case of confirmation when b > 0

αA(H,E) in the case of disconfirmation when d > 0

−α+ βZ(H,E) in the case of disconfirmation when d = 0

Greco et al., 2012

c3(H,E) =

{
A(H,E)Z(H,E) in the case of confirmation

−A(H,E)Z(H,E) in the case of disconfirmation
Greco et al., 2012

c4(H,E) =

{
min(A(H,E), Z(H,E)) in the case of confirmation

max(A(H,E), Z(H,E)) in the case of disconfirmation
Greco et al., 2012

3.2. Specialized views of regions of interest. In
their analyses of the confirmation measures, users may
be interested in discovering regions for which the
considered measures satisfy some pre-defined conditions,
e.g., c(H,E) = 0 (the neutral value) or c(H,E) =
+1 (the maximal value). Supporting the user with such
specialized views is important for at least two reasons:
it allows testing for the existence of such regions and
identifying the localizations of these regions within
the tetrahedron, translating them uniquely to particular
domain values of a, b, c and d.

An important characteristic region for confirmation
measures is the neutrality zone. By the definition of
the property of confirmation, all such measures assume

zero values for the same arguments. Thus, the neutrality
region is common for all confirmation measures. Figure 9
depicts this region, rendered using a non-standard colour
map, which lends the view the necessary perspective, but
whose colours do not translate to the constant values of
the measure. Its characteristic saddle-like shape divides
the tetrahedron into two subregions of positive, i.e.,
confirmatory values (around edge AD), and negative, i.e.,
disconfirmatory values (around edge BC).

Figures 10 and 11 depict other sample regions of
interest, for which |C(H,E)| = 0.5 and |c1(H,E)| =
0.5. Again, the grey colour map is used only to provide the
necessary perspective and the colours do not translate to
values of the measures (constant also in this case). Notice
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Fig. 7. 2D ‘parallelogram’ visualization of C(H,E).

B D B

A C A

Fig. 8. 2D ‘parallelogram’ visualization of F (H,E).

the full symmetry of the regions manifested by C(H,E)
(coinciding with edges BC and AD, while avoiding the
other ones). Simultaneously, the regions for c1(H,E)
approach the edges BC, BD and CD, while avoiding the
other edges.

Other sample regions of interest are presented in
Fig. 12. It depicts both extreme (−1 and +1) and
non-numeric (NaN ) values of the measure S(H,E). Its
analysis reveals that the non-numeric values occur in two
disjoint localizations (i.e., at edges BD and AC) in the
tetrahedron. A similar remark concerns the extreme values
(−1 at edge BC, +1 at edge AD).

3.3. Specialized views of differences between me-
asures. Since the set of available measures may be
considerable, the practitioners are forced to choose only
subsets of measures for their particular applications.
To guide them towards the most suitable solutions,
our visualization techniques provide specialized views,
allowing, among other things, identification of those
arguments (i.e., values of a, b, c and d) for which two
given measures differ only insignificantly (similarity of
the measures) or differ considerably (dissimilarity of
the measures). Notice that in the case of confirmation
measures the difference of any two such measures belongs
to (−1,+1), thus the colour map in Fig. 3 is to be
interpreted as for regular views of the measures.

Consider c3(H,E) and c4(H,E), commonly defined
using Z(H,E) and A(H,E). Figures 13 (exterior) and
14 (interior) show the difference c3(H,E) − c4(H,E).
A visual analysis instantly reveals that c3(H,E) and
c4(H,E) manifest both similarities and dissimilarities.
While being identical in all the faces of the tetrahedron
(Fig. 13), they differ inside the shape (Fig. 14), with
c4(H,E) exceeding c3(H,E) around the edge AD and
c3(H,E) exceeding c4(H,E) around the edge BC.

A slightly different situation concerns measures
c1(H,E) and c2(H,E). Figures 15 (exterior) and 16
(interior) show the difference c1(H,E) − c2(H,E).
Observe that c1(H,E) exceeds c2(H,E) by a constant
(the difference being +1/2) in faces ABC and ABD,
while c1(H,E) is exceeded by c2(H,E) by a constant
(the difference being −1/2) in faces BCD and ACD.
Inside the shape this dependency is to some degree
preserved, although the differences are no longer constant.

3.4. Specialized views of standard deviations among
measures. When a group of more than two measures is
involved in the comparison, calculation of the difference
could be substituted with, e.g., the variance or standard
deviation (i.e., square root of the variance). This identifies
the regions of the tetrahedron (and thus values of a,
b, c and d), where the measures of the group vary the
least (low standard deviation or variance) or the most
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Fig. 9. 2-view 3D visualization of the neutral regions (common for all confirmation measures).
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Fig. 10. 2-view 3D visualization of |C(H,E)| = 0.5 regions.
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Fig. 11. 2-view 3D visualization of |c1(H,E)| = 0.5 regions.
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Fig. 12. 2-view 3D visualization showing regions with extreme or non-numeric values of S(H,E).
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Fig. 13. 2D ‘parallelogram’ visualization of c3(H,E)− c4(H,E).
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Fig. 14. 2-view 3D interior visualization of c3(H,E)− c4(H,E).

(high standard deviation or variance). The practitioners
could then decide on using only one representative of a
low-variant group (as such measures tend to produce fairly
consistent evaluations), whereas highly variant groups of
measures may require more representatives.

A popular division of confirmation measures
establishes two groups of measures: those inspired by
the Bayesian and those inspired by the likelihoodist point
of view. Among the 12 selected confirmation measures
considered in this paper, D(H,E), S(H,E), Z(H,E)
and c1(H,E) belong to the first group, while M(H,E),
N(H,E), A(H,E) and c2(H,E) to the second one.
Submitting any of these groups to such a type of analysis
reveals how consistent their evaluations are and for
which arguments the greatest differences among those
evaluations occur.

Figures 17 (exterior) and 18 (interior) show the
standard deviation of the Bayesian, while Figs. 19
(exterior) and 20 (interior) show the standard deviation
of the likelihoodist measures. The values within the
analysed groups of measures belong to [0,max] (where
max ≈ 0.5), and thus the colour map in Fig. 3
should be interpreted accordingly. Notice that the standard
deviations are generally higher in the faces of the
tetrahedron, with different faces manifesting different
profiles of the standard deviation. As far as the Bayesian

measures are concerned, the deviation is maximal in faces
BCD and ABD, with the marked increase towards the
edge CD (face BCD) and towards the edge AB (face
ABD). In the case of the likelihoodist measures, the
deviation is maximal in faces ABC and ACD, with the
marked increase towards edges AB and AC (face ABC)
and towards the edge AC (face ACD).

4. Conclusions

The paper presents visualization techniques for
interestingness measures, which provide practical insights
into different details of the analysed measures. The
originally four-dimensional arguments of the measures
are effectively represented in three dimensions using a
tetrahedron-based barycentric coordinate system, with
values of any operational function, e.g., an interestingness
measure, rendered as colour.

The visual analyses allow us to instantly detect and
locate interesting characteristics of the measures,
which would otherwise have to be laboriously
derived from the analytic definitions. The presented
techniques are principally capable of visualizing single
interestingness measures, regions of interest, i.e., only
arguments satisfying some pre-defined conditions,
differences between pairs of measures or standard
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Fig. 15. 2D ‘parallelogram’ visualization of c1(H,E)− c2(H,E).
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Fig. 16. 2-view 3D interior visualization of c1(H,E)− c2(H,E).

deviations/variances/means of sets of measures. They
might be thus in particular used to demonstrate how
newly designed measures differ from the existing ones.
Examples of applications of the visualization techniques
are presented and discussed in detail for the group of 12
popular confirmation measures.

Further research includes applications of the
introduced techniques to other types of measures, e.g.,
the so-called classifier performance measures, like
sensitivity, specificity, F1-score, etc. (in fact, the approach
is potentially applicable to any interval-valued coefficient
defined for a 2 × 2 contingency table). Moreover, it
is possible to devise series of experiments designed to
compare classifiers that incorporate different (sets of)
measures. These experiments could verify if measures
with desirable visual features are the most beneficial for
classifier performance. In particular, they could illustrate
the benefits of using single representatives of groups of
measures that produce fairly similar evaluations of rules
(such similarities can be easily detected by the visual
analysis of the group’s standard deviation).

To sum up, enriching our knowledge on the features
and the behaviour of the visualized measures, the
approach helps to determine, e.g., if the visualized

measures are identical or similar in particular domain
regions, or if they are ordinally equivalent. The
gained insights can swiftly guide the practitioners
towards interestingness measures that best reflect their
expectations.
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