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Computing with words is a way to artificial, human-like thinking. The paper shows some new possibilities of solving diffi-
cult problems of computing with words which are offered by relative-distance-measure RDM models of fuzzy membership
functions. Such models are based on RDM interval arithmetic. The way of calculation with words was shown using a
specific problem of flight delay formulated by Lotfi Zadeh. The problem seems easy at first sight, but according to the
authors’ knowledge it has not been solved yet. Results produced with the achieved solution were tested. The investigations
also showed that computing with words sometimes offers possibilities of achieving better problem solutions than with the
human mind.
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1. Introduction

Computing with words (CwW) is an interesting way to
creating an artificial thinking of an artificial computer
brain that would be able to solve problems on the basis
of linguistic information provided. The idea of CwW
created by Lotfi Zadeh has been presented in scientific
journals after 1990 (Zadeh, 1996a; 1996b; 2001; 2002;
2004; 2005; 2006a; 2006b; 2009, Zadeh and Kacprzyk,
1999). From the very beginning, CwW has been
connected with fuzzy and interval arithmetic (Hansen,
1975; Kaufmann and Gupta, 1991; Piegat, 2001; Hanss,
2005; Tomaszewska, 2014), with granular computing
(Batyrshin, 2002; Pedrycz and Gomide, 2007; Aliev et al.,
2012; Piegat and Landowski, 2013a), with human-centric
computing (Pedrycz and Gomide, 2007), with data
mining, database querying and data analysis (Kacprzyk
and Zadrożny, 1999; 2002; 2010; Zadeh and Kacprzyk,
1999; Grzegorzewski and Hryniewicz, 2002; Batyrshin
and Wageknecht, 2002), and with plant control (Zhou,
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2002). CwW is very important for decision-making,
where very often, apart from numerical data, linguistic
information provided by a problem expert is at our
disposal (Herrera et al., 1999; Mendel, 2002; Aliev et al.,
2012). In the frame of CwW there are also made various
basic investigations concerning scientific tools facilitating
its application (Gemeinder, 2002; De Cock and Kerre,
2002; Cao, 2003; Lawry, 2006; Türkşen, 2007).

Using linguistic and numerical information together
enables more effective decision-making than using only
numerical one. Additionally, the linguistic information
provided by the problem expert can be much more
important and informative for problem solving than
numerical data, because the accuracy of numerical data
can be sometimes very low, although the data may appear
highly precise. For example, the statement published
by a statistical office that the official import to a certain
country equals $ 9 928 327 335 may seem a very precise
information piece. However, according to experts, the real
import to the country is about 20% greater because of its
illegal component.

CwW is a rather difficult mathematical area and
at present its development phase can be evaluated
as an initial state. This opinion is supported by
the fact that practical possibilities of the present
CwW are rather limited. Professor Lotfi Zadeh,
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the creator of the CwW idea, formulated many
challenge problems. These problems can be
found in his publications and on his website at
http://www.cs.berkeley.edu/~zadeh/. They
represent one of the many areas of CwW that can be
called ‘autonomous thinking’. It greatly differs from, e.g.,
fuzzy control. Further on, several examples are presented
(Zadeh, 1996b):

• Tall Swedes
Most Swedes are tall. How many are short? What is
the average height of Swedes?

• Temperature
Usually the temperature in my city is not very low
and not very high. What is the average temperature?

• Flight delay
Usually most United Airlines flights from San
Francisco leave on time. What is the probability that
my flight will be delayed?

• Balls in a box
A box contains about 20 balls of various sizes. Most
are large. What is the number of small balls? What is
the probability that a ball drawn at random is neither
small nor large?

The above problems may seem very easy for
non-specialists. However, it is not true. Many persons
cannot solve them and such an ability may be very
important for autonomous thinking. If simple CwW
examples cannot be solved, then how could more complex
tasks be? Such problems have been frequently repeated
and discussed on the BISC forum (a discussion forum at
UC Berkeley conducted by Professor Lotfi Zadeh). They
are examples of autonomous thinking or Computing with
Words in Zadeh’s sense. Solving such ‘trivial’ problems
paves a way to more complicated CwW problems, to
realisation of dreams and plans of Professor Zadeh and
thousands of other scientists.

Specific solutions of CwW problems are in the
scientific literature rather rare. One of the reasons can
be limited possibilities of the present fuzzy arithmetic
and mathematics that were carefully commented, e.g.,
by Dymova (2011). Difficulties in application of this
arithmetic are caused by the impossibility of taking
into account couplings (full or partial) and dependences
existing between variables or also between linguistic
values of a single variable, by the impossibility of
solving even simple equations, or by the phenomenon of
entropy increasing of a solution. Therefore, the paper
of Aliev et al. (2012) has generated our deep interest
because it presents specific solutions of Zadeh’s two
CwW problems known as the two-boxes problem and
the investment problem. Both were solved with the
application of fuzzy arithmetic and mathematics. In

the works of Rajati et al. (2011) as well as Rajati and
Mendel (2012), Zadeh’s challenge problem of tall Swedes
has been solved with two methods. These papers show
how complicated the problems of autonomous thinking
are. They require considerable theoretical knowledge.
Therefore, industrial engineers, common economists or
physicians may have difficulties with its application.
We present a less complicated method of CwW that is
based on RDM models of membership functions and
on multidimensional RDM interval arithmetic (RDM-IA)
(Piegat and Landowski, 2012; 2013a; 2013b; Piegat and
Tomaszewska, 2013; Tomaszewska and Piegat, 2014).
This arithmetic differs considerably from Moore’s interval
arithmetic (Moore, 1966; Moore et al., 2009). Further on,
the idea of the multidimensional RDM-IA will be shortly
presented.

2. Idea of multidimensional RDM interval
arithmetic

We do not claim that Moore’s interval arithmetic is
generally incorrect, because it properly realises basic
arithmetic operations such as addition, subtraction,
division and multiplication, although in a simplified
one-dimensional way and without taking into account
dependences between variables and between particular
intervals that can exist in real problems. However, this
arithmetic causes many paradoxes that are described in
the literature, e.g., by Sevastjanov and Dymova (2009)
or Dymova (2011). Some faults of Moore’s interval
arithmetic are

(a) the excess width effect,

(b) the dependency problem,

(c) difficulties with solving even simplest interval
equations,

(d) problems with the of right-hand sides of the interval
equations,

(e) absurd solutions and requests to introduce negative
entropy into the system.

Problems (c) and (e) will be illustrated with an
example of an equation with one unknown quantity.
Consider the interval equation

[a, a] + [x, x] = [c, c] ,

[1, 3] + [x, x] = [3, 4] . (1)

It can be solved directly in the following way:

1 + x = 3 , x = 2 ,

3 + x = 4 , x = 1 .

http://www.cs.berkeley.edu/~zadeh/
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Fig. 1. Example of the internal variable α of the interval, which
has the meaning of a relative-distance-measure.

Finally, we obtain a solution which is absurd because x >
x.

Equation (1) can also be solved in another way:

[x, x] = [3, 4]− [1, 3] = [0, 3] .

However, such a solution does not satisfy Eqn. (1) since,
after inserting it into the initial formula, we get

[1, 3] + [0, 3] �= [3, 4] .

Multidimensional RDM arithmetic introduces an
internal variable α ∈ [0, 1], which has the meaning of a
relative-distance-measure (Fig. 1).

The aim of introducing RDM variables is not
to make unnecessary parameterization of intervals,
but to introduce the Cartesian coordinate system in
interval arithmetic, similarly as in the conventional
crisp arithmetic, where it has been used for centuries.
Observe that Moore’s arithmetic uses in calculations only
extremities of intervals. Their interiors do not take part in
calculations. This means a kind of arithmetic ‘vacuum’.
Let us consider the subtraction A − C = X = [3, 4] −
[1, 3] = [0, 3], realised according to Moore’s arithmetic.
It is visualised in Fig. 2. If we make addition X + C =
[0, 3] + [1, 3], then we will get the interval [1, 6], not A =
[3, 4]. Why? Because the ‘result’ [0, 3] is not a complete
result but only its span, which is shown in Fig. 2. Minima
and maxima of mathematical functions not always lie on
borders of function domains. They frequently lie inside
these domains. In such a case, extrema cannot be detected
by Moore’s arithmetic.

Thanks to α’s RDM variables, RDM arithmetic
introduces a local Cartesian coordinate system in the
problem domain, which makes the interiors of interval
no more arithmetic vacuums and they can now take
part in calculations. Thanks to it, in more complicated
problems, if extrema lie inside their domains, they can
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Fig. 2. Visualization of the interval subtraction C − A =
X = [3, 4]− [1, 3]: Moore’s arithmetic (a), RDM arith-
metic (b).

be detected by usual function examination, similarly as in
the conventional crisp mathematics. Moore’s arithmetic
detects extrema only if they lie at the boundary of the
solution space as in the case of all monotonic operations
such as addition, subtraction, multiplication and division.

RDM arithmetic has almost the same mathematical
properties as the conventional one (Landowski, 2014). Let
A, B, C be intervals. Points 1–7 below present the most
important properties of RDM arithmetic:

1. A+B = B+A, AB = BA: commutativity laws of
addition and multiplication.

2. A + (B + C) = (A+ B) + C, A(BC) = (AB)C:
associativity laws of addition and multiplication.

3. For each A in R there exists −A in R such that A+
(−A) = (−A) + A = 0. −A is the additive inverse
of A.

4. A(B + C) = (AB) + (AC): left distributivity law,
(B+C)A = (BA) + (CA): right distributivity law.

5. For each A in R, 0 /∈ A, there exists A−1 = 1/A
in R such that AA−1 = A(1/A) = 1. A−1 is the
multiplicative inverse of A.
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6. A + C = B + C ⇒ A = B: cancellation law of
addition.

7. CA = CB ⇒ A = B : cancellation law of
multiplication.

In the case of Moore’s arithmetic, Laws 3, 4, 5,
7 do not hold (Moore et al., 2009)! Consequently,
transformations of formulas cannot be made. For
example, in the equation A + X = C, shifting
A to the right-hand side to get X = C − A is
not allowed because Law 3 does not hold. Because
some transformations are not allowed, more complicated
algebraic and mathematical problems cannot be solved.
Checking whether particular laws 1–7 hold for RDM
arithmetic is easy. In the formulas for the laws, RDM
models of intervals A, B, C should be inserted and the
law equations should be examined (Landowski, 2014).
Frequently, the question is asked: “What are practical
benefits of RDM arithmetic?” These are mentioned
below:

(a) Complicated problems can be solved, thanks to the
possibility of transforming equations.

(b) Almost all laws of the arithmetic of crisp numbers
hold for RDM arithmetic.

(c) RDM arithmetic provides complete,
multidimensional problem solutions from which
various simplified representations such as cardinality
distribution, a span of a solution (Moore’s solution)
or a center of gravity can be derived.

The third benefit will be explained using the example
of an interval addition A + B = C, where A = [1, 2],
B = [2, 4]. In terms of RDM arithmetic, intervals are
modeled with the use of RDM variables:

A : a = 1 + αa , B : b = 2 + 2αb ,

c = a+ b = 3 + αa + 2αb , αa, αb ∈ [0, 1]. (2)

The complete solution set C is not a 1D interval but a
3D information granule determined by (2) and shown in
Fig. 3.

In Fig. 3, contour lines of constant addition results
(c = a+b = const) can be seen. The lengths of these lines
(segments) are measures of the cardinalities of particular
solution sets (e.g., of c = 5 = const). The distribution of
the cardinality of particular solution sets c = const, shown
in Fig. 4, is a valuable two-dimensional representation of
the complete solution c = a+b = 3+αa+2αb , αa, αb ∈
[0, 1].

The next representation of the complete solution set
from Fig. 3 can be the span [min(c),max(c)] = [c, c] =
[3, 6] shown in Fig. 5. The span [c, c] = [3, 6] can be
achieved by usual function examination of the complete

Fig. 3. Complete 3-dimensional result (solution set) C : c =
a + b = 3 + αa + 2αb , αa, αb ∈ [0, 1] of the interval
addition A + B = [1, 2] + [2, 4], achieved with the use
of RDM arithmetic.

cardinality

  3           4          5           6          c

2

Fig. 4. Cardinality distribution as a representation of the com-
plete, 3D solution set C : c = a + b = 3 + αa +
2αb , αa, αb ∈ [0, 1].

solution set C : c = a+b = 3+αa+2αb , αa, αb ∈ [0, 1].
It is easy to determine that min(c) = c = 3 is achieved for
αa = αb = 0 and max(c) = c = 6 for αa = αb = 1. The
last and simplest representation of the complete solution
set can be its center of gravity (CofG) shown in Fig. 6

To solve Eqn. (1), we can use two RDM variables:
αa and αc. Then the interval [a, a] = [1, 3] takes the form
a = 1 + 2αa, αa ∈ [0, 1], and the interval [c, c] = [3, 4]
takes the form c = 3+ αc, αc ∈ [0, 1]. Now, Eqn. (1) can
be rewritten according to the rules of RDM arithmetic as

(1 + 2αa) + x = 3 + αc

  3           4          5           6          c

Fig. 5. Span [3, 6] of the complete RDM solution set C : c =
a+b = 3+αa+2αb , αa, αb ∈ [0, 1] being Moore’s so-
lution and the 1D representation of the interval addition
A+B = C.
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  3           4   4.5  5           6          c

Fig. 6. Simplest representation of the complete solution set C :
c = a+b = 3+αa+2αb , αa, αb ∈ [0, 1] of the interval
addition A+B in the form of its center of gravity.
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Fig. 7. Solution granule of the equation [1, 3] + [x, x] = [3, 4]
consisting of pairs (a, x) satisfying the condition (3).
TP1 and TP2 are test points.

and

x = 2− 2αa + αc , αa ∈ [0, 1], αc ∈ [0, 1]. (3)

It should be noted that the solution x depends
on two variables: αa and αc. Thus, this solution is
not one-dimensional as Moore’s arithmetic suggests, but
two-dimensional one. The solution is presented in Fig. 7,
and values from the figure are additionally explained in
Table 1.

The presented example shows that, in a general
case, it is impossible to form a one-dimensional solution
[x, x] of interval equations. This is caused by the
fact that solutions to problems with data uncertainty are
multidimensional.

The correctness of each interval arithmetic can be
checked with test points. There are two test points in
Fig. 7: TP1(a = 2.5, x = 1) and TP2(a = 1.5, x = 1).
The reader may also use other, individually chosen test
points. Substituting the point TP2(1.5,1) into the equation
a+ x = c, we obtain

1.5 + 1 = 2.5 /∈ [3, 4] ,

Table 1. Values of variables a and c for boundary values of
RDM variables αa and αc.

αa 0 0 1 1
a 1 1 3 3
αc 0 1 0 1
c 3 4 3 4
x 2 3 0 1

so the solution does not satisfy the interval equation
[1, 3] + [x, x] = [3, 4]. Substituting the coordinates of
the point TP1(2.5,1), we obtain the correct solution of the
interval equation:

2.5 + 1 = 3.5 ∈ [3, 4] .

The above example shows that the notation of the
interval equation

[a] + [x] = [c] ,

which is suggested by Moore’s arithmetic and which
is commonly used, is incorrect and leads to incorrect
inference. The correct notation should have the form

[a, a] + [x(a), x(a)] = [c, c], (4)

[1, 3] + [x = 3− a, x = 4− a] = [3, 4],

because the values of x and a are usually partly dependent
(see Fig. 7).

In interval calculations, all known intervals form
a hyper-rectangular knowledge granule. In the case
of Eqn. (1) it is a 2D granule [1, 3] × [3, 4]. The
solution of the discussed interval equation is also the
2D granule [x = 3 − a, x = 4 − a] shown
in Fig. 7. The multidimensional, non-regular, not
hyper-rectangular solution granule cannot be simplified to
a one-dimensional interval [x, x]. A 1D interval can only
inform about a spread of the multidimensional solution,
which is simplified information about the full solution. In
the case of Eqn. (1) such a simplified representation of the
full solution is the interval [x, x] = [0, 3].

Further capabilities that are offered by
multidimensional RDM interval arithmetic are described
by Piegat and Landowski (2012; 2013a). Forthoming
publications are under review in several international
journals.

3. Solution of Zadeh’s flight delay problem
using RDM models of inverse
membership functions

First, let us recall the problem. We have obtained the
information “Usually most United Airlines flights from
San Francisco leave on time” and we should evaluate
“What is the probability that my flight (today) will be
delayed?”. Knowledge about the problem has been
provided by a perceptional information source (PIS) on
the basis of long observations of the airport (Zadeh,
1996b). Assume that the PIS understands the linguistic
quantifier most (Zadeh, 2001) in the way expressed by
a membership function shown in Fig. 8. The quantifier
most concerns the ratio of airplanes leaving the airport
punctually on a single day. Therefore, the variable m has
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μ
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b)
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Fig. 8. Membership function of the linguistic quantifiers
most (a) and usually (b).

the sense of part of the whole (PofW). The quantifier usu-
ally concerns the ratio of these days in the whole number
of observed days when most airplanes of United Airlines
departed punctually. Thus, the variable u has a sense of
relative frequency.

Further on, a formula will be derived that defines
an inverse membership function x = f(μ, αx), αx ∈
[0, 1], for the trapezium function, Fig. 9, which is a
generalization of other function types, e.g., of the triangle
function.

The left-hand side of the trapezium function is
determined by

xL = a+ (b− a)μ, (5)

μ

1

0
x

L R

a b c d

αx

0 1

Fig. 9. Trapezium membership function: L—left-hand side,
R—right-hand side, αx RDM variable equal to zero on
the left-hand side and to one on the right-hand side of
the function, αx ∈ [0, 1].

μ

1

0
xa b c=d

Fig. 10. Right-border trapezium membership function.

μ

1

0
xa b=c d

Fig. 11. Triangle membership function.

and the right-hand side by

xR = d− (d− c)μ. (6)

Thus the full, inverse trapezium function with its
interior is determined by the formulas

x = xL + (xR − xL)αx , αx ∈ [0, 1], (7)

x = [a+ (b− a)μ] + [(d− a)− μ(b+ d− a− c)]αx.
(8)

For the case of border trapezium functions as most
and usually, Fig. 10, the formula (8) takes the form

x = [a+ (b− a)μ] + [(c− a)− μ(b − a)]αx ,

αx ∈ [0, 1]. (9)

In the case of the inverse triangle membership
function, Fig. 11, the RDM model (8) takes the form

x = [a+ (b− a)μ] + (d− a)(1− μ)αx ,

αx ∈ [0, 1]. (10)

In the flight delay problem, the linguistic quantifier
most (Zadeh, 2004) occurs (Fig. 12). Its function can
be defined by the inverse RDM model (11) containing
a variable m. This variable can be interpreted as an
indication of ‘part of the whole’. Its value, e.g., m =
0.70, means 70% of United Airlines aeroplanes that depart
punctually on a single day. The linguistic quantifier



Computing with words with the use of inverse RDM models of membership functions 681

μ
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3/6 5/6 m

most

a b c=d

αm
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Fig. 12. Trapezium right-border membership function most oc-
curring in the flight delay problem.

most contains in its support all numerical values of m ∈
[0.5, 1],

most : m =
1

6
[(3 + 2μ) + (3− 2μ)αm] , αm ∈ [0, 1].

(11)
Formulas for variousμ-cuts of this three-dimensional

function can be achieved after inserting into the formula
(11) specific values of membership μ:

μ = 1 : m(μ = 1) =
1

6
(5 + αm) , αm ∈ [0, 1] ,

μ = 0.5 : m(μ = 0.5) =
1

6
(4 + 2αm) ,

μ = 0 : m(μ = 0) =
1

6
(3 + 3αm) . (12)

In the flight delay problem, the quantifier NOT(most)
will also occur. It can be interpreted as the minority of the
whole, whereas the quantifier most has the sense of the
majority of the whole. The formula

majority +minority = the whole,

most +NOT (most) = the whole,

m+NOT (m) = 1 (13)

expresses the dependence between both the quantifiers.
The RDM model of the quantifier NOT(most)

NOT (most) :

NOT (m) = 1−m

=
1

6
(3− 2μ)(1− αm), αm ∈ [0, 1]. (14)

can be obtained from (11) and (13). Membership
functions of most and NOT(most) are shown in Fig. 13.

It should be noted that the RDM variable αm

enables the modeling of coupled values of variables
m and NOT(m) characterizing the quantifiers most and
NOT(most). This is not possible in the case of Moore’s
interval arithmetic.

μ

1

1

0 3/6 5/6 m

most

1/6

NOT(most)

m + NOT(m) = 1

Fig. 13. Membership function of the linguistic quantifier most
and of the coupled function NOT(most) being the
antonym of most.

u

1

0

μ

12/3

usually

1/3

a b c=d

αu

0 1

Fig. 14. Membership function of the linguistic quantifier usu-
ally.

In the flight delay problem, the linguistic quantifier
usually will also be used. The notion of this quantifier
is not clear, because it is connected to the notion of
‘usuality’, (Zadeh, 1996c). According to Zadeh, usuality
is a concept that can be expressed not necessarily by one
but by a few similar quantifiers such as most, almost al-
ways, usually, high probability, etc., i.e., by quantifiers
that describe the usual value of variable X : usually(X
is F ). In many of his papers and conference opening
lectures, Prof. Zadeh has presented a membership
function of usually and used the word ‘quantifier’ for it.
Taking this fact into account, we have solved the flight de-
lay problem according to its original formulation given by
Zadeh. The membership function μ(u) of this quantifier
represents its understanding by the PIS (Zadeh, 2004) and
is given in Fig. 14.

The formula

usually : u =
1

3
[(1 + μ) + (2 − μ)αu] , αu ∈ [0, 1]

(15)
gives the inverse, fuzzy RDM model of the quantifier usu-
ally. The variable u can be interpreted as an indication of
frequency. Its value, e.g., u = 0.70, means that in 70%
of observed days the event “most UA aeroplanes departed
punctually” happened. The support of usually shown in
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u

1

0

μ

12/3

usually

1/3

NOT(usually)

Fig. 15. Membership functions of the quantifiers usually and
NOT(usually) being the antonym of usually in accor-
dance with the relation (17).

Fig. 14 contains all values of u ∈ [1/3, 1].
The following formula determines μ-cuts on three

levels of membership (1, 0.5, and 0):

μ = 1 : u(μ = 1) =
2

3
+

1

3
αu , αu ∈ [0, 1],

μ = 0.5 : u(μ = 0.5) =
1.5

3
+

1.5

3
αu,

μ = 0 : u(μ = 0) =
1

3
+

2

3
αu. (16)

Below, symbolic dependences concerning the
quantifiers usually and NOT(usually) are given

usually +NOT (usually) = always ,

u+NOT(u) = 1. (17)

The formula (17) states that the values of u and
NOT(u) are fully correlated (Fig. 15). On the basis of
(15) and (17), the inverse membership function of NOT(u)
is obtained:

NOT (u) = 1− u =
1

3
(2− μ)(1 − αu) , αu ∈ [0, 1] .

(18)
For the chosen μ-levels 0, 0.5 and 1, μ-cuts of the

function (18) given by

μ = 1 : NOT (u) =
1

3
(1− αu) , αu ∈ [0, 1],

μ = 0.5 : NOT (u) =
1.5

3
(1 − αu),

μ = 0 : NOT (u) =
2

3
(1− αu). (19)

are achieved. The linguistic values usually, NOT(usually),
most, and NOT(most) form a set of four possible fuzzy
events that may occur at the airport due to the departures
of the United Airlines planes (Fig. 16).

Denote by Ppunct and Punp the probabilities of
punctual and unpunctual flights, respectively. As the
question in the flight delay problem is “What is the

probability that my flight will be delayed?”, the value
of the probability Punp is to be determined. This value
consists of the probability of events P3 and P4, shown in
Fig. 16. Why? Because on the given day the following
four (fuzzy) events may happen:

• Most or a majority of UA aeroplanes will depart
today punctually with the probability expressed by
the linguistic quantifier usually (Event 1).

• NOT(most) or a minority of UA aeroplanes
will depart today punctually with the probability
NOT(usually) (Event 2).

• Most or a majority of UA aeroplanes will
depart today unpunctually with the probability
NOT(usually) (Event 3).

• NOT(most) or a minority of UA aeroplanes will
depart today unpunctually with the probability usu-
ally (Event 4).

Unpunctual flights happen in the case of Events 3
and 4. Thus, the probability Punp of unpunctual departure
is expressed by

Punp = P3 + P4

= NOT (u) ·m+ u · NOT (m)

= (1− u)m+ u(1−m)

= m+ u− 2mu. (20)

On the basis of (11), (14), (15), (18) and (20), we get

Punp =
1

18
{(2− μ)(1− αu)[(3 + 2μ) + (2− 2μ)αm]

+ [(1 + μ) + (2− μ)αu](3− 2μ)(1− αm)} ,
αu ∈ [0, 1], αm ∈ [0, 1], μ ∈ [0, 1]. (21)

This determines the 3D solution set Ω1 being also a 3D
granule: Punp = f(μ, αm, αu).

Further on, ranges of the possible probability
[Punp min, Punp max] for three levels of membership μ, i.e.,
0, 0.5, and 1, will be determined. Similarly, ranges for any
μ-cut can be found.

Level µ = 1. For the level μ = 1, the formula (21) can
be simplified to

Punp(μ = 1) =
1

18
(7− αm − 4αu − 2αmαu) . (22)

A function can have its extremes either at zeros of its
derivatives or on the domain boundaries. An examination
of the derivatives of (22) gives

dPunp

dαm
=

1

18
(−1− 2αu) = 0 , αu opt = −0.5 /∈ [0, 1] ,

dPunp

dαu
=

1

18
(−4− 2αm) = 0 , αm opt = −2 /∈ [0, 1] .

(23)
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μ

1

1

0 3/6 5/6 m

most

1/6

NOT(most)

u

1
0

μ

1

2/3

usually

1/3

NOT(usually)

frequency

PofW

probability

P4 = u · NOT(m)

unpunctual flight

probability

P1 = u · m

punctual flight

probability

P2 = NOT(u) · NOT(m)

punctual flight

probability

P3 = NOT(u) · m

unpunctual flight

mixed zone

punctual or
unpunctual flight

mixed zone

punctual or
unpunctual flight

Fig. 16. Set of four possible fuzzy events which may occur at the airport due to departures of planes today.

Table 2. Results of the examination of the boundaries for the
function (22), Punp(μ = 1) ∈ [0, 7/18].

αm 0 0 1 1

αu 0 1 0 1

Punp
7
18

3
18

6
18

0

The results (23) mean that extremes of the function
(22) do not lie inside the domain αu × αm = [0, 1] ×
[0, 1]. Therefore, the boundaries of the domain are to be
examined. Table 2 shows results of this examination for
boundary values of RDM variables αu and αm.

Level µ = 0.5. For this level, (21) simplifies to

Punp(μ = 0.5) =
3

18
(3− αu − 2αmαu) . (24)

The examination of the derivatives of (24) gives

dPunp

dαm
=

3

18
(−2αu) = 0 , αu opt = 0 ,

and

dPunp

dαu
=

3

18
(−1− 2αm) = 0 ,

αm opt = −0.5 /∈ [0, 1] . (25)

The point determined by the vector
(αm opt, αu opt) = (0,−0.5) does not lie in the solution

Table 3. Results of the examination of the boundaries for the
function (24) Punp(μ = 0.5) ∈ [0, 9/18].

αm 0 0 1 1

αu 0 1 0 1

Punp
9
18

9
18

6
18

0

domain [0, 1] × [0, 1]. Thus, the extremes should be
sought at the boundaries of the domain αu ×αm, Table 3.

Figure 17 shows the Ω1 set—the 3D solution granule
determining the probability of a delayed flight Punp on the
level μ = 0.5.

The Ω1 granule of the precise solution of Eqn. (24)
shown in Fig. 17 is defined by

Ω1 =
{
Punp(μ = 0.5, αm, αu) |

Punp =
3

18
(3− αu − 2αmαu),

αm, αu ∈ [0, 1]
}
. (26)

The interval (Moore’s arithmetic) solution Ω2 :
Punp(μ = 0.5) ∈ [0, 9/18] is not the precise solution but
only a one-dimensional representation of the precise Ω1
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1

0
αu

αm

1

1
0

3/18

3/18

6/18

6/18

9/18

9/18

Punp

contour line of
constant values of

Punp = 6/18

Ω1 granule of the precise
solution of the equation (24)

Punp = f(μ=0.5,αu,αm)

Fig. 17. Solution visualization of Eqn. (24) determining the
probability of a delayed flight Punp for the membership
level μ = 0.5.

solution (24) for the level μ = 0.5. We have

Ω2 =
{
Punp(μ = 0.5, αm, αu) |
Punp ∈ [min(Punp(μ = 0.5, αm, αu)),

max(Punp(μ = 0.5, αm, αu))],

αm, αu ∈ [0, 1]
}
. (27)

The Ω2 solution for the level μ = 0.5 is displayed in
Fig. 18.

The comparison of Figs. 17 and 18 allows the
understanding of the difference between the Ω1 and Ω2

solutions. The Ω1 solution based on the formulas (21)
and (24) containing RDM variables αm and αu is the
precise solution. The Ω2 solution called in the literature
(Lyashko, 2005; Wang and Qiu, 2013) the “interval hull of
the united solution set Ω1” states the spread of the precise
solution. However, for practical purposes it may often be
sufficient.

Level µ = 0. For the level μ = 0, the formula (21)
determining probability Punp of a delayed flight simplifies
to

Punp(μ = 0) =
1

18
(9 + 3αm − 12αmαu) ,

αm, αu ∈ [0, 1] . (28)

To find the extremes of the probability, both

1

0
αu

αm

1

1
0

9/18

9/18

9/18

9/18

Punp

Ω2 granule for
the level  μ=0.5

Fig. 18. Visualization of Moore’s Ω2 solution of the flight delay
problem for the membership level μ = 0.5.

Table 4. Results of the examination of the probability Punp of
the flight delay for the membership level μ = 0.

αm 0 0 1 1

αu 0 1 0 1

Punp
9
18

9
18

12
18

0

derivatives of the probability

dPunp

dαm
=

1

18
(3− 12αu) = 0 , αu opt = 0.25,

dPunp

dαu
=

1

18
(−12αm) = 0 , αm opt = 0 (29)

and the probability values on the boundaries of its domain
(Table 4) were examined.

The examination showed that for all the three
membership levels (0, 0.5 and 1) the probability extremes
lie on the boundaries of the domain αm × αu, αu ∈
[0, 1], αm ∈ [0, 1]. Figure 19 shows all three precise
3D-solutions Ω1(μ = 0), Ω1(μ = 0.5) and Ω1(μ = 1)
for particular μ-cuts.

The membership function of the Ω2 solution of the
‘interval hull’ type, (27), is presented in Fig. 20.

The membership function μ(Punp) in Fig. 20 can
be interpreted as the flight delay probability about 0.27
or also as approximately below 0.5. The minimal
and maximal values of the probability Punp for the
membership function μ(Punp) shown in Fig. 20 can be
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1

αu

αm

1

1
0

6/18

9/18

9/18

Punp

3/18

9/18

6/18

12/18

7/18

μ = 0

μ = 0.5

μ = 1

μ = 0

μ = 0.5

μ = 1

Fig. 19. 3D granules of 3 precise RDM solutions Ω1(μ = 0),
Ω1(μ = 0.5), Ω1(μ = 1) for particular μ-cuts.

Punp

1

0

μ

17
18

9
18

12
18

0.270

CofG

Flight delay probability

Fig. 20. Membership function of the flight delay probability
Punp achieved with the use of RDM inverse models of
membership functions. CofG is the center of gravity.

determined using

min(Punp(μ)) = min
{ 1

18
(9 + 2μ− 4μ2),

6

18
(2− μ),

3

18
(3 − 2μ), 0

}

max(Punp(μ)) = max
{ 1

18
(9 + 2μ− 4μ2),

6

18
(2− μ),

3

18
(3 − 2μ), 0

}
, (30)

The formulas (30) were achieved on the basis of the
formula (21) for various combinations of boundary values
of RDM variables αu and αm (Table 5).

On the basis of experience gained during solving
Zadeh’s flight delay problem and other similar issues, we
can give the following, general method of CwW problems
solving:

Table 5. Formulas of the delay probability Punp(μ) for 4 bound-
ary combinations of RDM variables αu ∈ [0, 1] and
αm ∈ [0, 1].

αm 0 0 1 1

αu 0 1 0 1

Punp(μ)
1
18

(9+2µ−4µ2)
6
18

(2−µ)
3
18

(3−2µ) 0

1. Determine variables and linguistic values of
variables occurring in the problem.

2. Determine general formulas enabling problem
solving.

3. Determine RDM models of inverse membership
functions of linguistic quantifiers occurring in the
problem.

4. Use inverse RDM models of linguistic quantifiers
and formulas for problem solving, for determining
the precise, multidimensional problem solution Ω1.

5. On the basis of the precise multidimensional solution
Ω1, determine the interval hull solution Ω2.

4. Testing the achieved solution

Computing with words imitates the human way of
reasoning, thinking and problem solving with linguistic
information. Thus, the natural way of testing achieved
results in the flight delay problem is their comparison
with mental solution results of this issue provided by
people. At the Faculty of Computer Science of our home
university, a study with the participation of 54 students
was conducted. Each student received the following
description of the problem:

Let us assume that you are waiting for your airplane and
an airport officer informs you that “Usually most United
Airlines flights leave on time.” How would you evaluate
the probability that your today flight will be delayed?

Variant 1. Use linguistic values: probability ‘below 0.5’
or ‘above 0.5’.

Variant 2. Use one of linguistic values: ‘low’, ‘low or
medium’, ‘medium’, ‘medium or high’, ‘high’ prob-
ability.

Figure 21 shows the histogram of student’s answers
for Variant 1.

As can be seen in Fig. 21, the center of gravity as the
singleton representation of the histogram has the position
Punp = 0.306, whereas the result of computing with words
is Punp = 0.270. Thus, people evaluated the probability
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Punp

0

fr

1

6
54

0.306

CofG

above 0.5

below 0.548
54

0.5

Fig. 21. Histogram of probability evaluations ‘below 0.5’ and
‘above 0.5’ of a delayed flight as a result of the exam-
ination of 54 persons. fr is the response frequency,
CofG is the center of gravity.

p

1

0

μ

CofG

low

0.2 0.4 0.6 0.8 1

medium high

CofG CofG

0.156 0.8440.5

Fig. 22. Membership functions of the linguistic values low,
medium and high probability of a delayed flight with
the positions of their centers of gravity.

of a delayed flight similarly but a little higher than CwW,
though the difference is small. In Variant 2, students could
chose one of 5 linguistic values: the probability ‘low’,
‘low or medium’, ‘medium’, ‘high or medium’, ‘high’. 22
out of 54 persons evaluated the probability as ‘low’, 19 as
‘low or medium’, 12 as ‘medium’, and 1 person as high.
Figure 22 shows the membership function of the values
low, medium, high probability.

On the basis of answers of 54 persons, a position of
the gravity center equal to 0.335was obtained. This value,
having the meaning of the expected delay probability, is
also greater than the result 0.270 achieved with the CwW
method. Thus, the question arises: “What is the reason
for this difference?”, “Why do people evaluate the delay
probability higher than the computing with words?” and
“Is CwW more precise than people or are people more
precise in their mental calculations?”.

To explain it, we should recall the information
provided for students and the stated question: “Usually
most flights of UA from San Francisco leave on
time. What is the probability that my today flight
will be delayed?”. The human mind analyzes only the
information directly given in the statement “Usually most

flights of UA leave on time” and on this basis intuitively
evaluates, first the probability Ppunct of the punctual flight
that is given symbolically by

Ppunct = usually ·most , (31)

and next the probability of delayed flight Punp given
by (32)

Punp = 1− Ppunct = 1− usually ·most . (32)

Both (31) and (32) are partially incorrect. None
of the persons asked detected that if airplanes leave
punctually in the situation usually · most , then they
also leave punctually in the situation NOT (usually) ·
NOT (most) (Fig. 16). Most people are even unable
to understand this situation because it is described by
double negation (people tend to focus on the ratio of
days on which most airplanes leave on time and on the
ratio of airplanes which leave on time on a single day).
Because the correct probability value of the punctual flight
is determined by the formula

Ppunct = usually ·most

+NOT (usually) ·NOT (most) ,
(33)

the correct probability value of the unpunctual flight is
determined by

Punp = 1− Ppunct

= 1− usually ·most

−NOT (usually) · NOT (most). (34)

The comparison of (34) with (32) clearly shows why
people evaluate the flight delay probability a little higher
(0.306 or 0.335) than the CwW method, which evaluates
it as 0.270. The segment NOT(usually) · NOT(most)
is not subtracted from 1 in (32). The presented flight
delay problem makes us aware that people use in their
mental calculations only direct perceptions, rather than
hidden perceptions, which are important but cannot be
perceived directly in an easy way and have to be presumed
or suspected. However, each perception means one
event possibility—the possibility of informing when the
event can occur. Probably people intuitively feel and
realize the insufficiency of their analytical possibilities
and compensate this insufficiency by an increased filling
of the risk and by risk aversion detected and investigated
by Nobel Prize winners Kahneman and Tversky (2000).
The above means that the practical usability of computing
with words can be considerable and that CwW can
increase reasoning precision.

5. Conclusions

The paper presented new inverse membership functions
based on RDM interval arithmetic. These inverse
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functions model not only boundaries but also the inner
space of membership functions and allow effective
computing with words. Their effectiveness was shown
using the flight delay problem formulated by Zadeh. The
obtained solution is credible and was compared with
mental solutions provided by a 54-student group. Both
results are similar, though the research demonstrates that
people overestimate the probability of flight delay. The
paper also presents the reasons behind such a situation.
Generally, results presented in the paper allow optimistic
evaluation of the abilities of computing with words as a
practical science area.
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