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An increasing number of known RNA 3D structures contributes to the recognition of various RNA families and identifica-
tion of their features. These tasks are based on an analysis of RNA conformations conducted at different levels of detail.
On the other hand, the knowledge of native nucleotide conformations is crucial for structure prediction and understanding
of RNA folding. However, this knowledge is stored in structural databases in a rather distributed form. Therefore, only
automated methods for sampling the space of RNA structures can reveal plausible conformational representatives useful
for further analysis. Here, we present a machine learning-based approach to inspect the dataset of RNA three-dimensional
structures and to create a library of nucleotide conformers. A median neural gas algorithm is applied to cluster nucleotide
structures upon their trigonometric description. The clustering procedure is two-stage: (i) backbone- and (ii) ribose-driven.
We show the resulting library that contains RNA nucleotide representatives over the entire data, and we evaluate its quality
by computing normal distribution measures and average RMSD between data points as well as the prototype within each
cluster.
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1. Introduction

The knowledge of RNA 3D structures is crucial for better
understanding of mechanisms that govern various cellular
processes like cell division, growth and differentiation,
ligand or protein binding, retroviral infections, mRNA
splicing, and others. It is also helpful in the identification
of new diseases and designing drugs, thus having an
impact on the improvement of human health (Leontis
and Westhof, 2012; Humphris-Narayanan and Pyle,
2012; Puszyński et al., 2012). The three-dimensional
structure of RNA can be determined experimentally, using
high-resolution methods such as X-ray crystallography
or nuclear magnetic resonance spectroscopy (Blazewicz
et al., 2004; Szachniuk et al., 2013; Popenda et al., 2009).
However, these methods are not always successful, due to
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a significant structural diversity of the RNA backbone and
the dynamic nature of RNA interactions. Consequently,
in many cases, only in silico methods can support RNA
structure analysis (Parisien and Major, 2012; Lukasiak
et al., 2013; Antczak et al., 2014). Among them, tools
for 3D structure prediction play an important role. They
apply various strategies and require different degrees
of user involvement in the modeling process. Some
of them proceed with the de novo prediction routine
based upon dynamics simulation of a coarse-grained RNA
model, others make use of a user-provided template and
run homology modeling or compose the final structure
via 3D fragment assembly. Most of these methods
require dealing with the high-complexity problem of
the exploration of the RNA conformational space, by
which we understand all available information about
RNAs archived in structural databases. In particular,
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coarse-grained models resulting from de novo prediction
need to be supplemented to obtain a full-atomic structure.
This can be done upon searching for suitable 3D
fragments within the Protein Data Bank (PDB) (Berman
et al., 2000), Nucleic Acid Database (NDB) (Berman
et al., 1992) or RNA FRABASE (Popenda et al.,
2008). In the case of homology modeling, a good
template is required at the input, thus forcing users to
sample the conformational space and select potential
homologs before starting the prediction process. Finally,
the fragment assembly approach runs the search for
appropriate structural puzzles within the set of all known
RNA structures and combines them together.

An interesting solution to the problem of sampling
the conformational space was introduced for protein
structures by Dunbrack and Karplus (1993) as well
as Dunbrack (2002). The authors of this proposal
constructed a library of backbone-dependent rotamers
(energetically favored sidechain conformations,
sometimes also described as average conformations
over some region of the dihedral angle space
(Dunbrack, 2002)) and used it in prediction of amino
acid sidechains. Another approach was described by
Hamelryck et al. (2006), who had inspected the space
of protein conformations using local structural bias. To
our knowledge, no method has been developed yet to
deal with the problem of sampling the domain of RNA
conformations.

Here, we present a novel protocol to search and
organize the space of RNA three-dimensional structures
in order to construct the library of RNA nucleotide
conformations (called also conformers). The protocol
is based on the machine learning approach and uses
two representations of the nucleotide structure: (a)
an algebraic, defined by atom coordinates, and (b) a
trigonometric one, which provides values of torsion
angles corresponding to particular nucleotides (Zok
et al., 2014). It was used to build the library of
RNA conformers found in experimentally determined
structures and to select representative conformations
for each type of nucleotide (adenine, guanine, cytosine
or uracil-based). A collection of PDB-deposited
high-resolution RNA structures served as the preliminary
conformational space. It was subjected to hierarchical
clustering by the median neural gas technique (Cottrell
et al., 2006), a stable representative of the vector
quantization approach. The resultant clusters, evaluated
in terms of machine learning and structural comparison
measures, form the output library of RNA conformers.
The library can be used for the identification of
best-fitting nucleotide conformers, when one predicts the
conformation of ribose and base onto fixed coordinates
of RNA backbone. Thus, it can efficiently support
the reconstruction of high-quality, full-atomic RNA
structures. The library is freely available for download at

Fig. 1. Torsion angles defined for an RNA nucleotide.

http://www.cs.put.poznan.pl/tzok/rnalib/.

2. Construction of the nucleotide library

2.1. Data preparation. In the preliminary step of
our research, we collected structural data to create
the search space for further sampling and the library
construction process. The Protein Data Bank (Berman
et al., 2000), which stores information about RNA, DNA
and protein structures, as well as their complexes, was
used as the source of data. Each PDB file describes a
molecule and contains atom coordinates (i.e., a structure
in algebraic representation), as well as some metadata
concerning the molecule itself and the process of its
determination. The PDB repository was searched for
files including description of RNAs. RNA-protein and
RNA-DNA complexes were accepted as well. Next,
the structural information (components of the structure,
atom coordinates) and metadata (the PDB identifier,
experimental method, resolution) were extracted from
selected files. After filtering out non-RNA chains found in
molecular complexes, and those with the resolution above
2.4Å, we ended up with a set of 553 X-ray structures.
They were composed of 65134 nucleotides that served for
building the conformational space.

For every RNA nucleotide included in the set,
torsion angle values (cf. Fig. 1) defined for the
backbone (α, β, γ, δ, ε, ζ), ribose (ν0, ν1, ν2, ν3, ν4) and
N-glycosidic angle (χ) were computed upon appropriate
atom coordinates. Angle values range between 0◦

and 360◦. A vector of twelve above listed torsion
angles constitutes a trigonometric representation of the
nucleotide and precisely defines its three-dimensional
structure (Zok et al., 2014). All nucleotides with
an incomplete set of angles or including modifications
were discarded. For each of the 61272 remaining
nucleotides, a data tuple was created containing the
PDB id, chain id, nucleotide number, insertion code,
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experimental method, resolution and a vector of torsion
angle values. Each tuple was classified into the A, C,
G or U category depending on the respective nucleotide
type. Consequently, the final dataset S, referred to as the
space of RNA nucleotide conformations, consists of four
subsets: A—with 14934 adenine nucleotides, C—with
15965 cytosine nucleotides, G—including 19041 guanine
nucleotides, and U—with 11332 uracil nucleotides.

2.2. Library construction procedure. Based on the
prepared dataset S, we could start constructing the RNA
conformer library. A scheme of this process is shown
in Fig. 2. It was executed separately for every subset
N ∈ {A,C,G,U}. The library was built upon nucleotide
clusters revealed by a median neural gas algorithm run in
a divisive hierarchical routine. Let us describe the process
of library construction stepwise for N = A (the procedure
was identical for all of the remaining subsets).

Step 1. At the beginning, the first-level clustering
was run taking into account values of 6 torsion angles
computed for nucleotide backbones (α, β, γ, δ, ε, ζ). The
results allowed us to distinguish m classes of backbone
conformations in subset A. Each class was denoted by Ai,
where i is an identifier of the i-th backbone-based cluster.

Step 2. Next, every created cluster was subjected to
second-level clustering aimed to identify characteristic
conformations of sugar and base. In this step, data
were clustered with respect to values of 6 torsion
angles describing the latter nucleotide components
(ν0, ν1, ν2, ν3, ν4, χ). This way, for each Ai we obtained
ni classes of ribose and sugar-base conformations. A
single ribose-based cluster is named Ai

j , where j stands
for the number of the j-th ribose-based cluster found
within Ai.

Step 3. For every cluster Ai
j , a subsetA′i

j of representative
conformers was identified. It involved all-against-all
comparison of nucleotides collected in the cluster and
the processing of the distance matrix. All identified
representatives were selected for the library.

Step 4. In order to create an entry in the final
library, additional information about conformers and their
clusters was collected. For every conformer in A′i

j , the
probability of its selection during random sampling of the
conformational space was estimated as the quotient of Ai

j

size and the size of set A. Next, in the scope of Ai, the
average values and standard deviations were calculated
for backbone torsion angles. Analogously, for each Ai

j ,
the average values of ribose and N-glycosidic angles and
their standard deviations were computed. All of these
parameters were added as metadata to the conformer
description.

Step 5. Finally, the description of every conformer was
supplemented by adding its original atom coordinates.

Fig. 2. Scheme of the library construction process.

Based on these coordinates, we computed the interatomic
distances for all pairs of bonded atoms, and a set of planar
and dihedral angles (including non-standard ones). Their
values were included in the conformer description. Such
a library entry allows us to easily locate the conformer
in the whole spectrum of RNA nucleotides and provides
a detailed insight into individual aspects of the RNA
structure represented by the conformer.
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2.3. Overview of clustering methods. One of the
main procedures in the process of nucleotide library
construction was two-level clustering executed within the
set S of RNA nucleotide conformations. Clustering
is a methodology for finding underlying structures and
substructures in a dataset of unlabeled objects (Weber
et al., 2011; Sabo, 2014; Lukasiak et al., 2010). In the
context of machine learning it belongs to unsupervised
techniques and plays an active role in data mining, pattern
recognition and statistics. Mathematically, clustering is an
ill-posed problem. Thus, its optimal solution in a general
sense does not exist. Often, the data to be clustered are
given in the form of real n-dimensional vectors v ∈ V ⊆
R

n with the Euclidean norm and data density P (v).
One of the most frequently applied clustering

algorithms is k-means, based on the idea presented by
MacQueen (1967) and Steinhaus (1956). The data set is
partitioned into k clusters such that the error function

J (V,W ) =

∫ k∑
j=1

P (v) · (δE (v,wj))
2 dv (1)

is minimized, with δE (v,wj) being the Euclidean
distance between vector v and prototype wj describing
the j-th cluster. All prototypes form the set W .

The problem of minimizing the function J (V,W )
is NP -hard. Therefore, several heuristics have been
introduced to deal with this task. The most well-known
approaches to accelerate the clustering process have
been proposed by McQueen (1967) and Lloyd (1982).
However, these methods are sensitive to the initialization
of prototypes, usually taken as data points. Thus, another
variant, called neural gas (NG), with origin in neural
networks have been proposed by Martinetz and Shulten
(1991). In NG, a neighborhood cooperativeness between
the prototypes during the adaptation process contributes to
convergence speed improvement as well as to insensitivity
with respect to initialization. In particular, NG considers
the energy function

ENG =
1

2 · C(λ)

∫ k∑
j=1

P (v)hλ(rgj(v,W))

× (δE (v,wj))
2
dv

(2)

to be minimized, where C(λ) is a constant depending on
the λ-value (Villmann, 2005). The function rgj(v,W) ∈
{0, . . . , N − 1} quotes the position of each prototype wj

according to data point v. It can be calculated in the
following way:

rgj(v,W) =

k∑
i=1

H(δE(v,wj)− δE(v,wi)), (3)

where H(x) is the Heaviside function. According to

rgj(v,W), the neighborhood function

hλ(rgj(v,W)) = exp

(
−rgj(v,W)

λ

)
(4)

determines the degree of neighborhood with
neighborhood range parameter λ. An initial high
value of λ = 1

3N is linearly decreased (to 0.5) during
the adaptation process realized as a stochastic gradient
learning (Martinetz and Shulten, 1991).

Both k-means and NG methods fail if the data
are not vectors but complex discrete data objects. For
special data types, appropriate variants are proposed. For
density functions as data, one can apply divergences in
NG (Villmann and Haase, 2011). If only dissimilarities
δi,j between the data objects are given, the so-called
median variants come into play. Here, the prototypes
are restricted to be data objects, while dissimilarities
are arbitrary non-negative judgments of object relations
with the required zero self-dissimilarity (Pekalska and
Duin, 2005).

The median variant of k-means is denoted by
k-medoids (Kaufman and Rousseeuw, 1990). Yet,
as k-means, the k-medoid algorithm still heavily
suffers from sensitivity according to the initialization of
prototypes. A less sensitive NG-counterpart, contributed
by Cottrell et al. (2006), is median NG (MNG). Supposing
N data objects oi ∈ V and starting from a random
initial prototype assignment s (j) ∈ {1, . . . , N} of
prototypes wj to data objects os(j), two alternating steps
are iteratively applied until convergence:

1. For each prototype wj ∈ W and data object oi,
determine

sji =

N∑
l=1

hλ(rgj(ol,W))δl,i

N∑
l=1

hλ(rgj(ol,W))

, (5)

where rgj(ol,W) =
k∑

i=1

H(δl,s(j) − δl,s(i)) is the

median related rank function.

2. Set the value of

snew (j) = arg min
i=1,...,N

[sji] , (6)

and thereafter decrease the neighborhood range λ.

As for the vectorial counterparts, the determination
of the cluster number k is crucial for MNG and k-medoid.
Depending on the problem, several configurations should
be tested, or the number can be determined by external
investigations.
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2.4. Building clusters of RNA nucleotides.
Generally, clustering is an ill-posed problem when
the number of clusters is unknown. To solve it, one can
use hierarchical clustering (HC), but the reliable cut-off
dissimilarity between sub-clusters should be determined.
Moreover, HC follows a greedy local search strategy
in each hierarchy level but does not minimize a global
cost function. Therefore, if the number of clusters is
found out by HC, another cluster algorithm provided
with this number of clusters may deliver a better solution
optimizing a global strategy. In the presented problem
of conformer library construction, we decided to (i)
determine the number of clusters in advance by the
affinity propagation approach (Frey and Dueck, 2007),
then (ii) use MNG clustering and (iii) apply it for the set
S = {A,C,G,U}. Every nucleotide (the data point) from
S was represented as a 12-dimensional vector of torsion
angle values [α, β, γ, δ, ε, ζ, ν0, ν1, ν2, ν3, ν4, χ]. Hence,
A,C,G,U ⊂ R

12. It was assumed, that first six features
(values of backbone torsion angles) are always defined,
whereas the next six (ribose and N-glycosidic torsion
angle values) can be provided upon the user’s choice,
thus they are treated as additional structural information.
Therefore, clusters Ai, Ci,Gi,U i ⊂ R

6 resulting from
the first-level clustering carry the backbone attributes
and Ai

j , Ci
j ,Gi

j ,U i
j ⊂ R

6, being the output from the
second-level clustering, refer to the remaining attributes.

For every subset N ∈ S, the pairwise squared
Euclidean distance between nucleotides ou, ov ∈ N (u �=
v; u, v ∈ {1, . . . , |N |}) was calculated in a pre-processing
phase of MNG. Based on this calculation, the distance
matrix DN for each N ∈ {A,C,G,U} was created
constituting an input of the MNG algorithm.

Next, the number k of prototypes (further on equal
to the number of clusters) was defined. This parameter
is crucial for clustering, and therefore, several possible
configurations were tested using affinity propagation
(Frey and Dueck, 2007), a probability-based algorithm
to estimate the efficient number of clusters. The
number of stable clusters can be also assessed with
other approaches (cf. Volkovich et al., 2008). At the
beginning of affinity propagation, every nucleotide was
treated as single cluster, a corresponding to a prototype.
In consecutive iterations clusters were merged depending
on the parameter regulating the probabilities for cluster
building. Looking for stable solutions (such that for a
wide range of parameter values the number of clusters
does not change) we found two, for k = 3 and k =
5 (Fig. 3). Similar results were found for all subsets,
Ai, Ci,Gi, U i. Thus, we decided to test backbone-based
clustering with k = 3 first.

After setting the above mentioned parameters, the
MNG algorithm was executed separately for each N ∈
{A,C,G,U}. At the start, the prototypes were initialized
randomly, i.e., each prototype wl(N), l ∈ {1, . . . , k} was

Fig. 3. Affinity propagation for subset A. Long plateaus observ-
able for k = 3 and k = 5 indicate stable solutions.

set to be a randomly selected nucleotide from currently
processed dataset N . Thus, the set W = {w1, w2, w3}
of initial prototypes was constructed. Next, nucleotides
from N were clustered and the new prototypes selected.
Nucleotide ou was assigned to cluster N i, i ∈ {1, 2, 3} if

wi(N) = arg min
wj(N)∈W

δE (ou, wj(N)) . (7)

Every MNG run was aborted once reaching a
convergence, which was the case if prototype assignments
did not change within the adaptation phase. As a result,
the following first-level clusters were obtained: A1, A2,
A3, C1, C2, C3, G1, G2, G3, U1, U2, U3.

Subsequently, for every obtained backbone-based
cluster N i, the second-level clustering was performed that
repeated a similar procedure. Affinity propagation was
run to reveal the following values of k: k = 8 (for
C3,G2,U2), k = 9 (for A1,A2,A3,C1,C2,G3,U1,U2), and
k = 10 (for G1). It was decided that for every N i the
second-level clustering would be executed with k = 9.
This ribose-based clustering produced 9 clusters within
each N i. However, some of them were decided to be
skipped from further study due to their small capacity.
Thus, all outliers, i.e., nucleotides from clusters with the
cardinality below three, were discarded, and we ended
up with 6 clusters within U2, 7 clusters within A2, C2,
C3, G1, G2, U3, 8 clusters within A1, C1, G3, U1, and
9 clusters within A3. Table 1 shows the distribution of
outliers within backbone-based clusters.

3. Evaluation of the library

Several computational tests were executed in order to
assess the quality of MNG clusters and the library. The
first-level clustering was evaluated based on the distances
between nucleotides collected in a particular set or cluster.
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Table 1. Outliers in ribose-based clusters.
Cl Id Outliers # Freq [%] Cl Id Outliers # Freq [%]

A1 1 0.01 C1 1 0.07
A2 2 0.12 C2 3 0.24
A3 0 0.00 C3 1 0.01
G1 3 0.03 U1 2 0.17
G2 2 0.10 U2 3 0.03
G3 1 0.04 U3 3 0.20

(a) (b) (c)

Fig. 4. Distance matrix DA for A: nonclustered (a), with k = 3
(b) and with k = 5 clusters (c). Dark squares in (b), (c)
represent clusters (dark points show high similarity).

Figure 4 visualizes distance matrices for non-clustered
subset A, for A with 3 and 5 backbone-based clusters,
respectively. It can be observed that nucleotides are close
within each cluster, and distant between different clusters.
Thus, we can conclude that clusters are well separated
for both the values of k. Further analysis shows that two
smaller clusters observed for k = 3 are divided into four
when k = 5, whereas the big cluster is common for both
values of k. From that we confirm that 3 clusters are
sufficient.

Another test to evaluate the first-level clustering
was based on pairwise distances between all prototypes.
The prototype distance matrix is shown in Fig. 5. Let
us consider its first column, representing the distances
between w1(A) (w1 found in A1) and other prototypes.
We can easily detect similarity (a dark entry) between
w1(A) and w2(C), w2(G), w3(U). Moreover, we can
observe that cluster densities and the prototype set do
not change significantly over the backbone-based clusters,
i.e., the relative number of data points assigned to each
prototype (which is a measure of density) differs only
marginally if we compare various backbone clusters (see
also Table A1). Hence, these sets comprise equivalent
structural information. Nucleotides are similar within
clusters and clusters are well separated. From this we
conclude that the first-level clustering was accomplished
successfully.

The second-level clusters were assessed upon
principal component analysis (PCA) used as a
dimensionality reduction technique. Its execution
aimed to confirm the k value proposed by affinity
propagation. Figure 6 shows that ribose-based clusters
within A1 are well separated when k = 9. Although

w3(U)

w2(U)

w1(U)

w3(G)

w2(G)

w1(G)

w3(C)

w2(C)

w1(C)
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Fig. 5. Pairwise distances between backbone-based prototypes.
Dark entry shows high similarity of prototypes.

some clusters are poorly represented, the observable trend
is obvious. We achieved comparable results for other
ribose-based clusters which confirmed that the value of k
was correct.

The next series of computational experiments aimed
to evaluate the library from a structural point of view.
First, the values of torsion angles and atom coordinates
were collected for every prototype being a representative
of the corresponding cluster. For every backbone- and
ribose-based cluster, its nucleotide structures were aligned
with the prototype, and the root mean square deviation
(RMSD) between them was computed upon respective
(backbone or ribose) atom coordinates. Figures 7 and
8 show example backbone- and ribose-based clusters
with their contents aligned. Their analysis allows us to
estimate the distances between cluster members. These
distances, represented by RMSD values, are displayed,
together with prototype angles, in Table 2 (for backbone
clusters) and Tables 3 and 4 (for ribose clusters). Low
RMSD values prove high quality of clusters and their
representatives. Additionally, the distribution of torsion
angle values within clusters was computed, and can be
viewed in Tables A1–A5 (Appendix).

An analysis of backbone-based clusters revealed that,
for every N = {A,C,G,U}, one big and two smaller
sets were obtained. The big cluster, considered stable,
included about 75% of all nucleotides of type N . The
two remaining clusters were regarded as unstable. High
stability of the biggest clusters was confirmed by a small
RMSD between prototypes and other cluster members,
and insignificant standard deviation of backbone torsion
angles. From the analysis of ribose-based clusters
we could see that the occurrence frequency was more
diverse for subclusters of unstable backbone-based sets.
Either the standard deviation of ribose angles (except
for χ) or the RMSD between ribose atoms of prototype
and other nucleotides of the cluster were significantly
low, compared with the respective values within the
backbone-based set. A high deviation of the χ value
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(a)

(b)

Fig. 6. Visualization of A1 according to ribose features: results
of PCA dimensionality reduction (a), 9 MNG-identified
clusters visualized with PCA (b).

Table 2. Torsion angle values for prototypes of backbone-based
clusters. RMSD between backbone atoms of the proto-
type and other nucleotides in the cluster.

Cl Torsion angle value [◦] RMSD
Id α β γ δ ε ζ [Å]

A1 73.2 173.9 54.3 82.0 213.9 287.4 0.27
A2 59.9 183.7 64.4 140.5 256.5 101.8 0.62
A3 332.2 168.5 177.3 88.9 229.8 273.3 0.70
C1 340.2 187.5 174.6 82.3 221.7 277.2 0.45
C2 63.1 185.7 64.2 105.3 226.2 121.0 0.50
C3 74.8 174.1 52.6 80.0 209.8 289.7 0.18
G1 73.9 174.5 55.2 81.3 209.7 287.9 0.19
G2 47.2 173.7 64.6 135.2 226.3 155.2 0.88
G3 335.3 185.6 179.6 83.0 220.8 283.6 0.51
U1 326.9 146.4 186.5 81.3 228.4 272.1 0.73
U2 73.8 172.8 53.3 81.8 210.2 286.3 0.22
U3 73.1 188.0 66.3 131.3 234.1 103.9 1.07

shows the distribution domination by ribose angles, thus
the third-level clustering could be performed upon χ only.

(a) (b) (c) (d)

Fig. 7. Backbone-based clusters: A1 (a), C3 (b), G1 (c), U2 (d).

(a) (b) (c) (d)

Fig. 8. Ribose-based clusters: G1
7 (a), C1

1 (b), U1
1 (c), A1

4 (d).

4. Conclusions and future work

We proposed a novel protocol to construct the 3D
conformation library of RNA nucleotides. It was
successfully applied to a set of high-resolution
RNA structures. The resulting library is available at
http://www.cs.put.poznan.pl/tzok/rnalib/.
It constitutes a well-organized repository with extensive
information about RNA nucleotide structures, which is
an excellent starting point for further research. As a
practical source of revised and relevant data, the library
can facilitate the identification of typical conformations
found within particular RNA motifs. It may be employed
to explore unusual 3D fragments in newly determined
RNA structures. Finally, it can be utilized in the
reconstruction of full-atom structures of RNA molecules
and experimental structure determination using, e.g.,
NMR spectroscopy and motif-based signal assignments
(Adamiak et al., 2004).

The analysis of the results allowed us to identify
several issues that will be addressed in our future work.
Backbone-based clustering resulted in forming one big
and two small clusters for every N = {A,C,G,U}. We
suppose that the majority of nucleotides in big clusters
derive from most conservative RNA regions like helices,
while the remaining clusters with small capacity contain
nucleotides retrieved mostly from non-conservative,
single-stranded fragments. An additional study will be
conducted to confirm this hypothesis.

It was also revealed that clustering upon χ together
with ribose angles does not yield full data separation. This
was clear for A1

7, where χ = 68.6o for the prototype,
while the cluster average was χ = 260.1o. Further
inspection allowed us to discover bimodal distribution of
χ in A1

7 and to conclude about the dominance of a highly
structured ribose ring in the clustering of all 6 angles.
Thus, we plan to improve the protocol by adding the
third-level clustering upon χ.

Finally, the future plans include the analysis of the
bigger conformational space, including all RNA structures
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Table 3. Torsion angle values for prototypes of ribose-based
clusters. RMSD between ribose atoms of the prototype
and other nucleotides in the cluster (subsets A,C).

Cl Torsion angle value [◦] RMSD
Id χ ν0 ν1 ν2 ν3 ν4 [Å]

A1
1 288.1 0.9 20.4 327.5 34.0 337.9 0.02

A1
2 184.4 26.5 321.7 34.9 338.9 356.9 0.03

A1
3 221.0 0.3 335.1 38.6 320.4 24.7 0.03

A1
4 198.3 359.5 336.0 38.1 320.6 25.1 0.03

A1
5 234.8 330.3 7.0 16.4 326.0 40.4 0.07

A1
6 246.2 314.6 37.6 342.9 351.5 34.2 0.05

A1
7 68.6 333.0 37.2 327.7 17.7 5.7 0.04

A1
8 237.9 340.0 34.7 324.7 24.7 356.8 0.04

A2
1 234.9 2.8 9.4 342.2 19.8 346.1 0.04

A2
2 51.4 343.1 33.7 323.3 28.0 352.8 0.04

A2
3 265.2 333.3 35.7 329.5 15.8 6.7 0.05

A2
4 236.1 334.9 15.9 358.6 347.1 23.5 0.12

A2
5 279.2 332.5 1.5 23.1 320.3 42.3 0.05

A2
6 262.9 358.5 345.2 24.3 334.2 17.3 0.09

A2
7 227.8 3.4 332.5 40.0 321.0 22.5 0.03

A3
1 213.9 19.9 326.4 33.6 336.8 2.2 0.07

A3
2 209.0 25.1 322.7 35.1 338.5 357.9 0.04

A3
3 198.9 17.6 351.6 356.8 13.4 340.6 0.06

A3
4 245.6 0.5 23.5 323.1 38.1 335.6 0.04

A3
5 219.4 342.6 33.0 324.8 26.2 354.3 0.04

A3
6 237.8 333.2 41.8 320.7 25.0 1.1 0.04

A3
7 63.7 335.0 22.2 348.4 357.7 17.0 0.08

A3
8 197.2 331.2 9.0 12.6 330.5 36.9 0.07

A3
9 200.4 357.9 336.6 38.5 319.1 27.2 0.06

C1
1 188.5 9.3 329.9 38.1 325.8 15.7 0.04

C1
2 193.2 25.0 321.9 36.1 337.4 358.7 0.04

C1
3 221.4 1.2 11.3 340.7 20.6 346.6 0.10

C1
4 243.5 352.4 31.1 319.2 37.8 340.8 0.07

C1
5 250.2 335.3 36.9 325.3 21.3 2.0 0.03

C1
6 258.3 331.1 25.8 346.7 357.1 20.0 0.08

C1
7 202.5 335.9 9.2 7.9 337.8 28.9 0.07

C1
8 187.8 348.5 336.1 48.3 304.5 42.2 0.11

C2
1 198.6 1.8 333.7 39.3 320.7 23.6 0.03

C2
2 188.0 26.7 326.6 27.6 346.9 351.6 0.19

C2
3 246.0 342.2 30.5 329.2 21.3 357.6 0.05

C2
4 231.8 320.2 44.9 325.0 12.5 17.2 0.09

C2
5 252.5 319.8 29.1 351.2 346.2 34.1 0.05

C2
6 191.9 334.0 12.2 5.0 339.8 28.8 0.07

C2
7 194.4 355.9 336.3 40.8 316.3 30.2 0.05

C3
1 200.6 2.4 334.9 37.0 323.2 21.8 0.02

C3
2 179.5 32.3 325.3 24.6 353.4 343.9 0.08

C3
3 247.9 337.2 39.3 320.2 27.6 356.8 0.04

C3
4 250.9 336.6 36.4 325.1 22.5 0.3 0.04

C3
5 238.0 328.2 23.1 353.7 348.5 26.7 0.06

C3
6 220.9 339.8 3.9 12.4 335.5 27.9 0.07

C3
7 198.7 359.8 334.4 40.1 319.0 26.1 0.04

irrespective of their resolution, and fuzzy clustering (e.g.,
the fuzzy neural gas algorithm (Villmann et al., 2012)).
A development of several applications making use of the
library is also considered.
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Table 4. Torsion angle values for prototypes of ribose-based
clusters. RMSD between ribose atoms of the prototype
and other nucleotides in the cluster (subsets G,U ).

Cl Torsion angle value [◦] RMSD
Id χ ν0 ν1 ν2 ν3 ν4 [Å]

G1
1 200.2 0.7 335.5 37.6 321.7 23.7 0.03

G1
2 303.6 28.9 323.1 30.7 345.1 351.3 0.04

G1
3 167.1 354.6 25.0 326.4 31.3 343.5 0.06

G1
4 242.6 330.7 40.7 324.4 19.6 5.9 0.04

G1
5 61.1 333.4 21.0 351.7 353.7 20.6 0.08

G1
6 69.9 341.2 4.3 10.7 338.1 25.6 0.08

G1
7 206.2 354.0 341.6 34.3 321.3 28.3 0.05

G2
1 204.6 4.2 333.4 37.5 323.8 20.2 0.03

G2
2 212.2 353.9 339.7 37.4 318.0 30.2 0.04

G2
3 244.0 349.5 0.2 9.3 344.1 16.5 0.09

G2
4 244.7 318.0 37.3 340.4 355.1 30.2 0.08

G2
5 239.1 335.6 37.1 325.2 21.5 1.6 0.04

G2
6 299.8 1.1 12.7 338.7 22.7 345.3 0.04

G2
7 261.8 338.7 38.3 320.6 28.5 355.2 0.04

G3
1 184.8 7.2 329.0 41.8 321.3 19.8 0.04

G3
2 184.5 359.3 336.5 37.4 321.2 24.9 0.06

G3
3 75.4 335.3 14.2 0.7 344.9 25.0 0.06

G3
4 56.0 339.8 18.6 349.9 359.0 13.1 0.08

G3
5 228.5 333.3 41.5 320.7 25.2 0.7 0.04

G3
6 264.5 338.9 37.1 322.1 26.8 356.2 0.04

G3
7 311.7 3.0 20.2 325.9 36.9 334.8 0.04

G3
8 192.0 25.5 323.5 33.1 340.7 355.9 0.05

U1
1 217.8 23.5 322.2 37.1 335.5 0.7 0.08

U1
2 200.4 28.9 328.7 22.9 352.9 346.6 0.08

U1
3 278.0 11.0 14.9 326.4 40.6 327.5 0.08

U1
4 193.1 358.8 334.8 40.7 318.0 27.3 0.07

U1
5 198.3 317.0 20.6 8.9 325.1 48.9 0.09

U1
6 233.5 327.9 25.2 350.5 351.6 25.2 0.04

U1
7 244.3 335.0 38.8 323.1 23.6 0.6 0.04

U1
8 255.6 339.4 37.6 321.1 28.2 355.0 0.05

U2
1 206.1 3.7 332.8 39.2 322.0 21.6 0.02

U2
2 202.3 358.4 335.7 39.7 318.4 27.3 0.03

U2
3 228.1 345.6 4.0 7.1 344.4 18.6 0.05

U2
4 186.4 318.5 36.7 340.9 355.7 28.5 0.04

U2
5 215.4 333.5 40.7 321.6 24.1 1.2 0.05

U2
6 242.8 340.7 35.0 323.2 26.6 355.2 0.04

U3
1 217.0 2.0 334.6 37.8 322.3 22.5 0.03

U3
2 204.7 354.3 344.1 29.9 325.8 25.1 0.05

U3
3 224.8 323.1 21.2 0.9 337.8 38.2 0.10

U3
4 219.8 335.2 19.0 353.5 352.6 20.0 0.09

U3
5 290.9 329.2 43.7 320.5 22.8 4.7 0.04

U3
6 248.2 339.4 35.8 323.5 25.6 356.6 0.03

U3
7 200.2 0.9 12.2 339.9 21.4 346.1 0.04
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Appendix

Table A1. Angle distribution for backbone-based clusters.
Cl Nucl # Torsion angle average value (standard deviation)[◦]
Id (Fr [%]) α β γ δ ε ζ

A1 10886 71.3 175.7 54.5 86.0 217.2 287.2
(72.89) (16.3) (19.1) (19.5) (15.8) (18.7) (19.3)

A2 1685 66.1 193.3 56.6 126.4 244.8 112.3
(11.28) (33.6) (31.8) (40.1) (30.1) (39.5) (50.9)

A3 2363 317.7 152.9 171.9 107.0 234.8 278.7
(15.82) (39.3) (39.6) (78.6) (31.6) (27.1) (74.1)

C1 1493 328.2 169.0 178.2 93.4 225.9 282.0
(9.35) (31.5) (38.3) (55.5) (25.0) (28.0) (41.3)

C2 1284 70.0 183.9 53.5 104.3 228.9 107.7
(8.04) (27.0) (27.8) (30.1) (31.3) (35.9) (51.8)

C3 13188 73.0 174.9 53.7 82.3 211.2 287.9
(82.61) (12.6) (14.7) (14.8) (10.2) (13.8) (12.6)

G1 14562 71.0 175.3 55.5 82.4 211.0 287.2
(76.48) (14.3) (15.8) (18.6) (11.1) (15.2) (13.2)

G2 1934 66.4 191.6 54.8 119.6 233.3 137.7
(10.16) (28.5) (32.6) (45.9) (32.6) (36.6) (57.2)

G3 2545 327.6 170.8 183.4 98.3 223.9 279.7
(13.37) (38.3) (39.9) (55.3) (27.9) (25.8) (56.9)

U1 1171 317.5 155.3 177.6 105.0 230.6 284.9
(10.33) (42.5) (39.2) (81.7) (30.2) (35.0) (63.7)

U2 8666 73.0 174.8 54.1 85.4 214.2 285.5
(76.47) (15.3) (15.9) (14.8) (16.3) (18.7) (17.4)

U3 1495 67.7 185.9 53.1 121.6 234.8 116.0
(13.19) (39.6) (31.9) (31.3) (31.4) (38.0) (47.2)
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Table A2. Angle distribution for ribose-based clusters in A.
Cl Nucl # Torsion angle average value (standard deviation) [◦]
Id (Fr [%]) χ ν0 ν1 ν2 ν3 ν4

A1
1 13 284.7 0.8 19.3 329.2 32.1 339.2

(0.12) (13.7) (0.6) (2.8) (4.4) (4.7) (3.3)
A1

2 12 168.1 22.9 326.3 31.3 340.8 357.8
(0.11) (5.1) (1.3) (1.5) (1.2) (0.8) (0.7)

A1
3 8513 200.0 4.4 332.8 38.4 323.2 20.5

(78.2) (14.5) (3.0) (2.6) (2.6) (2.9) (3.2)
A1

4 1579 201.7 356.1 338.6 37.0 319.7 27.9
(14.5) (23.0) (4.7) (4.0) (3.5) (3.8) (4.7)

A1
5 32 263.1 324.9 10.2 16.5 323.0 45.3

(0.29) (17.2) (4.9) (5.5) (6.9) (7.3) (6.3)
A1

6 17 254.3 322.2 32.8 343.7 355.0 27.0
(0.16) (44.1) (7.3) (6.6) (5.2) (4.7) (6.2)

A1
7 279 260.1 330.8 39.6 325.6 18.4 6.6

(2.56) (40.6) (5.5) (4.6) (4.8) (5.8) (6.3)
A1

8 440 247.2 341.0 34.7 323.7 26.3 355.2
(4.04) (29.4) (5.1) (5.6) (4.6) (3.2) (3.6)

A2
1 16 233.5 3.5 10.9 339.5 23.1 343.4

(0.95) (15.0) (2.1) (4.2) (7.1) (7.8) (6.1)
A2

2 763 240.9 342.0 33.7 324.4 26.2 354.7
(45.28) (36.6) (5.8) (5.7) (4.2) (3.2) (4.5)

A2
3 351 247.9 331.1 39.2 326.0 18.3 6.5

(20.83) (38.9) (5.5) (4.5) (5.0) (6.1) (6.5)
A2

4 13 236.1 322.6 31.6 345.5 353.5 27.5
(0.77) (24.3) (8.1) (10.0) (8.9) (6.3) (5.2)

A2
5 9 216.5 333.8 3.6 18.5 326.3 37.6

(0.53) (26.4) (5.0) (4.5) (4.6) (5.2) (5.4)
A2

6 202 214.8 351.6 344.3 32.4 321.9 29.3
(11.99) (47.5) (6.7) (5.7) (4.1) (4.1) (5.8)

A2
7 329 212.5 4.8 333.7 36.7 325.0 19.1

(19.53) (35.0) (3.7) (3.2) (3.6) (4.2) (4.3)
A3

1 1062 189.4 8.0 331.1 37.7 325.8 16.6
(44.94) (28.1) (5.4) (3.8) (2.9) (4.2) (5.6)

A3
2 80 211.6 27.3 321.9 34.2 340.7 355.1

(3.39) (20.4) (5.2) (5.6) (5.1) (4.6) (4.6)
A3

3 4 142.9 18.8 351.0 356.6 14.3 339.5
(0.17) (75.3) (1.4) (1.1) (1.9) (2.5) (2.5)

A3
4 31 243.0 2.7 19.5 327.1 35.3 336.0

(1.31) (25.7) (1.9) (5.4) (7.0) (6.4) (3.5)
A3

5 568 229.9 341.7 34.6 323.3 27.1 354.3
(24.04) (71.5) (5.9) (5.1) (3.9) (3.9) (5.2)

A3
6 247 236.9 331.6 40.3 323.8 20.8 4.6

(10.45) (47.2) (4.8) (4.0) (3.7) (4.3) (5.0)
A3

7 11 283.6 323.7 28.5 349.2 350.3 28.9
(0.47) (97.2) (8.9) (7.4) (6.9) (8.1) (9.5)

A3
8 20 281.7 323.7 14.3 10.9 328.3 43.0

(0.85) (44.6) (10.0) (8.5) (5.9) (5.3) (8.2)
A3

9 340 198.9 353.8 341.6 34.5 321.0 28.6
(14.39) (62.2) (5.3) (4.9) (4.2) (3.9) (4.0)

Table A3. Angle distribution for ribose-based clusters in C.
Cl Nucl # Torsion angle average value (standard deviation) [◦]
Id (Fr [%]) χ ν0 ν1 ν2 ν3 ν4

C1
1 923 191.6 6.5 332.0 37.8 324.9 18.1

(61.82) (10.5) (5.1) (4.1) (3.4) (4.0) (5.0)
C1
2 51 207.4 26.1 323.9 32.0 342.1 355.0

(3.42) (32.3) (5.7) (7.0) (6.7) (5.4) (4.4)
C1
3 29 227.0 1.8 19.6 327.9 34.1 337.4

(1.94) (16.3) (1.6) (5.9) (8.4) (8.5) (5.6)
C1
4 147 235.2 344.5 31.5 325.5 26.7 352.8

(9.85) (23.3) (6.8) (6.9) (6.2) (6.0) (6.4)
C1
5 85 246.2 332.7 38.9 324.9 20.3 4.2

(5.69) (28.5) (3.9) (4.7) (4.9) (4.4) (3.7)
C1
6 4 245.1 323.7 24.8 354.9 344.4 32.8

(0.27) (10.6) (5.8) (2.3) (4.8) (7.7) (8.4)
C1
7 19 234.7 327.4 13.3 9.2 331.8 38.2

(1.27) (19.5) (6.3) (6.3) (6.0) (5.7) (6.0)
C1
8 234 199.4 354.3 340.4 35.8 320.0 28.9

(15.67) (21.4) (6.1) (5.9) (5.3) (5.0) (5.0)
C2
1 524 204.6 2.8 334.2 37.6 323.0 21.6

(40.81) (10.6) (2.3) (2.5) (2.8) (2.8) (2.5)
C2
2 3 248.5 12.2 344.2 13.4 353.3 356.5

(0.23) (47.5) (10.6) (13.0) (10.6) (4.8) (3.6)
C2
3 282 236.0 340.2 34.9 324.1 25.5 356.2

(21.96) (37.9) (4.0) (4.7) (4.1) (2.8) (2.7)
C2
4 177 243.5 331.5 39.2 325.6 18.9 5.9

(13.79) (40.4) (5.1) (4.5) (4.6) (5.3) (5.7)
C2
5 11 246.7 325.0 25.0 353.0 347.3 30.0

(0.86) (18.4) (8.8) (5.7) (4.2) (6.4) (9.1)
C2
6 10 242.6 328.7 12.6 9.0 333.0 36.6

(0.78) (27.9) (8.0) (7.7) (5.4) (3.1) (5.3)
C2
7 274 208.1 354.4 340.8 35.1 320.7 28.3

(21.34) (17.1) (6.9) (6.2) (4.1) (3.1) (5.3)
C3
1 10429 199.5 3.4 332.9 39.2 321.7 22.0

(79.08) (6.7) (2.3) (2.4) (2.5) (2.6) (2.4)
C3
2 7 206.0 23.2 332.0 22.6 350.1 351.7

(0.05) (38.7) (9.9) (10.6) (8.3) (4.4) (5.5)
C3
3 242 234.1 341.1 34.3 324.3 25.8 355.5

(1.84) (20.6) (5.2) (5.1) (3.7) (2.9) (4.1)
C3
4 99 245.3 331.8 38.6 326.1 18.5 5.9

(0.75) (27.8) (5.8) (4.0) (4.0) (5.6) (6.7)
C3
5 4 226.9 324.4 27.8 349.8 350.2 28.2

(0.03) (7.3) (3.6) (2.8) (3.9) (4.9) (4.8)
C3
6 7 217.7 333.0 8.9 11.0 333.3 33.7

(0.05) (76.5) (6.8) (5.4) (3.8) (4.5) (6.3)
C3
7 2399 200.0 357.0 337.6 37.9 319.5 27.4

(18.19) (9.2) (3.8) (3.3) (3.4) (3.8) (4.1)
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Table A4. Angle distribution for ribose-based clusters in G.
Cl Nucl # Torsion angle average value (standard deviation) [◦]
Id (Fr [%]) χ ν0 ν1 ν2 ν3 ν4

G1
1 11049 195.0 4.1 332.4 39.4 321.9 21.5

(75.88) (9.7) (2.9) (2.6) (2.6) (2.9) (3.1)
G1
2 21 266.7 28.0 323.5 31.0 344.2 352.4

(0.14) (71.0) (3.1) (4.3) (5.2) (5.2) (3.8)
G1
3 294 245.0 343.6 32.1 325.3 26.3 353.6

(2.02) (38.9) (6.3) (6.4) (4.8) (3.3) (4.6)
G1
4 145 245.6 331.6 38.7 326.4 18.0 6.4

(1.0) (53.9) (4.9) (5.3) (5.6) (5.7) (5.3)
G1
5 15 46.9 334.6 20.2 352.1 353.8 19.7

(0.1) (118.5) (7.0) (6.4) (4.9) (4.6) (6.0)
G1
6 7 168.9 332.9 7.0 14.4 329.8 36.2

(0.05) (63.0) (8.6) (5.1) (7.3) (10.8) (12.0)
G1
7 3028 194.1 356.2 337.6 38.5 318.4 28.7

(20.8) (20.3) (4.2) (3.6) (3.3) (3.5) (4.2)
G2
1 518 215.9 4.7 333.5 37.0 324.6 19.4

(26.78) (26.7) (3.7) (2.8) (3.0) (3.9) (4.3)
G2
2 276 208.3 354.2 341.7 34.0 321.7 27.8

(14.27) (41.9) (5.8) (6.4) (5.6) (4.1) (4.1)
G2
3 25 230.2 333.7 7.9 11.9 332.7 33.7

(1.29) (47.2) (11.6) (7.3) (5.3) (9.0) (12.4)
G2
4 14 236.0 322.6 30.2 347.5 351.1 29.3

(0.72) (38.4) (10.8) (10.0) (7.9) (7.2) (9.1)
G2
5 426 252.8 330.6 40.3 324.8 19.3 6.2

(22.03) (50.0) (5.3) (4.7) (4.1) (4.5) (5.2)
G2
6 17 272.5 1.8 13.1 337.6 24.2 343.8

(0.88) (34.0) (2.4) (4.6) (6.8) (7.1) (5.2)
G2
7 656 251.1 342.1 33.8 324.1 26.6 354.4

(33.92) (25.9) (5.0) (5.2) (4.3) (3.6) (4.1)
G3
1 1652 183.6 7.8 330.8 38.4 325.0 17.2

(64.91) (28.6) (5.2) (3.8) (2.8) (3.8) (5.2)
G3
2 196 173.2 353.1 342.4 33.8 321.2 28.8

(7.7) (68.5) (6.1) (6.0) (5.5) (5.2) (5.5)
G3
3 5 156.5 339.4 9.1 4.9 343.0 23.5

(0.2) (49.9) (4.9) (4.8) (3.1) (1.3) (3.2)
G3
4 4 192.5 326.6 28.7 346.1 355.2 23.8

(0.16) (75.6) (8.9) (8.7) (6.2) (4.0) (6.2)
G3
5 210 250.3 329.9 42.2 322.4 21.2 5.5

(8.25) (35.7) (4.6) (4.2) (4.6) (5.3) (5.4)
G3
6 360 259.7 343.3 33.3 323.8 27.6 353.0

(14.15) (90.4) (6.9) (6.5) (4.9) (4.3) (5.7)
G3
7 23 269.0 3.4 19.0 327.3 35.6 335.4

(0.9) (51.4) (2.1) (3.7) (6.4) (7.4) (5.8)
G3
8 94 188.4 26.8 323.1 32.7 341.9 354.6

(3.69) (19.6) (5.3) (6.0) (6.3) (6.1) (5.0)

Table A5. Angle distribution for ribose-based clusters in U .
Cl Nucl # Torsion angle average value (standard deviation) [◦]
Id (Fr [%]) χ ν0 ν1 ν2 ν3 ν4

U1
1 459 196.2 7.4 331.7 37.4 325.9 16.9

(39.2) (18.9) (6.0) (4.4) (4.0) (5.3) (6.5)
U1

2 25 191.6 28.1 323.4 31.4 344.0 352.5
(2.13) (12.5) (5.3) (5.1) (5.1) (5.4) (5.5)

U1
3 14 230.5 5.0 16.2 330.4 33.6 335.5

(1.2) (35.2) (6.2) (7.8) (8.5) (9.3) (7.8)
U1

4 229 195.7 354.4 341.2 34.5 321.4 27.9
(19.56) (35.2) (4.7) (5.4) (5.7) (5.2) (4.5)

U1
5 42 236.0 327.7 9.6 14.9 326.3 41.2

(3.59) (41.2) (6.8) (6.7) (6.0) (5.6) (5.9)
U1

6 17 236.3 326.3 27.2 348.8 352.3 25.8
(1.45) (38.4) (7.5) (8.1) (6.2) (3.8) (4.8)

U1
7 174 232.4 331.8 39.8 324.3 20.4 4.7

(14.86) (28.7) (4.5) (5.1) (5.6) (5.4) (4.7)
U1

8 209 234.8 344.2 31.8 325.3 26.6 353.0
(17.85) (26.6) (7.5) (6.9) (5.4) (5.1) (6.5)

U2
1 6400 200.5 3.3 333.3 38.7 322.2 21.7

(73.85) (8.9) (2.3) (2.4) (2.6) (2.6) (2.5)
U2

2 1601 201.5 356.9 338.1 37.1 320.1 27.1
(18.47) (14.7) (3.8) (3.8) (3.9) (4.0) (4.0)

U2
3 5 225.4 338.6 8.1 7.0 340.5 25.4

(0.06) (5.5) (5.2) (5.1) (4.5) (4.3) (4.7)
U2

4 14 230.2 321.5 32.6 344.8 353.5 28.3
(0.16) (14.6) (7.6) (8.7) (6.7) 3(3.1) (3.8)

U2
5 240 240.0 332.7 37.9 326.5 18.6 5.3

(2.77) (16.4) (4.9) (4.8) (5.2) (5.6) (5.5)
U2

6 403 236.9 341.2 33.5 325.3 24.9 356.0
(4.65) (13.8) (5.3) (6.4) (5.3) (3.2) (3.0)

U3
1 349 207.4 3.1 334.6 36.8 323.9 20.8

(23.34) (16.2) (3.1) (3.3) (3.8) (3.8) (3.4)
U3

2 230 209.3 353.9 343.3 31.6 323.9 26.6
(15.38) (24.1) (5.5) (6.2) (6.1) (5.4) (4.9)

U3
3 6 222.1 335.5 10.4 6.5 339.2 28.7

(0.4) (7.4) (11.8) (9.3) (4.1) (4.3) (10.0)
U3

4 8 231.7 329.6 26.5 346.9 356.3 21.2
(0.54) (19.1) (8.5) (8.6) (5.8) (2.3) (5.0)

U3
5 327 236.8 331.5 38.9 325.9 18.7 6.0

(21.87) (22.6) (4.6) (3.9) (4.1) (4.9) (5.2)
U3

6 569 231.4 340.6 34.7 324.1 25.8 355.8
(38.06) (16.3) (4.3) (4.7) (4.0) (3.2) (3.4)

U3
7 3 216.8 1.7 8.8 344.5 17.1 348.2

(0.2) (22.8) (1.6) (5.0) (6.5) (5.9) (2.6)
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