
Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 4, 709–722
DOI: 10.1515/amcs-2015-0051

MAINTAINING THE FEASIBILITY OF HARD REAL–TIME SYSTEMS
WITH A REDUCED NUMBER OF PRIORITY LEVELS

MUHAMMAD BILAL QURESHI a,∗, SALEH ALRASHED b , NASRO MIN-ALLAH a,b,
JOANNA KOŁODZIEJ c , PIOTR ARABAS d

aDepartment of Computer Sciences
COMSATS Institute of Information Technology, Islamabad 46000, Pakistan

e-mail: muhdbilal.qureshi@gmail.com

bCollege of Computer Science and Information Technology
University of Dammam, Saudi Arabia

e-mail: saalrashed@ud.edu.sa, nasar@mit.edu

cInstitute of Computer Science
Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland

e-mail: jokolodziej@pk.edu.pl

dInstitute of Control and Computation Engineering
Warsaw University of Technology, Wąwozowa 18, 02-796 Warsaw, Poland

e-mail: piotr.arabas@nask.pl

When there is a mismatch between the cardinality of a periodic task set and the priority levels supported by the underlying
hardware systems, multiple tasks are grouped into one class so as to maintain a specific level of confidence in their accuracy.
However, such a transformation is achieved at the expense of the loss of schedulability of the original task set. We further
investigate the aforementioned problem and report the following contributions: (i) a novel technique for mapping unlimited
priority tasks into a reduced number of classes that do not violate the schedulability of the original task set and (ii) an
efficient feasibility test that eliminates insufficient points during the feasibility analysis. The theoretical correctness of both
contributions is checked through formal verifications. Moreover, the experimental results reveal the superiority of our work
over the existing feasibility tests by reducing the number of scheduling points that are needed otherwise.

Keywords: real-time systems, feasibility analysis, fixed-priority scheduling, rate monotonic algorithm, online scheduling.

1. Introduction

Real-time systems are usually defined as those where
no deadlines for the scheduled tasks may be missing.
The effectiveness of such systems depends on the logical
results of the computations and also on the physical
instant (deadline) at which these results are produced.
Those systems can be classified according to various
criteria specified as external (hard real-time versus
soft real-time, and fail-safe versus fail-operational)
and internal (guaranteed-timeliness versus best-effort,
resource-adequate versus resource-inadequate, and

∗Corresponding author

event-triggered versus time-triggered) computing
constraints and conditions (Kopetz, 1997). Based on the
general characteristics of the application submitted to
the system, real-time systems can be divided into two
main categories, namely, soft real-time systems and hard
real-time systems.

In soft real-time systems, the applications try to meet
deadlines as much as possible, but lagging to meet the
deadline does not cause any severe damages in the system.
Typical examples of soft real-time systems are video and
audio streaming and voice over Internet protocols (Hong
and Leung, 1992). In hard real-time systems, all tasks
must meet their deadlines (Burns and Wellings, 2009).

muhdbilal.qureshi@gmail.com
saalrashed@ud.edu.sa
nasar@mit.edu
jokolodziej@pk.edu.pl
piotr.arabas@nask.pl

710 M.B. Qureshi et al.

The examples of hard systems include air traffic control
systems, nuclear power plants, various operating systems,
etc.

Proper design of effective real-time scheduling
algorithms can guarantee that each job meets its deadline,
which is a crucial issue in hard real-time systems.
A simple taxonomy of scheduling techniques in hard
real-time systems is presented in Fig. 1.

Fig. 1. Simple taxonomy of hard real-time systems.

A wide class of real-time scheduling algorithms in
hard systems can be divided into two main categories,
namely, non-priority methods, where no priority relations
among tasks are specified, and priority-based ones (Lee
et al., 2003). The priority scheduling criteria of tasks can
be saved and do not change over time. This scheduling
scenario is called static priority scheduling (Xu and
Parnas, 1990). In this case, changes in priorities are
impossible when the system is running. The main goal
of the dynamic priority scheduler is to maximize the
CPU usage in the system. To achieve efficient system
performance, the scheduler can change the priorities of
the assigned tasks during system execution.

Each static and dynamic priority class of
scheduling algorithms can be divided into two additional
subcategories, namely, preemptive and non-preemptive
methods. In preemptive scheduling, the currently
executing task will be preempted upon the arrival of
a higher priority task. In non-preemptive scheduling,
the currently executing task will not be preempted until
completion.

The most popular static priority-based preemptive
algorithm for periodic tasks is rate monotonic (RM),
developed by Liu and Layland (1973). In this algorithm,
the priority of tasks are related to their periods. The
main concept of the model proposed by Liu and
Layland, along with the ideas behind many dynamic
priority-based techniques, relies on the availability of
a possible unlimited number of priority levels for the
tasks, which rapidly increases the cost of scheduling and

task executions. The reduction of the priority levels is
therefore an important aspect for the system designer due
to hardware cost and management considerations.

Most of the constraints imposed by the conventional
RM algorithm have been successively weakened by
adopting the RM framework to aperiodic tasks (Sha et
al., 1989), by introducing the synchronization procedure
of the tasks based on semaphores (Sha and Goodenough,
1998), or by the implementation of deadline-monotonic
algorithms, where the deadlines of the tasks are usually
shorter than the tasks’ periods (Leung and Whitehead,
1982). However, none of such techniques can effectively
reduce the number of priority levels in the case of large
batches of tasks submitted to the system.

Let us assume that n tasks in the system are classified
according to their priority levels into n categories
Ω1, . . . ,Ωn. If the number of tasks n is large, the
complexity of the RM scheduling algorithm (in exact
form) may be also very high. The reduction of the
n tasks priority-based classes into the smaller set of k

classes ̂Ω1, . . . , ̂Ωk (k ≤ n) requires the verification of the
(n − 1)!/(k − 1)!(n − k)! possible methods of the
classification n tasks to be arranged into k priority classes.
All of these issues will necessitate the development of
effective mapping procedures for reducing the priority
levels in the system and the complexity of the RM
procedures.

The well-known illustrating examples of the realistic
systems that offer a limited number of priority levels
include IEEE 802.6 (with four priority levels), IEEE 802.5
(with eight priority levels), the MSI-C851 controller (with
two priority levels (Bini et al., 2001)), and other low
cost devices, such as toys and wrist watches. In contrast
to unlimited priority levels, this limited priority class
has received little attention from researchers (Orozco et
al., 1998; Xuelian et al., 2003; Sheng et al., 2007). We
further investigate limited priority levels (the classification
is shown as a solid line in Fig. 1) and develop a generic
framework that allows

• mapping the unlimited priority levels into a reduced
number of classes,

• ensuring that the timing constraints of the new
classes are in agreement with the original presented
set of tasks,

• extending the exact feasibility analysis for a reduced
number of priority levels,

• obtaining a faster RM feasibility test for determining
the schedulability of the system with a reduced
number of priority levels.

Our proposed solution has been theoretically and
experimentally evaluated at various system utilization
levels. Additionally, the associated schedulability

Maintaining the feasibility of hard real-time systems with a reduced number of priority levels 711

test has been provided. The complexity and the
execution time of the proposed feasibility tests are
much lower compared with the conventional feasibility
tests for limited priority levels. Our model extends
significantly the limited priority-levels methodologies
developed by Ketcher et al. (1993) and Orozco et al.
(1998) by taking RM-schedulable task sets into account
for transformation into a lower number of priority levels.
Though a lot of work has been done on reducing
the feasibility analysis time of real-time systems with
unlimited priority levels (Audsley et al., 1993; Bini and
Buttazzo, 2004; Lehoczky et al., 1989; Bini et al., 2001),
to the best of our knowledge, we are the first to propose
a faster feasibility tests based on scheduling points for
a limited priority counterpart. The rest of the paper

Table 1. Notation.
Notation Meaning

Γ Set of periodic tasks
τi i-th task, τi ∈ Γ
ci Worst case execution time of τi
pi Period of τi
di Deadline of τi
ui Utilization of τi
n Number of elements in Γ
u(n) Utilization of Γ
Ti Subset of tasks set having a priority

higher than τi
k Reduced number of priority levels
Ωi i-th class of tasks of the same priority

level
̂Ωi i-th class of metatasks
Ji,l l-th job of τi
ri,l Release time of the l-th job of τi
t Time instant
Wi(t) Workload of τi at time t
fi Free slots in interval [0, pi]
Li Cumulative workload of τi
L Cumulative workload of the entire task

set Γ
Zi Finite number of reference points of τi
P Least common multiple of all periods

(p1, . . . , pn)
̂P s
is

Period of the class
̂Γ Set of metatasks
τ̂s s-metatask
Card(̂Ωs) Cardinality of class ̂Ωs

es Execution demands of all tasks in class
̂Ωs

Xs Set of insufficient points set generated
by ̂Ωs

is organized as follows. Section 2 introduces notation
and highlights related to the work. In Section 3, we
define the essentials of the conventional RM scheduling.
Section 4 presents the proposed reduction methodology

for task priority levels. The exact feasibility test for a
limited number of task classes is detailed in Section 5.
The experimental results are presented in Sections 6. The
paper is concluded in Section 7.

2. Background and related work

Before proceeding to a more detailed description, we first
introduce notation (in Table 1) and shed some light on the
working of RM scheduling.

Liu and Layland (1973) derived a sufficient
feasibility condition for RM scheduling on a uniprocessor
based on minimum achievable utilization. Necessary and
sufficient (exact) feasibility conditions for uniprocessor
RM scheduling were also studied by Lehoczky et al.
(1989) as well as Joseph and Pandya (1986).

Lehoczky and Sha (1986) proposed a mapping
procedure that consists of a logarithmic grid
g1, g2, . . . , gm where the ratio of two adjacent grid
lines is kept constant. Tasks are assigned priorities based
on their periods; i.e., τi with period pi is assigned a
priority gi, when gi−1 < pi ≤ gi. Orozco et al. (1998)
showed that there exist certain partitionable sets that
are declared unpartitionable by the aforementioned
logarithmic grid methodology.

Another key issue is the problem of the identification
of the best partition that would have the minimum loss
in schedulability. Xuelian et al. (2003) and Sheng et
al. (2007) provide a brute force technique to scan the
entire search space for the best partition. Orozco
et al. (1998) define the groups of tasks in order to
generate multiple schedulable partitions (each partition
has the same number of classes). Based on such
partitions, according to the performance criteria proposed
by Lehoczky and Sha (1986), the best partition is
identified. Audsley (2001) addressed the problem of a
minimum number of priority levels and proved that the
feasibility order in the problem is the dominant part of the
complexity, not the assignment order. The results were
established for asynchronous tasks, and optimal priority
assignment is made with response time analysis. Audsley
(2001) pointed out that the work holds for the synchronous
case, too. We further explore the work done by Audsley
(2001) and how the number of priority levels can be
reduced for the synchronous case with a scheduling points
test.

In the literature, as observed by Audsley et al.
(1993), Bini and Buttazzo (2004), Davis et al. (2008),
Min-Allah et al. (2011) and Lehoczky et al. (1989),
one can find sufficient work on scheduling tasks with
unlimited priority levels. Davis et al. (2008) discussed
feasibility tests, and a new direction of observing the
feasibility analysis from the lowest priority first approach
was explored. The existing literature can be divided
into scheduling points tests and utilization based tests.

712 M.B. Qureshi et al.

From the scheduling points domain, interesting results
are derived (Audsley et al., 1993; Bini and Buttazzo,
2004; Lehoczky et al., 1989). Audsley et al. (1993)
focused on assigning static priority to tasks and derived an
efficient feasibility test. Bini and Buttazzo (2004) further
extended the classic work done by Lehoczky et al. (1989)
by restricting the scheduling point test to a subset of
points. Recently, Min-Allah et al. (2007) derived another
mechanism which avoids testing the schedulability of a
task at insufficient points: the point where the feasibility
of a higher priority task is negative. From utilization based
perspective, some bounds have been derived recently. Bini
et al. (2001) presented a hyperbolic bound which has
a higher acceptance ratio than the LL-bound (Liu and
Layland, 1973).

In contrast, only few researchers (Katcher et al.
1995; 1993; Orozzo et al., 1998; Xuelian et al., 2003)
have reported work on scheduling tasks with limited
priority levels. Ketcher et al. (1995) addressed the
scheduling of a fixed priority system by restricting priority
levels to a limited number. Orozco et al. (1998) discusses
how to achieve a minimum level of priority levels. The
aforementioned results are further extended by Xuelian et
al. (2003) for a general task model.

3. Rate monotonic and deadline monotonic
scheduling essentials

Rate-monotonic (RM) scheduling is a static priority based
mechanism (Liu and Layland, 1973), where priorities of
tasks are inversely proportional to the lengths of the task
periods (task activation rates). This means that the task
with the shortest period is assigned the highest priority.
All tasks are executed in a preemptive manner.

Another variation of RM is deadline monotonic
(DM), which is optimal for the case when the task
deadlines are less than or equal to the task periods (di ≤
pi). The DM algorithm assigns priorities to tasks based
on their deadlines: the shorter the deadline, the higher
the priority, and vice versa. The RM and DM scheduling
policies are identical when tasks deadlines are equal to
their periods. In the rest of the paper, RM and DM can be
used interchangeably.

The general characteristics of tasks and RM
schedulability conditions are discussed in the remainder
of this section.

3.1. General characteristics of tasks. Let us denote
by Γ = {τ1, . . . , τn} the set of independent periodic tasks.
Each task τi (i = 1, . . . , n) is characterized by pi (the
value of the period of the task, which is expressed as a
difference in time between any two consecutive instances
or jobs of τi), ci (the worst-case execution/computation
time), di (the task relative deadline), and Ωi (the class of
tasks of the same priority level).

It is assumed that the deadlines of the tasks determine
the periods of tasks. In the conventional RM scheduling
method, it is assumed that there are n priority level classes
Ω1, . . . ,Ωn and each class contains just one task τi. Each
task τi generates a job Ji,l (l = 1, 2, . . .), where l is the
number of periods of this task. The job becomes ready for
execution on a uniprocessor system as soon as the job Ji,l
(l-th job of τi) is released at time ri,l. It is also assumed
that the related overhead, such as task swapping times, etc.
are subsumed into ci.

3.2. Schedulability condition. The schedulability
criterion for the conventional RM algorithm is based
upon the critical instant concept. Critical instances
are defined as times at which all tasks are released
simultaneously (Liu and Layland, 1973; Liu, 2000).

Definition 1. (Critical instant) In fixed priority, the
scheduling of any task τi occurs when a job Ji,c generated
by the task τi is released simultaneously with the jobs
generated by the tasks of higher priorities, that is, ri,c =
rm,s(m), where m = 1, 2, . . . , i − 1 and s(m) is an
indicator of the job Jm,s(m) generated by the task τm.

It can be noted that the first critical instant occurs
at time 0. At all other points, the workload is a
non-increasing function at any time t as the task periods
are not the same and hence subsequent jobs arrive after
gaps of sizes equal to the task periods. Similarly, the
interval [0, p1] is smaller thanor equal to the interval
[0, p2], and [0, p2] is smaller than or equal to [0, p3], and
so on. Let us denote by ui an utilization (load) of the task
τi that is expressed as ui = ci/pi.

The cumulative utilization u(tot) of periodic tasks set
Γ can be defined as the sum of ui over all tasks:

u(tot) =
n
∑

i=1

ui =
n
∑

i=1

ci
pi
. (1)

The feasibility test LL-bound for the RM algorithm
presented by Liu and Layland (1973) is defined as follows:
A periodic tasks set is static-priority feasible if the
condition below is satisfied:

u(tot) ≤ n(21/n − 1). (2)

where n denotes the total number of tasks in Γ.
In Eqn. (2), the expression n(21/n − 1) decreases

monotonically from 0.83 (when n = 2) to ln(2) (as
n → ∞). It can be observed that if the task has utilization
less than 69.3% it is guaranteed to be scheduled by the
RM algorithm.

The condition defined in Eqn. (2) is a sufficient
condition (SC) of the schedulability test, but it is not a
necessary one. For an illustrating example, let as assume
that there are two tasks τ1 and τ2, and c1 = 3, c2 = 6,
p1 = 6, p2 = 12 stand for the worst-case execution

Maintaining the feasibility of hard real-time systems with a reduced number of priority levels 713

times and periods of these tasks, respectively. All times
are expressed in arbitrary time units. The utilizations
calculated for tasks τ1 and τ2 are u1 = u2 = 0.5, so the
cumulative utilization is 1 (100%), which is greater than
the allowable upper bound of 83%. However, when run,
both tasks will meet their deadlines.

The theoretical work of Liu and Layland (1973) on
RM schedulability was further extended by Han and Tyan
(1997) as well as Min-Allah et al. (2010). However,
in all those papers, the authors just tried to modify the
sufficient condition presented in Eqn. (2). Numerous
variants of RM schedulability constraints were proposed
by Bini and Buttazzo (2004), Bini et al. (2008), Min-Allah
et al. (2007), Lehoczky et al. (1989), Tindell et al. (1994),
Audsley et al. (1993), Sjodin and Hansson (1998), and
Davis et al. (2008) for determining RM feasibility analysis
that generally falls into major classes: scheduling points
tests (Lehoczky et al., 1989; Bini et al., 2008; Min-Allah
et al., 2007) and response time based tests (Audsley et
al., 1993; Joseph and Pandya, 1986; Davis et al., 2008).
The latter are superior over the former from analysis time
perspectives, because in scheduling points tests feasibility
is tested at all scheduling points for all tasks in the set,
while iterative techniques have the advantage of making
larger jumps in t that result in skipping a large number
of scheduling points and hence the feasibility of a task
is determined much early; however, scheduling point tests
are considered to be the fundamental ones and can be used
at the system design stage (Bini et al., 2008), and hence
are the focus of this work.

Let us denote by Ti ∈ Γ the set of all priority tasks
higher than τi. Let us also denote by Ji the first job
generated by the task τi. It is assumed in this work that
each task must generate at least one job in a given time
slot, and Ji has the maximal response time compared
with all other jobs generated by τi (Lehoczky et al., 1989;
Tindell et al., 1994; Sjodin and Hansson, 1998)1.

Let us assume that the critical instant occurs at time
t = 0, and let Wi denote the maximum workload of
the task τi at this critical instance. This means that all
tasks can meet their deadlines if they are initialized (for
execution) at the critical instant; then all these deadlines
will be met during the lifetime of the system. The
workload of τi at time t can be expressed as the sum of the
task execution time demand ci and all interferences and
delays caused by the executions (and completion) of the
higher priority tasks τi−1, . . . , τ1. Formally, the workload
Wi(t) can be defined as follows:

Wi(t) = ci +

i−1
∑

j=1

⌈

t

pj

⌉

cj , (3)

1Maximal response time is defined as the maximal time needed for
finalizing/finishing the job on a processor.

where pj and cj are the periods and worst-case execution
times for the tasks τi−1, . . . , τ1, and �x� signifies the
smallest integer no less than x.

Definition 2. (Sufficient and necessary condition of RM
schedulability) A periodic task τi is feasible if and only if
the condition

Li = min
0<t≤pi

(Wi(t) ≤ t) (4)

is satisfied for t ∈ [0, pi].

The main difference between the SC and SNC
schedulability tests presented in Eqns. (2) and (4) lies
in their computational complexities. The SC test is an
O(n) procedure in the number of tasks. The complexity
of the SNC test is data dependent. This is because
the number of calculations required is entirely dependent
on the values of the task periods. Additionally, t is
a continuous variable, so there are infinite numbers of
reference points to be tested. Lehoczky et al. (1989)
showed that Wi(t) varies just at a finite number of such
points2. Therefore, in order to determine whether τi
is schedulable, we need to compute Wi(t) only in the
finite number of periods of τi of priority lower than τj
(1 ≤ j ≤ i), that is, on the set Zi of parameters,
where Zi =

{

a · pb
∣

∣ b = 1, . . . , i; a = 1, . . . , �pi/pb	
}

and �x	 evaluates to the largest integer no greater than x.
The SNC of RM schedulability can be defined in

the following way (Lehoczky et al., 1989; Orozco et
al., 1998).

Theorem 1. (Lehoczky et al., 1989) Each task τi ∈ Γ
(Γ = {τ1, . . . , τn}) can be feasibly scheduled by using
the RM scheduling algorithm if and only if the following
condition is satisfied:

L∗
i = min

t∈Zi

Wi(t)

t
≤ 1. (5)

Theorem 2. (Lehoczky et al., 1989) The entire task set Γ
is RM-schedulable if and only if

L = max
1≤i≤n

L∗
i ≤ 1. (6)

4. Reduction of the priority levels in the
system (mapping Ωn into Ωk)

In this section, we propose a solution for partitioning
RM-schedulable task set Γ = {τ1, . . . , τn} with n priority
levels into a lower number k (k ≤ n) of priority
levels. The main aim of our method is to reduce the

2These reference points are called rate-monotonic scheduling
points (Lehoczky et al., 1989).

714 M.B. Qureshi et al.

number of priority classes of the tasks by using a simple
uni-partitioning mapping. The tasks from the different
priority classes are ordered by using the standard RM
scheme, while the tasks inside the same class are ordered
by using the FIFO method.

It is assumed that all tasks are initialized for the
execution at the critical instant with the maximum
workload. It is also assumed that each task τi is
characterized by (i) its release time ri and (ii) its deadline
di (di = pi).

Let us denote by tmin the minimal period (deadline)
for the tasks in the set Γ. The following relation can be
observed.

Observation 1. For the set of RM-ordered tasks Γ =
{τ1, . . . , τn} with periods p1, . . . , pn, the relation tmin =
p1 = t1 holds.

Proof. The tasks from the set Γ are sorted in descending
order by their priority levels. This means that task τ1
has the highest priority (magnitude) over the rest of the
tasks and it is executed first. For RM-ordered tasks, the
following relation is satisfied (see Section 3):

[0, p1] ⊆ [0, p2], · · · ,⊆ [0, pn], (7)

and t0 = 0, which means that p1 ≤ . . . ≤ pn and
therefore tmin = p1 = t1. This completes the proof. �

It follows from the above relation that, for the
analysis of the RM schedulability of tasks in the interval
[0, t1], we must ensure that either the release times of the
tasks are no greater than t1 or their respective deadlines
are within [0, t1].

It can be also noted that for RM-ordered tasks the
cumulative utilization u(tot) cannot be greater than 1,
otherwise no scheduling algorithm can produce a feasible
schedule with a uniprocessor system. The following
remark can be then formulated.

Remark 1. Let u(0,pi) represent system utilization in
the period [0, pi]. The whole system would be deemed
infeasible when u(0,pi) > 1. At critical instant t = 0, for
any RM-feasible schedule, the following relation holds:

u(0,p1) ≥ u(0,p2), · · · ,≥ u(0,pn), (8)

where u(0,p1) denotes system utilization in interval [0, p1],
u(0,p2) denotes system utilization in interval [0, p2], and so
on.

Remark 1 is a consequence of the fact that the RM
algorithm does not leave any processor idle when there is
a task that waits for execution. The relations (7) and (8)
will be used for the adaptation of the empty-slot method
to RM scheduling in the following section.

4.1. Empty-slot method adapted to RM scheduling.
One of the most popular methodologies of scheduling
in real-time systems is the empty-slot method (Santos et
al., 1991). It is assumed in this model that any given
period of time can be divided into some time units called
slots. The estimation of the remaining free time slots
after the scheduling of a given batch of periodic tasks is
needed for the re-balancing of workload of the processors
in the system and further re-classification of the tasks into
a lower number of priority level groups.

Let us assume that each task τi ∈ Γ has priority i,
period pi, is released at t0 = 0, and is RM-schedulable
within the period [0, pi]. The following proposition
defines the amount of free time slots for scheduling the
remaining lower priorities tasks.

Proposition 1. There are at least

fi = pi −
i

∑

j=1

⌈

pi
pj

⌉

cj

free slots that can be utilized by tasks of a priority lower
than τi.

Proof. All tasks τ1, τ2, . . . , τi−1 have priorities higher
than τi and are RM-schedulable within the interval [0, pi].
Task τi can only be scheduled when there are no i − 1
pending higher priority tasks within the system. Due to
the RM-schedulability feature, the periods of all tasks of
a priority higher than τi are no greater than pi, that is,
p1 ≤ p2 ≤, . . . ,≤ pi. Therefore, in the worst case, for a
given time window [0, pi], there could be

∑i−1
j=1 �pi/pj�

instants of higher priority tasks that are executed in
∑i−1

j=1�pi/pj�cj time intervals, where cj denotes the
worst execution time for the task τj . Therefore, the
intervals left for task τi could be at least fi = pi −
∑i−1

j=1 �pi/pj� cj . �

The above proposition can be concluded as follows.

Corollary 1. The task τi is RM-schedulable along with
all of the higher priority tasks when

ci = pi −
i−1
∑

j=1

⌈

pi
pj

⌉

cj . (9)

In the case of di = pi, most of the workload
generated by the task τi is realized in the interval [0, pi].
When di ≥ pi, task τi can be executed for more than one
period pi. In such a case, the following remark can be
formulated.

Remark 2. The cumulative workload constituted by τi
in any interval [(n − 1)pi, npi] is always less than (when
pi �= pj |i �= j, ∀i, j : 1 ≤ i, j ≤ n) or equal to (when
pi = pj|i �= j, ∀i, j : 1 ≤ i, j ≤ n) the cumulative
workload constituted in [0, pi].

Maintaining the feasibility of hard real-time systems with a reduced number of priority levels 715

It can be observed that for the n time intervals
[0, p1], [p1, 2p1], . . . , [(n − 1)p1, np1], in the worst case,
for the tasks initialized at t = 0 each task encounters the
maximum workload in first interval.

For the whole system, the aforementioned
proposition and remark can be generalized in the
following way. Let us denote by P the least common
multiple of all periods p1, . . . , pn. Following the notation
and terminology introduced by Orozco et al. (1998), the
system is said to be non-saturated if Wn(P) ≤ P , where
Wn(P) denotes the cumulative workload of task τn at
time P (see Eqn. (3)). This means that in the period
[0, P] there are P − Wn(P) empty slots in the system
of n tasks. In terms of system saturation, the sufficient
and necessary condition for RM schedulability is the
non-saturation condition for the system of n − 1 tasks,
that is, {τ1, . . . , τn−1}, and the period of task τn must be
no shorter than the empty slot cn calculated as in Eq. (9).
Remarks 1 and 2 allow us to group tasks into a single class
in the following section. A dummy period is associated
with each class and all tasks whose timing constraints are
satisfied with the dummy period are eligible to be part of
the same class.

4.2. Priority levels reduction procedure. In this
section we define the procedure of the reduction of n
priority tasks τ1, . . . , τn into a lower number of k classes
̂Ω1, . . . , ̂Ωk (k ≤ n). Usually, in the conventional RM
scheduling, it is assumed that each class Ωi contains just
one task τi (i = 1, . . . , n), and that is the reason for the
number n of priority levels needed. In the case of the
reduction of the number of priority levels, at least one of
the classes ̂Ωs (s ∈ {1, . . . , k}) must contain more than
one task. A sequence of tasks in such a class is defined as
a metatask. Let us denote by ̂Γ = τ̂1, . . . , τ̂k the set of k
metatasks in the system, which is a result of the reduction
of priority levels. We will call this system a partition of
the tasks, and the mapping

Θ : Ω1 × . . .Ωn � (τ1, . . . , τn)

−→ (τ̂1, . . . , τ̂k) ∈ ̂Ω1 × . . .× ̂Ωk. (10)

denotes the priority levels reduction mapping in the Γ =
{τ1, . . . , τn} system.

Each metatask τ̂s (s = 1, . . . , k) represents a
sequence of tasks τsi1 , . . . , τ

s
is

from the original set Γ

that are elements of the class ̂Ωs. The following two
scheduling procedures should be considered for the whole
system:

• ‘external’ scheduling: the conventional RM
scheduling of the metatasks τ̂1, . . . , τ̂k means that
the priorities of all tasks from ̂Ω1 are higher than
the priority of any task from ̂Ω2, the priorities of all

tasks from ̂Ω2 are higher than the priority of any task
from ̂Ω3, and so on; and

• ‘internal’ scheduling: this is the scheduling method
inside each class ̂Ωs (s = 1, . . . , k); we propose
the FIFO (first-in first-out) methodology for this
scheduling.

Let as assume that metatask τ̂s in ̂Ωs is defined
as a sequence of tasks τsi1 , . . . , τ

s
is . The priority of the

metatask τ̂s is defined as follows:

priority (τ̂s) =
is

max
l=i1

priority (τsl). (11)

The assumption that the ‘external’ scheduling procedure
is realized according to the conventional RM scenario
is equivalent to the relation priority (τ̂i) > . . . >
priority (τ̂k) of the priorities of metatasks. The priority
level reduction (partitioning) procedure is therefore based
on simple clustering of the tasks in the initial set Γ.

It should be noted that the reduction in the priority
levels does not change the total number of tasks in the
system, i.e.,

n =

k
∑

s=1

card
(

̂Ωs

)

, (12)

where card
(

̂Ωs

)

denotes the cardinality (the number of

tasks) of the class ̂Ωs.
The tasks τsi1 , . . . , τ

s
is

can be selected for the class ̂Ωs

according to the following criterion:

̂P s
is ≤ ci +

i−1
∑

j=1

⌈

t

pj

⌉

cj , (13)

where ̂P s
is denotes the period of the class parameter,

which is interpreted as the largest period of tasks τi in the
class ̂Ωs. In Eqn. (13), t comes from the set of scheduling
points constituted by all higher priority tasks that are being
grouped and never exceeds the largest period of the class.
Equation (13) defines a cumulative workload of tasks with
priority i or higher that are already grouped into class
̂Ωs. This demand must be fulfilled at or before ̂P s

is .
The procedure of fulfilling the classes of metatasks starts
with the selection of the task τ1 of the highest priority
and accommodates as many tasks as possible in class ̂Ω1

till the saturation level is achieved. Equation (13) shows
that any task with the period not greater than ̂Ps with all
its iterations completed at or before ̂Ps is eligible to be
a member of the class ̂Ωs. Therefore, τi is interpreted
as the lowest priority task that is schedulable in class ̂Ωs.
In other words, tasks τi+1 to τn are now candidates to
be grouped into class ̂Ωs+1, and so on. This process is
executed till all tasks are mapped onto qualifying classes.

The aforementioned discussion may lead to the
following observation: Arranging i-tasks (τ1, · · · , τi)

716 M.B. Qureshi et al.

with τ̂i would mean that the total ûi is very high and
approaching 1 in the interval [0, p̂i]. An interesting
scenario develops here: How could the lower priority
tasks τi+1, . . . , τn be scheduled in the presence of τ̂i?

In order to explain the scenarios further, we discuss
the system from the critical instant point of view (the
worst-case scenario). Let the metatask τ̂1 cover i tasks.
Therefore, the sufficient and necessary condition must
be c1 + c2 + · · · + ci ≤ p̂1. Moreover, at t = 0,
the cumulative computation demand must be equal to
c1 + c2 + · · ·+ cn. Since the first instants of jobs of tasks
from τ1 to τi are executed in interval [0, p̂1], their load
needs to be subtracted from the total workload presented
at t = 0. However, another job of task τ1 is also available
at point p̂1 as it is the task period of τ̂1, and hence
care should be taken of another c1, i.e., 2c1 in total. In
short, out of cumulative computational demands, the term
c1 + c2 + . . .+ ci must be executed in [0, p̂1]. Therefore,
the pending workload at t = p̂1 becomes

(c1 + c2+, · · ·+ cn)− (c1 + c2 + . . .+ ci) + c1

= (c1 + ci+1 + · · ·+ cn). (14)

Eventually, all of the i-tasks are scheduled and
Wi(t) ≤ t is satisfied at or before its deadline. Similarly,
from the utilization perspective, the original task set is
feasible if the achievable utilization in [0, pi] is either
i(21/i − 1) (as reported by Liu and Layland (1973)) or
at the maximum utilization of 1.0 (as reported by Han
and Tyan (1997)). The utilization of such systems can be
represented by

c1
p1

+
c2
p2

+ · · ·+ ci
pi

≤ i (21/i − 1) ≤ 1.

Multiplying this equation by p1 × p2 · · · × pi, we get

i
∑

j=1

cj

i
∏

l=1

pl
pj

≤ i (21/i − 1)

i
∏

j=1

pj ≤
i

∏

j=1

pj . (15)

Such arrangements always keep the total utilization
of tasks unchanged and accommodate lower tasks
τi+1, · · · , τn to be executed in free intervals, i.e., when
there are no pending higher priority tasks. All those higher
priority tasks that are waiting for CPU slots at a particular
instant of time are termed pending tasks. Equation (15) is
purely based on the utilization bounds; however, we are
specifically interested in the development of an exact test.

With above formulation, when the priority levels are
less than the available ones (Ωn > ̂Ωk), then Γ can easily
be divided into groups ̂Ω1, ̂Ω2, · · · , ̂Ωk. Let card(̂Ωs)
denote the number of tasks grouped into class s, such
that every group has at least one task, i.e., ̂Ωs �= ∅, ∀s :

1 ≤ s ≤ k. Consequently, we can write
∑k

s=1 card(
̂Ωs).

The terms “sum of tasks belong to an individual group”
and “actual number of tasks in a group” represent the

same concept. Therefore, these terms as well as class and
“metatask” can be used interchangeably in the rest of this
paper.

In order to find out ̂Ωk, all the tasks in Γ need
to be analyzed that are keyed by priority and listed in
descending order. Therefore, there are (n − i + 1) such
potential candidates to be grouped into classes. As already
known for the unlimited priority case, a task τ1 is always
feasible when c1 ≤ ̂p11. Similarly, it can be derived that
̂Ωs(s = 1) is also schedulable when

∑i
h=1 e

1
h ≤ ̂p11,

where e1h is the execution demand of all of the tasks of the
priorities in class ̂Ω1.

The mapping (partitioning) technique can be
implemented as an iterative procedure that can
proportionate load into different classes. In order to
illustrate this phenomenon, let us examine the first task
τ1 ∈ Γ. Because s = 1, the term esi will be equal to c1.

As mentioned above, the term e1h denotes the
execution demands of all the tasks in ̂Ω1 that have a
priority lower than or equal to τh. If τ2 is also schedulable
under ̂Ωs(s = 1), then the term esi becomes c1 + c2.
As more and more tasks are added to ̂Ωs, the term esi
increases proportionally. Eventually, when the maximum
number of tasks is grouped into ̂Ωs, the proposed mapping
technique will accommodate the remaining tasks into
̂Ωs+1.

Let τi+1 be the first task to be arranged in ̂Ωs+1. The
timing constraints of the current task τi+1 and any task
having a priority higher than τi+1 must be fulfilled prior
to ̂P s+1

is+1
. Therefore, the following relation must hold:

W|̂Ωs|(t) + es+1
i+1 ≤ ̂P s+1

is+1
, (16)

where W|̂Ωs|(t) is the maximum workload presented by

the last task τi ∈ ̂Ωs at time t. The workload is
the maximum because τi has the lowest natural priority
among all of the tasks grouped into Ωs. On the other
hand, any other arrangement will result in feasibility
loss. Moreover, the aforementioned technique identifies
a reduced number of priority levels |̂Ωk| ≤ |Ωn|.

Once the groups of tasks are identified by the
proposed mapping technique to be treated as one class, we
need to ensure the timing constraints of all the tasks in the
class in which the tasks are grouped. To keep the timing
constraints of the original task set intact, tasks in a class
are ordered according to RM priority; i.e, priority(̂Ω1)

is higher than priority(̂Ω2) and priority(̂Ω2) is higher
than priority(̂Ω3), and so on. Each group ̂Ωh = {τi, τj}
covers at most |̂Ωh| number of tasks. These tasks can be
scheduled on an FIFO basis. It is understood that under
FIFO implementation a task τi of a priority greater than
τj may be delayed by a task τj that arrives before τi,
though the priority of τi is higher as per the original task
set. However, this anomaly is rectified by the fact that task

Maintaining the feasibility of hard real-time systems with a reduced number of priority levels 717

τi also avoids preemption due to the higher priority tasks
(τi); i.e., all tasks within a group have the same priority. It
is worth mentioning that FIFO has an associated run-time
overhead but for simplicity we assume this overhead to be
subsumed into task computation times. The pseudo-code
of the procedure of mapping the n priority classes
̂Ωn, . . . , ̂Ω1 of tasks τn, . . . , τ1 into k classes ̂Ωk, . . . ̂Ω1

(n ≥ k) is presented as Algorithm 1.

5. Schedulability test for reduced priority
levels

The reduction of task priority levels in the system
requires updating the RM schedulability tests specified in
Theorems 1 and 2 (see Section 3.2). For systems with the
k levels k ≤ n, Theorems 1 and 2 can be reformulated and
merged into the following criterion (Orozco et al., 1998).

Theorem 3. Let us consider a periodic task set Γ =
{τ1, τ2, . . . , τn} , where tasks are ordered based on their
respective priority levels. Let us assume that the tasks
from the set Γ are classified (by using some priority
scheduling algorithm) into the following k priority cat-
egories (k priority classes): ̂Ω1, ̂Ω2, . . . , ̂Ωk. Each task
τi ∈ ̂Ωs (s ∈ {1, . . . , k}), for which the deadline di ≤ pi,
will be executed within its deadline if and only if

min
0<t≤di

Wi(t)

t
≤ 1,

where

Wi(t) =
i

∑

j=1

⌈

t

pj

⌉

cj +
∑

l∈̂Ωs

cl.

To test the feasibility of τi, the workload Wi(t) must
be evaluated for all of the tasks grouped into ̂Ωs. It can
be seen that the number of points for which the condition
defined in Theorem 3 must be verified depends on the
number of elements of set Zi (t ∈ Zi). This set may be
very large for big values of the ratio pn/p1.

To improve the feasibility test defined in Theorem 3,
we introduce the insufficient point scheduling mechanism
that can be specified as follows.

Definition 3. (Insufficient point) The RM scheduling
point t is called an insufficient point for any class ̂Ωs

of tasks with the priority s if for any task τi ∈ ̂Ωs

the inequality constraint Wi(t) > t holds (Min-Allah et
al., 2007).

Definition 4. (Insufficient points set) An insufficient
point t for the class ̂Ωs is also an insufficient point for
all classes of tasks of priorities lower than s. The set of
all insufficient points for the classes ̂Ωs, ̂Ωs+1, . . . ̂Ωk is
called the insufficient points set generated by ̂Ωs and is
denoted by Xs.

Algorithm 1. Reduction of n priority classes into k
priority classes (n ≥ k).

1: procedure reduced-priority-levels (τn)
2: m := 1
3: ̂Ω := ∅
4: current − length := 0 {Mechanism for placing tasks

into classes}
5: for all s := 1 to n do
6: es := 0
7: for all τi := τm to τn do
8: es := es + ci
9: schedulable:= schedulability-test

(̂Ω0,τi,group − period−̂Ωs,current − length,es)
{Place a task in the class if it does not hurt the
feasibility of the class}

10: if (schedulable is TRUE) then
11: ̂Ωs. add(τi)
12: m := m+ 1 {Shift task to another class}
13: else
14: current − length := current − length +

|̂Ωs|+ 1

15: |̂Ωs| := 0
16: break
17: end if
18: end for
19: Terminate if τi is the last task
20: end for
21: end procedure
..

1: Boolean function schedulabil-
ity test(̂Ωs,τi,group − period −
̂Ωs,current − length,es)

2: if (̂Ωs := 1) && (group − period − ̂Ωs ≥ es) then
3: τi is schedulable in group ̂Ωs

4: end if
5: compute Zi =

{

a · pb
∣

∣ b = 1, . . . , i; a =

1, . . . , �pi/pb	
}

6: for all t ∈ Zi do
7: if ∃ t ≥ (Wi(t) + es) then
8: τi is schedulable in ̂Ωs

9: return TRUE
10: end if
11: end for
12: if t < (Wi(t) + c

̂Ωs , ∀t ∈ Zi) then
13: τi is infeasible in ̂Ωs

14: return FALSE
15: end if
16: end function

Based on the concepts of an insufficient point and
insufficient points set, the following theorems define

718 M.B. Qureshi et al.

efficient schedulability tests for a reduced number of
priority levels of tasks in Γ.

Theorem 4. Let us assume that n periodic tasks from the
set Γ = {τ1, . . . , τn} are classified into k priority level
classes (k ≤ n). Each insufficient point for ̂Ωs (s ≤ k)
must also be the insufficient point for ̂Ωs+1.

Proof. Let τi+1 ∈ ̂Ωs+1 and t be the insufficient point for
̂Ωs. The workflow of τi+1 at the time t can be calculated
as follows:

Wi+1(t) =

i+1
∑

j=1

⌈

t

pj

⌉

cj +
∑

l∈̂Ωs+1

cl

=

i
∑

j=1

⌈

t

pj

⌉

cj +
∑

l

cj +
∑

l∈̂Ωs

cl

+

⌈

t

pi+1

⌉

ci+1 + cl+1

= Wi(t) +

⌈

t

pi+1

⌉

ci+1 + cl+1.

(17)

It can be noted that the values of �t/pi+1� ci+1 and
cl+1 are positive. Therefore, Wi+1(t) > Wi(t), and thus
t is also an insufficient point for τi+1 ∈ ̂Ωs+1. �

Theorem 5. Consider an RM-ordered group of priority
level classes ̂Ω1, . . . , ̂Ωk. Task τi ∈ ̂Ωs (s ≤ k),

Wi(t) =

i
∑

j=1

⌈

t

pj

⌉

cj +
∑

∀l∈̂Ωs

cl,

Li = min
t

Wi(t)

t
≤ 1

where t ∈ Zi\Xs−1 = {t : t ∈ Zi and t �∈ Xs−1}.
By extension, X0 = ∅.

Proof. It follows directly from Theorem 4; i.e., if t is an
insufficient point for ̂Ωs−1, then t is also an insufficient
point for ̂Ωs. �

In the RM schedulability test defined in Theorem 5,
the search space is reduced to the set Zi\ Xs−1, which is
the main contribution of this section.

6. Results and analysis

In this section we present the results of experimental
evaluation of the proposed priority level reduction
procedure and the improved feasibility test. The platform
used for these experiments consisted of 12 cores Intel
Xeon X5650 2.67 GHz CPU (12MB L3-cache) and 48
GB memory.

Fig. 2. Required number of priority levels for tasks from the set
Γ for various system utilizations.

6.1. Priority tansformation process under var-
ious system utilization. First, we study the effect
of cumulative system utilization on the mapping (or
conversion) procedure. The tasks for the set Γ have been
generated randomly. The periods of tasks were generated
by using the uniform probability distribution over the
interval of [10; 10000]. The corresponding task execution
demands were randomly generated from the intervals
[1, pi]. For the task set, the task priorities were assigned
according to the RM scheduling algorithm, though
a workload generation procedure was also suggested
by Bini and Buttazzo (2004) or Min-Allah et al. (2010).

A series of periodic tasks were generated by varying
the range from 5 to 55 with an increment of 5 tasks.
Results were established by taking the average after
the first 300 iterations. Figure 2 depicts the required
(minimal) number of priority levels for the tasks from the
set Γ in the cases of various cumulative utilizations of the
system.

We considered four utilization values, namely, ln(2),
0.8, 0.9, and 1. The number of the required priority levels
increases as n → ∞. From Fig. 2, the trend in the
required priority levels is fast as long as the number of
tasks is less than 15 and stabilizes (is very slow) for the
number of tasks greater than 25. This trend is aligned
with the existing literature (Liu, 2000). In such cases,
more tasks must be classified into a single class with the
inequality (13). Another simple observation is that the
computation demands of individual tasks increase with
higher utilization and fewer tasks can be grouped into a
single meta task. It can be seen that utilization plays a very
important role in the priority levels needed, as reflected
by term computation times c in the inequality (13), where
time periods p remain fixed but c do change/increase with
higher system utilization, and vice-versa. For utilization
ln(2) it needs 2 levels of are needed for 5 tasks, while
2.8 priority levels for 5 tasks when utilization is 1, i.e.,

Maintaining the feasibility of hard real-time systems with a reduced number of priority levels 719

100%. This is due to the fact that ci of a task is higher
when system utilization is 1, and hence it is difficult to
group many tasks. Task periods for the tasks are obtained
with the aforementioned task set criteria, irrespective of
utilization, so accommodating few tasks in the case of
higher system utilization is understandable. In other
words, tasks require more priority levels when utilization
is higher.

In all the scenarios considered, the required number
of priority levels varies from 60% (in the case of 5 tasks) to
80% (in the case of 55 tasks) of the total number of tasks in
the system. This confirms that the proposed methodology
significantly reduces the complexity of the RM scheduling
algorithm.

6.2. Evaluation of the improved feasibility test. The
main aim of the analysis presented in this subsection is
to compare the effectiveness of the improved feasibility
test (IFT) defined in Section 5 and the traditional ap-
proach (TA) (see Theorem 3 of Orozco et al. (1998)).
The general settings of this experiment are the same as
discussed in Section 6.1. Both techniques, the IFT and
TA, are compared under the required number of reference
scheduling points criteria.

In this experiment, a series of periodic tasks were
generated by varying the range from 5 to 55 with an
increment of 5 tasks, and results were drawn by taking
the average after the first 300 iterations. It is worth
mentioning that, when u(tot) ≤ ln(2), there is no point
in applying exact tests, as a solution does exist (Liu
and Layland, 1973; Bini et al., 2001) that answers the
feasibility of such a system much earlier because of its
O(n) nature. Similarly, at a higher utilization, the system
becomes infeasible (Laplante et al., 2004). In the light
of the aforementioned reasons, we keep the cumulative
utilization of the system in the range of ln(2) to 0.85.
The reason for taking such system utilization is to make
sure that only feasible task sets are generated and hence
all tasks’ feasibility is determined.

It can be seen from Figs. 3(a) and (b) that more points
are needed by both the TA and IFT. A rationale behind this
trend is that system utilization is low and hence, under
given task set generation criteria, the computation times
of the individual tasks are low while the periods are in a
fixed range of [10, 10000]. Consequently, many tasks get
scheduled by the first scheduling point. For example, the
starting point for testing the feasibility of task τ1 is p1 and
c1 is always less than p1, and hence τ1 is schedulable. The
same scheduling point p1 is also the first point to be tested
in the feasibility of τ2, and so on. Here p1 remains the
first scheduling point at which the schedulability of the
remaining low priority tasks will be analyzed. Similarly,
when p1 does not satisfy the requirements of a task, say
τi+1, which misses the deadline at p1, p1 is identified
as an insufficient point (see Definition 3 for details) and

the feasibility test is run on the subsequent points of the
scheduling points set. However, for the same task sets, the
number of points needed for determining schedulability
is low in Fig. 3(b) for the IFT. The reason behind this
behavior is that the workload is high at a utilization of
0.85 and hence ci is high, which means that investigation
of more points is needs. The trend for the TA is high as
now it needs to test more points, while testing feasibility
at more points helps in declaring more insufficient points
for the IFT and hence these points can be skipped during
the analysis of lower priority tasks.

The number of testing points increases as n → ∞.
This is because of the larger values of the ratio pn/p1 for
large n. However, in both the cases of small and large
cumulative utilization levels, the increase in the number
of the scheduling points requested by the IFT procedure
is very small compared with the TA procedure. This is
because of the small accumulation of ci for the task τi
in the IFT test. As a consequence, the total utilization
u(tot) is a smaller and many tasks can be accommodated
into a single class, as computation demands c possesses
a smaller value with lower utilization, while the rest of
the parameters are fixed (see Theorem 4). Therefore, a
sufficiently small number of points is needed to be tested
for ̂Ωs. The advantage of IFT over the TA is significant
when more tasks are deemed feasible within the system.
In Figs. 3(a) and (b), the IFT technique supersedes the
TA (in performance) when the total utilization is equal
to 0.85. In this case, the computation demand of the
individual task τi is quite high. Therefore, more points
are scanned before the feasibility is concluded, which is
again in the interest of the IFT; i.e., the set of insufficient
points for ̂Ωs−1 is large.

7. Conclusion and future work

This paper investigated the effectiveness of the RM
scheduling algorithm in the reduction of the priority levels
of tasks scheduled under RM in preemptive mode. The
transformation procedure from the set of n classes to
the reduced set of k classes (k ≤ n) was formally
defined and explained. This theoretical model was
also experimentally evaluated at four different levels
of cumulative utilization of the system. In addition,
the unnecessary testing of the feasibility of a limited
priority system was avoided by identifying insufficient
points. The results achieved in the experiments
confirm those of the theoretical analysis and show high
effectiveness of the proposed method in reducing the
complexity of the conventional RM scheduling algorithm
for limited priority levels. A comparison of the improved
feasibility test procedure with the most effective known
conventional feasibility technique (based on scheduling
points techniques) revealed the advantage of the proposed
methodology over the existing counterpart.

720 M.B. Qureshi et al.

(a) (b)

Fig. 3. Advantage of the IFT over the TA in terms of reducing the number of scheduling points tested: u(tot) ≤ ln(2) (a), u(tot) ≤
0.85 (b).

As a future work, the proposed technique can
be extended to different task parameters using various
scheduling algorithms with more relaxed assumptions.

Acknowledgment

The authors would like to thank the members of the
Supercomputing Technologies Group at the CSAIL,
Massachusetts Institute of Technology (MIT), USA, for
their helpful discussions.

References
Audsley, N.C., Burns, A., Tindell, K. and A. Wellings (1993).

Applying new scheduling theory to static priority preemptive
scheduling, Software Engineering Journal 8(5): 284–292.

Audsley, N.C. (2001). On priority assignment in fixed priority
scheduling, Information Processing Letters 79(1): 39–44.

Bini, E., Buttazzo, G.C. and Buttazzo, G. (2001). A hyperbolic
bound for the rate monotonic algorithm, Proceedings of the
13th Euromicro Conference on Real-Time Systems, Washing-
ton, DC, USA, pp.59–66.

Bini, E. and Buttazzo, G.C. (2004). Schedulability analysis of
periodic fixed priority systems, IEEE Transactions on Com-
puters 53(11): 1462–1473.

Bini, E., Natale, M.D. and Buttazzo, G. (2008). Sensitivity
analysis for fixed-priority real-time systems, Real-Time Sys-
tems 39(1–3): 5–30.

Burns, A. and Wellings, A.J. (2009). Real-Time Systems
and Programming Languages, 4th Edn., Addison Wesley,
Longmain.

Davis, R.I., Zabos, A. and Burns, A. (2008). Efficient exact
schedulability tests for fixed priority real-time systems, IEEE
Transactions on Computers 57(9): 1261–1276.

Han, C.C. and Tyan, H.Y. (1997). A better polynomial-time
schedulability test for real-time fixed-priority scheduling

algorithms, Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS ’97), Washington, DC, USA, p. 36.

Hong, K.S. and Leung, J.Y.-T. (1992). On-line scheduling
of real-time tasks, IEEE Transactions on Computers
41(10):1326–1331.

Joseph, M. and Pandya, P.K. (1986). Finding response times in
a real-time system, The Computer Journal 29(5): 390–395.

Katcher, D.I., Arakawa, H. and Strosnider, J.K. (1993).
Engineering and analysis of fixed priority schedulers, IEEE
Transactions on Software Engineering 19(9): 920–934.

Katcher, D.I., Sathaye, S.S. and Strosnider, J.K. (1995). Fixed
priority scheduling with limited priority levels, IEEE Trans-
actions on Computers 44(9): 1140–1144.

Kopetz, H. (1997). Real-Time Systems, Design Principles
for Distributed Embedded Applications, Kluwer Academic
Publishers, Norwell, MA.

Laplante, P.A., Kartalopoulos, S.V., Akay,M., El-Hawary, M.E.,
Periera, F. M.B., Anderson, J. B., Leonardi, R., Singh,
C., Baker,R.J., Montrose, M., Tewksbury, S., Brewer, J.E.,
Newman, M.S. and Zobrist, G. (2004). Real-Time Systems
Design and Analysis, 3rd Edition, John Wiley and Sons,
Hoboken, NJ.

Lee, W. Y., Hong, S. J. and Kim, J. (2003). On-line scheduling of
scalable real-time tasks on multiprocessor systems, Journal
of Parallel and Distributed Computing 63(12): 1315–1324.

Lehoczky, J.P. and Sha, L. (1986). Performance of real-time bus
scheduling algorithms, ’86 ACM SIGMETRICS Joint Interna-
tional Conference on Computer Performance Modeling, Mea-
surement and Evaluation, New York, NY, USA, pp. 44–53.

Lehoczky, J.P., Sha, L. and Ding, Y. (1989). The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior, Proceedings of the IEEE Real-Time Systems
Symposium, Santa Monica, CA, USA, pp. 166–171.

Leung, J.Y.T. and Whitehead, J. (1982). On the complexity of
fixed-priority scheduling of periodic, Performance Evalua-
tion 2(4): 237–250.

Maintaining the feasibility of hard real-time systems with a reduced number of priority levels 721

Liu, C.L. and Layland, J.W. (1973). Scheduling algorithms for
multiprogramming in a hard real-time environment, Journal
of the ACM 20(1): 40–61.

Liu, J.W.S. (2000). Real Time Systems, Prentice Hall, New York,
NY.

Min-Allah, N., Yong-Ji, W., Jian-Sheng, X. and Jiu-Xiang, L.
(2007). Revisiting fixed priority techniques, in T.W. Kuo et al.
(Eds.), Proceedings of Embedded and Ubiquitous Comput-
ing, Lecture Notes in Computer Science, Vol. 4808, Springer,
Berlin/Heidelberg, pp. 134–145.

Min-Allah, N., Khan, S.U. and Yongji, W. (2010). Optimal task
execution times for periodic tasks using nonlinear constrained
optimization, Journal of Supercomputing 59(3): 1–19.

Min-Allah, N. and Khan, S.U. (2011). A hybrid test for faster
feasibility analysis of periodic tasks, International Jour-
nal of Innovative Computing, Information and Control 7(10):
5689–5698.

Orozco, J., Cayssials, R., Santos, J. and Santos, R. (1998). On
the minimum number of priority levels required for the rate
monotonic scheduling of real-time systems, Proceedings of
the 10th Euromicro Workshop on Real Time Systems, Berlin,
Germany.

Patan, M. (2012). Distributed scheduling of sensor networks
for identification of spatio-temporal processes, International
Journal of Applied Mathematics and Computer Science
22(2): 299–311, DOI: 10.2478/v10006-012-0022-9.

Santos, J., Gastaminza, M. L., Orozco, J., Picardi, D. and
Alimenti, O. (1991). Priorities and protocols in real-time
LANs, Computer Communications 14(9): 507–514.

Sha, L. and Goodenough, J.B. (1988). Real-time scheduling
theory and ADA, CMU/SEI-88-TR-33, Software Engineering
Institute, Carnegie-Mellon University, Piittsburgh, PA.

Sha, L., Sprunt, B. and Lehoczky, J.P. (1989). Aperiodic task
scheduling for hard real-time systems, Journal of Real-Time
Systems 1(1): 27–69.

Sheng, J., Wang, Y., Liu, J., Zeng,H. and Min-Allah, N. (2007).
A static priority assignment algorithm with least number of
priority levels, Journal of Software 18(7): 1844–1854.

Sjodin, M. and Hansson, H. (1998). Improved response-time
analysis calculations, Proceedings of the 19th IEEE Real-
Time Systems Symposium, Madrid, Spain, pp. 399–409.

Tindell, K.W., Bums, A. and Wellings, A.J. (1994). An
extendible approach for analyzing fixed priority hard
real-time tasks, Real-Time Systems Journal 6(2):133–151.

Xuelian, B., Yuhai, Y. and Shiyao, J. (2003). Optimal fixed
priority assignment with limited priority levels, Proceedings
of the Advanced Parallel Programming Technologies, Xia-
men, China, pp. 194–203.

Xu, J. and Parnas, D. (1990). Scheduling processes with release
times, deadlines, precedence, and exclusion relations, IEEE
Transactions on Software Engineering 16(3): 360–369.

Muhammad Bilal Qureshi is a Ph.D. stu-
dent of computer science at the COMSATS Insti-
tute of Information Technology, Islamabad, Pak-
istan. He received his B.S. with distinction (Gold
Medal) in information technology and his M.S. in
computer science in Pakistan. He is the recipient
of various awards for his outstanding academic
performance, including an HEC Pakistan Indige-
nous Scholarship for Master’s and Doctoral Stud-
ies. He is the author and co-author of many re-

search articles published in high ranking journals in grid computing,
parallel computing, parallel and distributed computing, and so on. His
research interests span the areas of real-time systems, scheduling theory
and resource allocation problems in HPC systems.

Saleh Alrashed has been an assistant professor
in the College of Computer Science and Informa-
tion Technology at the University of Dammam
since September 2012. He received his Ph.D.
degree in knowledge base systems and his M.S.
in information systems from Cardiff University,
UK, in 2004 and 2001, respectively. He did his
B.Sc. in information systems at King Saud Uni-
versity, Riyadh, in 1995. At the beginning of his
carrier, Dr. Alrashed was a lecturer at King Faisal

Air Academy, and then a research assistant at Royal Air Force Research
Labs. In 2004, Dr. Alrashed led research and IT operations for establish-
ing the Electronic Warfare Center for Royal Saudi Air Force. In 2008,
he directed a UK-based team to design, develop, and integrate a cutting-
edge knowledge base system for electronic warfare equipment. Dr. Al-
rashed is the dean of the College of Computer Science and Information
System, and the vice-dean for e-learning at the College of Applied Stud-
ies at the University of Dammam.

Nasro Min-Allah has been an associate profes-
sor at the College of Computer Science and In-
formation Technology, University of Dammam,
KSA, since September 2014. He worked at the
SuperTech group of the MIT’s Computer Science
and Artificial Intelligence Laboratory (CSAIL)
from September 2012 to June 2014 as a visiting
scientist, and taught at the Electrical Engineering
and Computer Science Department from January
2013 to May 2014. He has a distinguished career

in education, research and administration. He was an associate profes-
sor and the head of the Department of Computer Science at the COM-
SATS Institute of Information Technology (CIIT), Pakistan, from 2002
to 2012, and served the Green Computing and Communication Lab as
the director. He is the recipient of three prestigious awards: the CIIT
Golden Medallion for Innovation (CIMI-2009), Best Mobile Innovation
in Pakistan (BMIP-2010), and a Best University Teacher Award, Pak-
istan (BUTA-2011).

722 M.B. Qureshi et al.

Joanna Kołodziej graduated in mathematics
from Jagiellonian University in Cracow in 1992,
where she also received a Ph.D. in computer sci-
ence in 2004. She works as an assistant pro-
fessor at the Cracow University of Technology.
She has been serving as a PC co-chair, a gen-
eral co-chair and an IPC member of several in-
ternational conferences and workshops, includ-
ing PPSN 2010, ECMS 2011, CISIS 2011, 3PG-
CIC 2011, CISSE 2006, CEC 2008, IACS 2008-

2009, ICAART 2009-2010. Dr. Kolodziej is an editorial board mem-
ber and a guest editor of several peer-reviewed international journals,
and an author and a co-author of many publications in high quality
peer reviewed international journals. For more information, please visit
http://www.joannakolodziej.org/.

Piotr Arabas received his Ph.D. in computer
science from the Warsaw University of Technol-
ogy, Poland, in 2004. Currently he is an assistant
professor at the Institute of Control and Compu-
tation Engineering at the Warsaw University of
Technology. Since 2002 he has also been with
the Research and Academic Computer Network
(NASK). His research area focuses on modeling
computer networks, predictive control and hier-
archical systems.

Received: 11 October 2014
Revised: 10 December 2014
Re-revised: 14 February 2015

http://www.joannakolodziej.org/

	Introduction
	Background and related work
	Rate monotonic and deadline monotonic scheduling essentials
	General characteristics of tasks
	Schedulability condition

	Reduction of the priority levels in thesystem (mapping Ωn into Ωk)
	Empty-slot method adapted to RM scheduling
	Priority levels reduction procedure

	Schedulability test for reduced priority levels
	Results and analysis
	Priority tansformation process under various system utilization
	Evaluation of the improved feasibility test

	Conclusion and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

