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This paper is devoted to the blind identification problem of a special class of nonlinear systems, namely, Volterra models,
using a real-coded genetic algorithm (RCGA). The model input is assumed to be a stationary Gaussian sequence or an
independent identically distributed (i.i.d.) process. The order of the Volterra series is assumed to be known. The fitness
function is defined as the difference between the calculated cumulant values and analytical equations in which the kernels
and the input variances are considered. Simulation results and a comparative study for the proposed method and some
existing techniques are given. They clearly show that the RCGA identification method performs better in terms of precision,
time of convergence and simplicity of programming.
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1. Introduction

In the real world, many systems exhibit nonlinearities that
cannot be ignored such as in nonlinear control systems,
equalization of nonlinear communication channels,
poly-spectrum modeling and many others (Attar and
Dowell, 2005; Tan and Cloe, 2000; Ozertem and
Erolagnus, 2009; Kalouptsidis and Konkoulas, 2005;
Tsoulkas et al., 2001). This is why the popularity of
nonlinear signal processing has increased over the last
decade.

Modeling with Volterra series proved to be a viable
approach for nonlinear physical systems. These series
can describe any input-output relationship in a nonlinear
domain with reasonable accuracy. Each term of a
Volterra series specifies a particular order of nonlinearity
of the identified system. For example, in digital
communication systems, the communication channels are
usually impaired by a nonlinear intersymbol interference
(ISI). Channel identification allows us to compensate the
ISI effects at the receivers. This nonlinearity is in general
modeled by a finite Volterra series.

The great advantage of modeling with Volterra series
is essentially related to the following facts:

• The output of the Volterra series is linear from the
∗Corresponding author

viewpoint of model kernel parameters.

• The signal nonlinearity can be represented through
multidimensional operators existing in the products
of the input samples.

Unfortunately, modeling with Volterra series
involves excessive computational requirements, even
when using a truncated version of the series and after
taking into consideration the symmetry of the different
order of kernels, too.

Glentis et al. (1999) considered the problem of
nonlinear filtering and identification based on finite
support Volterra models. They developed efficient
algorithms and persistent excitation conditions for this
purpose. It is shown that the normal equations (expressed
in terms of cumulants) for a finite support Volterra system
excited by a zero mean Gaussian input have a unique
solution if, and only if, the power spectral process of the
input signal is nonzero at least at m distinct frequencies
(where m is the memory of the system) (Stoica and
Soderstrom, 1982).

Tsoulka et al. (2001) considered the problem of
direct identification of a discrete bilinear system governed
by an i.i.d. input, with additive noise at the output. It
was shown that the bilinear model parameters can be
determined via linear equations using cross-cumulants
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between the output and the input up to the third
order. The proposed identification scheme avoids some
well-known problems associated with nonlinear least
squares algorithms and especially the normal matrix
inversion.

Koukoulas and Kalouptsidis (1997; 2000) employed
cumulants and poly-spectra to compute the symmetric
Volterra kernels, and presented closed-form solutions in
the case of a stationary, Gaussian, zero mean random
process or an i.i.d. one.

However, in many real applications, the above
described methods are not easily applicable for many
reasons, and especially for the large number of parameters
to be determined and the high computational complexity.
In the last years, some intelligent approaches have been
adopted to overcome some of the underlined problems,
such as neural networks (for their parallelism and learning
capacity), fuzzy logic and genetic algorithms.

Kalouptsidis and Koukoulas (2005) proposed blind
identification approach of quadratic nonlinear models
using neural networks with higher order cumulants. This
approach used a weight-decoupled extended Kalman filter
training algorithm to estimate the model parameters.
Although the proposed identification method yields
acceptable kernel estimates, its computational complexity
is relatively high and the algorithm becomes intractable in
the case of a large number of estimates.

Stathaki and Scohyers (1997) used an unconstrained
Lagrange programming neural network to identify the
Volterra kernels. This method needs a large number of
iterations to converge.

Recently, genetic algorithms (GAs) have been
proposed to solve many nonlinear optimization problems
and to address the issue of the complexity associated
with Volterra models (Cherif et al., 2007; Vasconcelos
et al., 2001; Herrera et al., 1998). They are known as
powerful optimization tools. A genetic algorithm is a
quasi-stochastic search process based on the law of natural
selection and genetics. It is important to pinpoint here
their major features, especially

• robustness and ability to escape from local minimum
points;

• no need for any complex computation as in the
conventional optimisation methods, such as the
computation of the gradient vectors, the normal
matrix inverse, the Fourier transform and its inverse,
etc.

For using genetic algorithms for a nonlinear identification
problem, in this work we shall propose a new RCGA
method for blind identification of quadratic Volterra
systems. This method profits from the multiple features
of the GA and uses it to solve a set of nonlinear
equations where the unknown parameters are the kernels

of a discrete time Volterra series with finite memory.
These equations are performed by considering the output
cumulant up to the third order. The major advantage of the
proposed identification method is that it can be applied
successfully to a great number of unknown parameters,
and without any excessive computational complexity.

In order to make a comprehensive comparison study
by inspecting other methods in the literature (Glentis et
al., 1999; Koukoulas and Kaloptsidis, 2000), it is quite
difficult to find works dealing with the same examples
and the same experimental conditions such as the input
sequences, the same benchmark parameters, the same
computing conditions (e.g., computer speed, memory
size, etc.). Consequently, the comparison will be limited
to two methods presented by Tan and Clow (2000) as well
as Stathaki and Scohyers (1997).

The paper is structured as follows. Section 2
defines the problem of blind system identification with
a real-coded genetic algorithm. Section 3 presents a
statistical study of the system output and discusses the
identifiability of the Volterra model with the output
cumulants up to the third order. Section 4 presents the new
approach to identify the unknown quadratic kernels with
the RCGA. A comparison with some existing methods
is given in Section 5. Finally, in Section 6, computer
simulations and comparison are carried out resulting in
good solutions of the proposed nonlinear identification
genetic method in terms of precision, convergence speed
and computation simplicity.

2. RCGA blind identification problem
formulation

Let us denote the output of a discrete nonlinear
time-invariant quadratic system driven by an input random
sequence. A quadratic Volterra representation of the input
output relationship can be expressed as

y(n) =

N∑

i=0

N∑

j=0

h2 (i, j)x (n− j) + e(n). (1)

The noise signal is assumed to be a white Gaussian
sequence, zero mean, and independent of the input.
Furthermore, it is assumed that the unknown quadratic
kernels are causal, absolutely summable and symmetric,
that is, h2(i, j) = h2(j, i).

Also, N is assumed to be known beforehand; this
prevents the user from launching a structure identification
procedure based on the Fisher test, the Aikake test, etc.
The problem of blind identification may be formulated
as follows: Based only on the knowledge of the output
measurement and the input statistics, the unknown system
kernels h2(i, j) are estimated using a real-coded genetic
algorithm. The fitness function of the RCGA is defined
as the difference between calculated cumulant values and
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analytical equations in which the kernels and the input
variances are considered. These analytical functions
depend strongly on the character of the input sequence (a
Gaussian sequence or an i.i.d. one). In the next section,
we shall study both the cases.

3. Statistical analysis

Recall the definition of the cumulants of a random variable
given by Kalouptsidis and Koukoulas (2005). The p-th
order cumulant sequence of a stationary random signal is
denoted by

cp,y (k1, . . . , kp−1)

= cum {y(n), . . . , y (n+ kp−1)} . (2)

The function cp,y is symmetric and completely
determined in the space Z

p−1 by its values in the domain
Δ defined as

Δ =
{
(k1, . . . , kp1) ∈ Z

p−1; 0 ≤ kp−1 ≤ ki
}
. (3)

For every l ∈ N , we define

Δl = {(k1, k2, . . . , kp−1) ∈ Δ; ki > l} . (4)

To determine the parameters of the quadratic Volterra
system, we will generate sufficient output cumulant
information up to the third order. The first order cumulant
is defined by c1,y = E (y(n)), where E(·) stands for the
expectation operator.

Taking into account that the noise e(n) signal is a
white Gaussian sequence, zero mean, and independent of
the input, the first order cumulant can be written as

c1,y =
∑

i

∑

j

h2 (i, j)E (x (n− i)x (n− j)) . (5)

The second order cumulant is given by

c2,y (m) = cum {y(n), y(n+m)} . (6)

In view of the Volterra model (1), c2,y (m) can be
expressed as

c2,y (m)

= cum
{∑

i,j

h2 (i, j)x(n− i)x(n− j), y(n+m)
}

= cum
{∑

i,j

h2 (i, j)x(n− i)x(n− j),

∑

i,j

h2 (i, j)x(n+m− i)x(n+m− j)
}

(7)

The first and second order cumulants of y(n) given
by (5) and (7) are not sufficient to solve the identification
problem because the number of the unknown parameters

in these equations is greater than that of useful samples of
c2,y (m).

For this reason, we derive the third order cumulant of
the output y(n) which is given by

c3,y (m, k) = cum
{
(y(n), y(n+m) , y(n+ k)

}
. (8)

The development of these equations changes
depending on the distribution type of the excitation signal.
In the following, we shall derive useful expressions for
(5), (7) and (8) for the following cases of the input
sequence:

• x(n): stationary zero mean white Gaussian process,

• x(n): stationary independent identically distributed
(i.i.d) process.

3.1. Case of stationary Gaussian input excitation.
Let us assume that x(n) is an unknown zero mean white
Gaussian signal with variance γ2x = E

{
x2(n)

} �= 0.
For simplicity, we assume that the output is zero

mean, which leads to
∑

i h2(i, j) = 0. Consequently,

c1,y = 0. (9)

Under the same assumptions, the second order
cumulant will be written as

c2,x(n) = γ2,xδ (n) =

{
γ2,x if n = 0,

0 otherwise,
(10)

and

ck,x (n1, n2,...,nk−1) = 0 for all k > 2.

In this paper, if the output is not zero mean, then we
make it so by subtracting its mean from all samples prior
to any further processing.

From (7) and (10), we get

c2,y(m)

=
∑

i

∑

j

h2 (i, j)h2 (i+m, j +m)

× cum {x(n− i)x(n− j), x(n − i)x(n− j)}
= 2γ2

2x

∑

i

∑

j

h2 (i, j)h2 (i+m, j +m) .

It is known that the average of the product of an odd
number of zero mean jointly Gaussian random variables
is identically zero irrespective of their mutual correlation.
Moreover, the average of the product of an even number
of zero mean jointly Gaussian random variables is equal to
the sum over all distinct ways of partitioning the random
variables into products of averages of pairs (Vasconcelos
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et al., 2001). For example, if x1, x2, x3, x4, x5, x6 are
zero mean jointly Gaussian random variables, then

E {x1, x2, x3, x4, x5} = 0, (11)

E {x1x2x3x4x5x6}
= E {x1x2}E {x3x4x5x6}
+ E {x1x3}E {x2x4x5x6}
+ E {x1x4}E {x2x3x5x6}
+ E {x1x5}E {x2x3x4x6}
+ E {x1x6}E {x2x3x4x5} . (12)

Based on the fact that y(n) is a zero mean random
process, it follows that the third order cumulants is
identical with the third order moment. Accordingly, from
(8) and (13) we get

c3,y (m, k) = E {(y(n)y(n+m) y(n+ k)} , (13)

c3,y (m, k) = 8γ3
2,xφ2(k, k −m,m), (14)

where the function φ2 (·) is defined by

φ2(k, p, q)

=
∑

i

∑

j

∑

k

h2 (i, j)h2 (i+ k, k + p)h2 (j + q, k) .

Equations (11) and (15) provide a sufficient number
of equations with respect to the unknown kernels number,
forming a system of nonlinear equations. Before
presenting the genetic approach to solve these systems
of equations, let us discuss the case of stationary i.i.d.
excitation.

3.2. Case of a stationary independent identical dis-
tributed input (i.i.d. excitation). In this section, we
assume that x(n) is a zero mean i.i.d signal satisfying

γ4,x = E
{
x4 (n)

} �= 0,

γ3,x = E
{
x3 (n)

} �= 0,

γ2,x = E
{
x3 (n)

} �= 0.

Using the properties of cumulants (Kalouptsidis and
Koukoulas, 2005), if a sequence is an i.i.d. zero mean
random process, then

cp,x (k1, . . . , kp−1) = γp,xδ (k1, . . . , kp−1) (15)

=

{
γp,x if k1 = · · · = kp−1 = 0,

0 otherwise.

From this equation and (5), the first order cumulant of the
output will be given by

c1,y = γ2,x

N∑

i=0

h2(i, i). (16)

In view of the Volterra model (1), c2,y (m) can be
written as

c2,y (m)

=
∑

i

h2(i, i)h (i+m, i+m) (17)

+ 4γ2,x2

∑

j>0,i

h2(i+ j, i)h (i+ j +m, i+m) ,

where γ2,x2 = γ4,x + 2γ2
2,x.

Finally, the third order cumulant of y(n) given by
(8) will be expressed by

c3,y (m, k) = γ6,xφ0 (m, k) + γ4,xγ2,xφ1 (m, k) (18)

+ γ2
3,xφ2 (m, k) + γ3

2,xφ3 (m, k) ,

where the functions φi (·) the are defined by

φ0 (m, k)

=
∑

i

h2(i+m, i+m)h2 (i+ k, i+ k)h2(i, i),

φ1 (m, k)

= w1 (m, k) + w1 (m− k,−k) + w1 (k −m,−m)

with

w1 (m, k)

= 4
∑

j,i

h2 (i+ j +m, i+m)

× h2 (i+ j + k, i+ k)h2 (i, j) ,

φ2 (m, k)

= Ψ2 (m, k) + w2 (m, k) + w2 (m− k,−k)

+ w2 (k −m,−m) ,

Ψ2 (m, k)

= 4
∑

j,i

h2 (i+ j +m, i+m)

× h2 (i+ j + k, i+ k)h2 (i+ j, i) ,

and

w2 (m, k) = 2
∑

j,i

h2 (j +m, j +m)

× h2 (i+ k, i+ k)h2 (i, j) ,

φ3 (m, k) = 8
∑

i,j,l

h2 (i, j)

× h2 (m+ j,m+ l)h2 (k + l, k + i) .

Since the Volterra kernels have a finite range of
the order N , the third order cumulant has only one
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nonvanishing term in ΔN ; this term is given by

c3,y (m, k)

= γ2
3,xw2 (m− k,−k) (19)

= 2γ2
3,x

∑

i,j

h2(m− k + j,m− k + j)

× h2 (i− k, i− k)h2 (i, j) .

Equations (17)–(19) provide a sufficient number of
equations forming a system of multi-nonlinear equations
with multi-unknowns which are Volterra kernels. In the
following, we shall present a new approach to blind
identification with a genetic algorithm.

4. Blind identification with a real-coded
genetic algorithm

Genetic algorithms are inspired by the natural search and
selection processes leading to the survival of the best
individuals. The elements of the search space can be
coded using two possibilities: binary coding (yielding a
binary coded genetic algorithm, BCGA) or real coding,
which would seem natural when dealing with optimization
problems with variables in continuous domains (yielding a
real-coded genetic algorithm). The basic steps of a general
genetic algorithm are depicted in the flowchart of Fig. 1.

In order to apply the genetic techniques to estimate
the unknown kernels set and the r-th moment of x(n)
denoted by E[xγ (n)] = γr,x, we used the RCGA.
Consequently, we defined a chromosome as a real vector
formed by the entire number of the kernels h2(i, j) and
γr,x with r = 2 for the Gaussian case (respectively for
the i.i.d case). Thus, in the case of Gaussian excitation,
the general j-th chromosome in a generation (population)
will be expressed by the vector

Gchj = [h2 (0, 1) . . . h2 (N − 1, N) γ2,x] . (20)

In the case of i.i.d. input, the general j-th
chromosome is then given by

Ichj =
[
h2 (0, 0) h2 (0, 1) . . . h2 (N,N)

γ2,x γ3,x γ4,x

]
. (21)

From these representations, each kernel or moment
is viewed as a gene and is assumed to be real valued. In
the following, we develop each step of the RCGA for the
proposed application.

4.1. Fitness and cost functions. The fitness function
is required to be non-negative. In this work, we defined
the fitness function by

Fj =
1

1 + Ij
, (22)

Fig. 1. Flowchart illustrating the basic steps of a general genetic
algorithm.

where Ij is the cost function to be minimized. It is defined
by

Ij = (ĉ1,y − c1,y)
2
+
∑

m

(ĉ2,y (m)− c2,y (m))
2 (23)

+
∑

m

∑

k

(ĉ3,y (m, k)− c3,y (m, k))
2
.

The subscript j stands for the number of
chromosomes in the current population, while c1,y ,
c2,y(m) and c3,y(m, k) are the values of the first, second
and third order cumulants, respectively. These cumulants
are computed directly using Eqns. (9), (11) and (15)
for the Gaussian case (or Eqns. (17), (18), and (20)
for the i.i.d case) and with the different values of the
kernels given by each chromosomes Gchi (or Ichj) in
the current iteration. As cumulants involve expectation
operations, they cannot be computed in an exact manner
from the available real output signals. The computation of
cumulants can be approximated (estimated) consistently
by replacing expectations by sample averages

ĉ1,y =
1

N

∑

n

y(n), (24)

ĉ2,y =
1

N

∑

n

y(n)y(n+m), (25)

ĉ3,y(m, k) =
1

N

∑

n

y(n)y(n+m)y(n+ k). (26)

Once the fitness function is defined and the
population set is initialized, one should apply the different
operators of the genetic algorithm.

4.2. Selection operator. The selection operator is the
basic operator to form the mating set from the old one.
The roulette wheel is one of the most often used stochastic
selection techniques (Herrera,1998). Its evaluation is
given by the following steps:
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(i) Compute the total fitness of the population by

F =

pop-size∑

j

Fj ,

where Fj is the fitness value of the chromosome j
and ‘pop-size’ is the population size.

(ii) Compute the probability of selection for each
individual: Pj = Fj/F .

(iii) Compute the cumulative probability

qj =

j∑

i=1

pi

for each individual j.

(iv) Generate a random number μ ∈ [0, 1]. If μ < q1,
then select the individual 1. Otherwise, select the
j-th individual such that 2 ≤ j ≤ pop-size and
qj−1 < μ ≤ qj .

Note that in the case of a large number of unknown
variables it will be better to use the tournament selection
operator to avoid the large scatter around the expected
number of the copies of an individual.

4.3. Crossover operator. The crossover operator
is used to get a later generation by exchanging
characteristics between multiple couples of individuals
(parents) selected stochastically from the mating set. In
our application, we applied the one-point crossover type
with a different crossover probability. (This probability
is chosen after several runs in order to maximize the
algorithm performance.)

• Evaluate the fitness values by Eqns. (23) and (24) to
form the mating set.

• Inspect the different values: if there is at least one
less than a thresholding value, then stop, otherwise
go to Step 7 of Algorithm 1.

4.4. Mutation operator. The mutation operator
randomly changes some genes in a chromosome with a
certain mutation probability. This probability cannot be
too large so as not to make the GA degenerate into a
simple stochastic search algorithm. In our simulations,
the mutation probability is selected experimentally after
several runs. In this work, we used the random mutation
that consists in replacing the gene xi ∈ [a, b] to be mutated
by a random number (uniform) chosen in the same range.

Finally, Algorithm 1 summarizes the different
steps of the new procedure of blind nonlinear system
identification with the RCGA.

Algorithm 1. Different steps of blind nonlinear system
identification with the RCGA.
Step 1. Input data and fix input data and fix parameters
kernel.

Step 2. Select a quadratic Volterra kernel.

Step 3. Construct a chromosome as indicated by Eqns.
(21) (Gaussian case) or (22) (i.i.d. case).

Step 4. Compute the output system cumulants which are
approximated by Eqns. (25)–(27).

Step 5. Form a first population by generating different
chromosomes randomly.

Step 6. For each chromosome compute values of different
cumulants using Eqns. (9), (10), (15) (Gaussian case) or
(17), (18), (19) (i.i.d. case).

Step 7. For each chromosome. Apply the different
operators of the genetic algorithm for generating a new
population, and go back to Step 3.

5. Comparison with the existing methods

The proposed identification method has been compared
with the methods proposed by Tan and Clow (2000) as
well as Stathaki and Scotyos (1997).

Tan and Clow (2000) solve the problem of blind
identification using only the third order output cumulant
values with a feed-forward neural network. In
most feed-forward neural network applications, weight
connexions are trained in such a way that the network
establishes a relationship between the system inputs and
outputs, but in their work, the functional approximation
characteristics of a neural network were applied to
identify the parameters of the nonlinear system. In
other words, for a general nonlinear system modeled
by its output signal y(t) = f(φ (t− 1), h), where h
stands for the system parameters and φ(t − 1) denotes
measurable signals up to time (t−1), there exists a neural
network NN so that the relation between the parameter
estimates and the input and output can be given by
h(t) = NN (φ(t− 1), y(t)). Consequently, for a given
φ(t − 1) and y(t), the neural network can be trained
such that its output converges to the desired parameters.
Then, given c3,y (m, k), the authors constructed a neural
network (h-NN) so that their outputs converge to the exact
kernel values. For more details, see the works of Tan and
Clow (2000) as well as Annaswamy and Yu (1996).

Stathaki (1997) tried to determine the different
Volterra kernels and the variance of the input from
the autocorrelation estimates ρ [k] and the third order
moment estimates μ [k, l] of the system output. For
this purpose, they used a Lagrange programming neural
network (LPNN) to solve a system of nonlinear equations
with multiple unknowns. As the LPNN is essentially
designed for general nonlinear programming, the author
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formulated the identification problem as follows
{

minimize L(f) =
∑
i

∑
j

(μ [i, j]−M [i, j, f ])
2

subject to ρ [i] = R [i, j] ,

where R [i, j] is the autocorrelation function of the real
process y [n] and M [i, j] is its third order moment
sequence, f is the vector formed by the unknown
parameters of the Volterra model and the unknown
variance of the driving noise. Thus the Lagrangian
function will be written as

L(f, λ) = L(f) +
∑

i

λi (ρ [i]−R [i, f ]) .

To improve the convergence and the precision of the
algorithm, we extended the preceding function by defining
the augmented Lagrangian function such as

L(f, λ) = L(f) +
∑

i

λi (ρ [i]− R [i, f ])

+ α
∑

i

(ρ [i]−R [i, f ])2 ,

where α is a penalty parameter. Thus, the back-
propagation algorithm can be established using the
Lagrange multiplier.

These two methods overcome the difficulty of
programming related to the dimensions of the model, but
they introduce other problems, especially the multiple
tuning parameters of neural networks, a large number of
iterations needed for convergence, and multiple tests to
search for good initialization parameters, which make the
Monte-Carlo procedure heavier.

The proposed genetic method is characterized by the
simplicity of programming, a reduced number of initial
parameters to choose at the beginning of simulations, and
a high speed of convergence.

6. Simulation results

In these experiments, two quadratic models are used
to validate our proposed methodology. The probability
of crossover and mutation is chosen experimentally
after several tests. Note that the RCGA uses random
chromosomes initialisation in the range [−5,+5]. To
avoid a dependence on realizations, estimates were
averaged over 100 Monte-Carlo runs.

The noise signal e(n) is assumed to be a white
Gaussian sequence and independent of the input. The
parameter estimation was performed for two different
signal to noise ratio (SNR) levels: 20 dB and 3 dB. In each
run, 128000 samples for e(n) are generated. The SNR is
computed using the following expression:

SNR =
E
(
(y(n)− e(n))

2
)

E (e2 (n))
. (27)

For each simulation, we summarize results in
different tables giving the mean of each estimate along
the 100 Monte-Carlo runs and the corresponding standard
deviation.

6.1. Model 1. The first model to be tested here is given
by the following quadratic model:

y(n) = 0.4x(n)x(n− 1) + 0.2x(n)x(n− 2) (28)

− 0.5x(n− 2)x(n− 1) + e(n),

In each simulation the output signal is set to zero
mean by subtracting its mean from all samples prior to
any further processing.

• First a Gaussian random sequence x(n) with zero
mean is generated and serves as the input signal.
Figure 2 shows an example of the evolution of
the best parameters (i.e., a chromosome of the
population having the best fitness values) with
respect to the number of iterations for one run and
for SNR = 3 dB.

• Second, an i.i.d. signal with an exponential
distribution input with zero mean is generated to
construct the system output. Figure 3 shows an
example of the evolution of the best parameters with
respect to the iterations number for one run and for
SNR = 3 dB.

Comparison results (the means and the standard
deviations) of the new algorithm with respect to the h-NN
and LPNN algorithms are summarized in Tables 2–5
for different SNR levels and for 100 Monte-Carlo runs.
Table 6 includes a comparison of the convergence times
needed for each algorithm for 100 Monte-Carlo runs.
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Fig. 2. Evolution of the estimates with respect to the number
of iterations for one run (Model 1, Gaussian excitation,
SNR = 3 dB).
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Fig. 3. Evolution of the estimates with respect to the iteration
number for one run (Model 1, i.i.d. excitation, SNR =
3 dB).

Note that for simulations we used an
Intel�Core(TM) i3 CPU with 2.4 GHz using Matlab.
Moreover, one must note that these results may
slightly vary according to the initialisation procedures,
programming methodologies, etc.

6.2. Model 2. The output sequence is generated using
the model given by

y(n) = 0.21x2(n)− 1.62x2(n− 1) + 1.41x2(n− 2)

+ 3.72x(n)x(n− 1) + 1.86x(n)x(n− 2)

+ 0.76x(n− 1)x(n− 2) + e(n). (29)

The same experiments as for Model 1 are pursued in
this case. In the same manner, Figs. 4 and 5 show two
examples of the evolution of the best parameters with
respect to the iterations number for both cases, Gaussian
and i.i.d. excitation signals, respectively.

Different results for different SNR levels and for 100
Monte-Carlo runs are summarized in Tables 7–10. Table
11 gives a comparison of the convergence time needed for
each algorithm for 100 Monte-Carlo runs.

6.3. Analysis of results. From Figs. 2–5 we note that
despite the oscillation presented in the beginning of the
simulation the RCGA usually converges to the desired
parameters. These oscillations are interpreted by the
stochastic aspect of the algorithm in the first research stage
before finding a good set of optimal parameters.

Table 1. Comparison of the convergence time (second) for 100
Monte-Carlo runs and Model 1.

Gaussian input i.i.d. input
(4 parameters ) 6 parameters)

RCGA 3820 5543
h-NN 5378 6428
LPNN 5424 6387

Table 2. Comparison of the convergence time (second) for 100
Monte-Carlo runs and Model 2.

Gaussian input i.i.d. input(9 parameters)
(7 parameters ) (9 parameters)

RCGA 5786 7260
h-NN 7152 8356
LPNN 6990 8422

From Tables 2–5 and 7–10, one can observe that the
RCGA based on the cumulants of the output up to the third
order provides good estimated Volterra kernels for both
the types of the excitation input and for different levels of
the SNR. The standard deviations for the new algorithm
are in general less than those given by the h-NN and the
LPNN algorithms, which leads to a good precision.

It is noted also that the algorithm is relatively faster
than the others and does not need a large number of
iterations to converge. Indeed, the number of iterations
needed for convergence in all simulations did not exceed
300. Tables 6 and 11 show that the reductions in
the computation time vary between 14% and 30% with
respect to the time needed by the other algorithms.

The study of the consistency of the estimates is a
subject for further work.

7. Conclusions

In this work, an evolutionary method based on a
genetic algorithm was proposed and successfully
used for blind Volterra system identification. This
method does not require any excessive computations or
mathematical transformations. The overall performance
of the algorithm (precision, speed of convergence,
computational complexity) is very satisfactory in
comparison with several other algorithms.

Extending the proposed algorithm to higher order
Volterra series and general nonlinear polynomial systems
remains an open problem. Moreover, performances of the
presented method can be compared with respect to the
binary coded genetic algorithm (BCGA).
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Table 3. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under Gaussian excitation). SNR
= 3 dB, probability of crossover = 0.08, probability of mutation = 0.01.

New algorithm h-NN LPNN

Parameters Real values Mean STD Mean STD Mean STD

h2(0, 1) 0.4 0.3156 0.1323 0.4282 0.1421 0.4333 0.1356

h2(0, 2) 0.2 0.1834 0.0576 0.1795 0.0677 0.1912 0.0664

h2(1, 2) -0.5 -0.4823 0.1287 -0.4879 0.1185 -0.5346 0.1234

γ2,x 0.84 0.834 0.0478 0.871 0.0243 0.778 0.0436

Table 4. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under Gaussian excitation). SNR
= 20 dB, probability of crossover = 0.08, probability of mutation= 0.01;

New algorithm h-NN LPNN

Parameters Real values Mean STD Mean STD Mean STD

h2(0, 1) 0.4 0.4557 0.0429 0.4176 0.0784 0.4478 0.0899

h2(0, 2) 0.2 0.1987 0.0456 0.1883 0.0454 0.2125 0.0447

h2(1, 2) -0.5 -0.5228 0.1136 -0.5322 0.1052 -0.5290 0.1878

γ2,x 0.84 0.880 0.0493 0.758 0.0543 0.946 0.0555

Table 5. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR = 3 dB,
probability of crossover = 0.07, probability of mutation = 0.02.

New algorithm h-NN LPNN

Parameters Real values Mean STD Mean STD Mean STD
h2(0, 1) 0.4 0.4525 0.1576 0.3367 0.2154 0.4339 0.1868
h2(0, 2) 0.2 0.2343 0.0449 0.1821 0.1701 0.3011 0.3458
h2(1, 2) -0.5 -0.4664 0.0451 -0.5551 0.1000 -0.4591 0.0855
γ2,x 1.00 0.9977 0.0287 1.1046 0.0877 1.1054 0.0554
γ3,x 1.99 2.0551 0.1099 1.8488 0.2225 2.1199 0.1616
γ4,x 8.91 9.1644 0.2876 9.0907 0.3999 9.2366 0.4097

Table 6. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR = 20 dB,
probability of crossover = 0.07, probability of mutation = 0.02.

New algorithm h-NN LPNN

Parameters Real values Mean STD Mean STD Mean STD
h2(0, 1) 0.4 0.4110 0.0121 0.3958 0.1044 0.4339 0.1133
h2(0, 2) 0.2 0.2248 0.0265 0.1954 0.1011 0.3011 0.4544
h2(1, 2) -0.5 -0.5147 0.0133 -0.4976 0.1565 -0.4591 0.2252
γ2,x 1.00 0.9962 0.0114 1.0225 0.1087 1.1054 0.1412
γ3,x 1.99 2.0174 0.0775 1.9956 0.1111 2.1199 0.1445
γ4,x 8.91 9.0299 0.1648 8.9335 0.1543 9.2366 0.3165
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Table 7. Model 1: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR = 20 dB,
probability of crossover = 0.07, probability of mutation = 0.02.

New algorithm h-NN LPNN

Parameters Real values Mean STD Mean STD Mean STD
h2(0, 0) 0.21 0.2554 0.1366 0.2523 0.1444 0.2334 0.1504
h2(1, 1) -1.62 -1.6244 0.2146 -1.4767 0.5111 -1.7567 0.3895
h2(2, 2) 1.41 1.4267 0.2623 1.6551 0.3459 1.5644 0.3123
h2(0, 1) 3.72 3.8866 0.2861 3.5988 0.2674 3.6790 0.2716
h2(0, 2) 1.86 1.9382 0.0682 2.2113 0.2215 2.1723 0.1473
h2(1, 2) 0.76 0.8145 0.1969 0.5866 0.1862 0.6877 0.2566
γ2,x 0.84 0.786 0.0971 0.884 0.0657 0.899 0.0855

Table 8. Model 2: comparison of the identified Volterra parameters with respect to the real ones (under Gaussian excitation). SNR
= 20 dB, probability of crossover = 0.095, probability of mutation = 0.02.

New algorithm h-NN LPNN

Parameters Real values Mean STD Mean STD Mean STD
h2(0, 0) 0.21 0.2326 0.0911 0.1970 0.1151 0.2265 0.1310
h2(1, 1) -1.62 -1.6441 0.0251 -1.7221 0.0878 -1.8111 0.2442
h2(2, 2) 1.41 1.3955 0.1827 1.5778 0.2222 1.5794 0.2657
h2(0, 1) 3.72 3.7732 0.2491 3.5652 0.1999 3.7278 0.2643
h2(0, 2) 1.86 1.8901 0.0606 1.7888 0.0578 1.8259 0.1116
h2(1, 2) 0.76 0.7088 0.0824 0.8033 0.1565 0.6928 0.2245
γ2,x 0.84 0.8511 0.0354 0.919 0.0522 0.855 0.0551

Stathaki, T. and Scohyers, A. (1997). A constrained optimisation
approach to the blind estimation of Volterra kernels,
IEEE International Conference on Acoustics, Speech, and
Signal Processing, ICASSP-97, Munich, Germany, pp.
2373–2376.

Stoica, P. and Soderstorm, T. (1982). Instrumental variable
methods for identification of Hammerstein systems, Inter-
national Journal of Control 35(3): 459–476.

Tan, H.Z. and Chow, T.W.S. (2000). Blind identification of
quadratic nonlinear models using neural networks with
higher order cumulants, IEEE Transactions on Industrial
Electronics 47(3): 687–696.

Tseng, C.H. and Powers, E.J. (1995). Identification of cubic
systems using higher order moments of i.i.d. signals, IEEE
Transactions on Signal Processing 43(7): 1733–1735.

Tsoulkas, V., Koukoulas, P. and Kalouptsidis, N. (2001).
Identification of input-output bilinear system using
cumulants, IEEE Transactions on Signal Processing
49(11): 2753–2761.

Vasconcelos, J.A., Ramirez, J.A., Takahashi, R.H.C. and
Saldanha, R.R. (2001). Improvement in genetic algorithms,
IEEE Transactions on Magnetics 37(5): 3414–3417.

Zhang, S. and Constantinides, A.G. (1992). Lagrange
programming neural networks, IEEE Transactions on Cir-
cuits and Systems: Analog and Digital Signal Processing
39(7): 441–452.

Imen Cherif received the B.Sc. degree in math-
ematics from the University of Sciences of Tunis
in 1999, and the D.E.A. degree in electrical en-
gineering from the High School of Science and
Engineering of Tunis (ESSTT Tunisia) in 2002.
She is currently preparing her Ph.D. in nonlinear
system identification and is an assistant professor
in the University of Elmanar, Tunisia. Her re-
search interests are focused on nonlinear system
identification with evolutionary methods such as

genetic algorithms and fuzzy logic.

Farhat Fnaiech received the B.Sc. degree in
mechanical engineering in 1978 from the High
School of Sciences and Techniques of Tunis, and
the Master’s degree in 1980. He obtained the
Ph.D. degree in electrical engineering from the
same school in 1983, and the Doctorate Es Sci-
ence in physics from the Faculty of Sciences of
Tunis in 1999. He is currently a professor at the
High School of Science and Engineering of Tu-
nis. He is a senior member of the IEEE and has

published over 150 research papers in many journals and international
conferences. He has been a general chairman and a member of the in-
ternational board committee of many international conferences. He is an
associate editor of IEEE Transactions on Industrial Electronics. He has
served as an IEEE chapter committee coordination sub-committee dele-
gate of Africa Region 8. His main research areas are nonlinear adaptive
signal processing, nonlinear control of power electronic devices, digital
signal processing, image processing, intelligent techniques and control.



874 I. Cherif and F. Fnaiech

Table 9. Model 2: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR= 3 dB,
probability of crossover = 0.09, probability of mutation = 0.02.

New algorithm h-NN LPNN

Parameters Real values Mean STD Mean STD Mean STD
h2(0, 0) 0.21 0.2005 0.1433 0.2456 0.1756 0.3467 0.1564
h2(1, 1) -1.62 -1.5810 0.2567 -1.6689 0.2679 -1.5568 0.2665
h2(2, 2) 1.41 1.4221 0.0647 1.4527 0.2122 1.5627 0.0722
h2(0, 1) 3.72 3.8642 0.1982 3.5822 0.0889 3.8202 0.3667
h2(0, 2) 1.86 1.8719 0.0894 2.0001 0.5213 2.1087 0.0865
h2(1, 2) 0.76 0.7183 0.1884 0.7557 0.2222 0.7433 0.2237
γ2,x 1 1.0665 0.0656 0.8893 0.1054 0.9753 0.0842
γ3,x 1.99 1.9444 0.1667 2.1234 0.2119 2.0024 0.1839
γ4,x 8.91 9.0189 0.2002 9.3250 0.2880 9.1237 0.2543

Table 10. Model 2: comparison of the identified Volterra parameters with respect to the real ones (under i.i.d. excitation). SNR = 20
dB, probability of crossover = 0.09, probability of mutation = 0.02.

New algorithm h-NN LPNN

Parameters Real values Mean STD Mean STD Mean STD
h2(0, 0) 0.21 0.2245 0.0621 0.2254 0.0665 0.2321 0.0865
h2(1, 1) -1.62 -1.6434 0.0333 -1.6445 0.0618 -1.6355 0.0576
h2(2, 2) 1.41 1.4374 0.1154 1.4333 0.1538 1.4276 0.1533
h2(0, 1) 3.72 3.7258 0.0536 3.7818 0.0755 3.7500 0.0777
h2(0, 2) 1.86 1.9032 0.1675 1.8999 0.2657 1.8533 0.1114
h2(1, 2) 0.76 0.7518 0.0431 0.7654 0.1573 0.7721 0.1319
γ2,x 1 1.0183 0.0311 0.9872 0.0751 1.0144 0.0616
γ3,x 1.99 2.0096 0.1186 2.0002 0.1848 1.9999 0.1355
γ4,x 8.91 8.9322 0.0946 9.1058 0.08332 9.0756 0.1563

Appendix

Cumulants

Let x = [x1, x2, . . . , xk]
T denote a vector of real random

variables. A cumulant of these random variables is defined
as a coefficient of the vector v = [v1, v2, . . . , vk]

T in
the Taylor series expansion (if it exists) of the cumulant
generating function K(v) = ln(E(exp(jvTx))).

The cumulant is therefore defined in terms of its joint
moments of orders up to. For zero-mean real random
variables, the first, second, and third order cumulants are
given by

cum (x1) = E {x1} (A− 1), (A1)

cum(x1, x2) = E {x1x2} ,
cum(x1, x2,x3) = E {x1x2x3} .

In the case of nonzero mean real random variables, one
replaces xi by xi − E {xi} in these formulas. Let
{x (n)} be a zero-mean k-th order stationary discrete time
random process. The k-th order cumulant of this process,
denoted ck,x (τ1, τ2, . . . , τk−1), is defined as the joint
k-th order cumulant of the random variables x(n), x(n +

τ1), . . . , x (n+ τk−1), i.e.,

ck,x (τ1, τ2, . . . , τk−1)

= cum (x(n), x(n + τ1), . . . , x (n+ τk−1)) . (A2)

Because of the stationarity assumption, the k-th
order cumulant is only a function of the k − 1 lags
τ1, τ2, . . . , τk−1. The τ1−τ2−· · ·−τk−1 space constitutes
the domain of support for ck,x (τ1, τ2, . . . , τk−1)

From (A1) and (A2), the second and third order
cumulants of zero-mean are given by

c2,x (τ) = E {x(n)x(n + τ)} ,
c3,x (τ1, τ2) = E {x(n)x(n + τ1)x (n+ τ2)} .
Of course, the second order cumulant C2,x (τ) is

just the autocorrelation of x(n). We shall use a more
familiar notation for autocorrelation, namely, rx (τ),
interchangeably with C2,x (τ) .

Fundamental properties of cumulants may be
summarized as follows:

(i)

cum [β1x1, β2x2, . . . , βkxk]

=

(
k∏

i=1

βi

)
cum [x1, x2, . . . , xk]
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where {βi}i=1,2,...,k are constants.

(ii) Cumulants are symmetric functions in their
arguments:

cum [x1, x2, . . . , xk] = cum [xi1, xi2, . . . , xik] ,

where (i1, i2, . . . , ik) are obtained from a permutation of
(1, 2, . . . , k) .

(iii) Cumulants are additive in their arguments:

cum [y + z, x1, x2, . . . , xk]

= cum [y, x1, x2, . . . , xk] + cum [z, x1, x2, . . . , xk] ,

where y and z are two random variables.

(iv) If the random variables {xi}i=1,2,...,k can
be divided into two or more groups which are
statistically independent, their order cumulant is zero:
cum [x1, x2, . . . , xk] = 0.
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