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One of the problems in the analysis of the set of images of a moving object is to evaluate the degree of freedom of motion
and the angle of rotation. Here the intrinsic dimensionality of multidimensional data, characterizing the set of images, can
be used. Usually, the image may be represented by a high-dimensional point whose dimensionality depends on the number
of pixels in the image. The knowledge of the intrinsic dimensionality of a data set is very useful information in exploratory
data analysis, because it is possible to reduce the dimensionality of the data without losing much information. In this
paper, the maximum likelihood estimator (MLE) of the intrinsic dimensionality is explored experimentally. In contrast to
the previous works, the radius of a hypersphere, which covers neighbours of the analysed points, is fixed instead of the
number of the nearest neighbours in the MLE. A way of choosing the radius in this method is proposed. We explore which
metric—Euclidean or geodesic—must be evaluated in the MLE algorithm in order to get the true estimate of the intrinsic
dimensionality. The MLE method is examined using a number of artificial and real (images) data sets.
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1. Introduction

Image analysis and understanding is a very challenging
topic in exploratory data analysis. Recently, manifold
learning methods (locally linear embedding (LLE)
(Roweis and Saul, 2000; Saul and Roweis, 2003),
isometric feature mapping (ISOMAP) (Tenenbaum et al.,
2000), Laplacian eigenmaps (LEs) (Belkin and Niyogi,
2003), Hessian LLE (HLLE) (Donoho and Grimes, 2005),
local tangent space analysis (LTSA) (Zhang and Zha,
2004), etc., see also the work of Lee and Verleysen
(2007)) have been often applied in image processing. The
practical value of these methods is shown in different
applications such as face pose detection (Li et al., 2001;
Hadid et al., 2002), face recognition (Yang, 2002; Zhang
et al., 2004), the analysis of facial expressions (Chang
et al., 2004; Elgammal and su Lee, 2004b), human
motion data interpretation (Jenkins and Mataric, 2004),
gait analysis (Elgammal and su Lee, 2004a; 2004b), wood
texture analysis (Niskanen and Silven, 2003), and medical
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data analysis (Varini et al., 2004). The dimensionality
of a manifold is very important in manifold learning. In
this paper, the way how to determine the true value of the
dimensionality is proposed.

In image analysis, we are confronted with data that
are of a very high dimensionality, because each image
is described by a large number of pixels of different
colour. So, it is very difficult to understand these data.
Although data are considered in a high-dimensional space,
they are in fact either points of a nonlinear manifold
of some lower dimensionality or points close to that
manifold. Thus, one of the major problems is to find the
exact dimensionality of the manifold. Afterwards, it is
reasonable to transfer the data points that lie on or near
to this manifold into the space whose dimensionality is
coincident with the manifold dimensionality. As a result,
the dimensionality of the data set will be reduced to that
of a manifold. Therefore, the problem is to disclose the
manifold dimensionality, i.e., the intrinsic dimensionality
of the analysed data.

The intrinsic dimensionality of a data set is usually
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defined as the minimal number of parameters or latent
variables necessary to describe the data (Lee and
Verleysen, 2007). Latent variables are still often called
degrees of freedom of a data set (Tenenbaum et al., 2000;
Lee and Verleysen, 2007). Let the dimensionality of
the analysed data be n. High-dimensional data sets can
have meaningful low-dimensional structures hidden in
the observation space, i.e., the data are of low intrinsic
dimensionality d (d � n). In more general terms,
following Fukunaga (1982), a data set X ⊂ R

n is said to
have the intrinsic dimensionality equal to d if its elements
lie entirely within the d-dimensional subspace of R

n

(where d < n) (Camastra, 2003).
Dimensionality reduction or visualization methods

are recent techniques to discover knowledge hidden
in multidimensional data sets (Shin and Park, 2011;
Dzemyda et al., 2013; Kulczycki and Łukasik, 2014).
Recently, a lot of manifold learning methods have been
proposed to solve the problem of nonlinear dimensionality
reduction. They all assume that data distribute on an
intrinsically low-dimensional manifold and reduce the
dimensionality of data by investigating their intrinsic
structure. However, all manifold learning algorithms
require the intrinsic dimensionality of data as a key
parameter for implementation. In recent years, the
ISOMAP and LLE have become of great interest. They
avoid nonlinear optimization and are simple to implement.
However, both ISOMAP and LLE methods need the
precise information on both the input parameters k
for the neighbourhood identification and the intrinsic
dimensionality d of the data set. The ways of
selecting the value of the parameter k are proposed and
investigated by Kouropteva et al. (2002), Karbauskaite
et al. (2007; 2008; 2010), Karbauskaitė and Dzemyda
(2009) or Álvarez-Meza et al. (2011). If the intrinsic
dimensionality d is set larger than it really is, much
redundant information will also be preserved; if it is set
smaller, useful information of the data could be lost during
the dimensionality reduction (Qiao and Zhang, 2009).

The term of a manifold is defined by Dzemyda
et al. (2013) and Gong et al. (2014). A manifold is an
abstract topological mathematical space in which the area
of each point is similar to the Euclidean space; however,
the global structure of a manifold is more complex.
Therefore, operations performed on the manifold require
choosing a metric. The minimum length curve over all
possible smooth curves on the manifold between two
points is called a geodesic, and the length of this curve
stands for a geodesic distance; i.e., the geodesic metric
measures lengths along the manifold, contrary to the
Euclidean one, which measures lengths along the straight
lines (Lee and Verleysen, 2007; Gong et al., 2014).

The simplest manifolds are a line and a circle that are
one-dimensional. A plane and the surface of a ball, a torus
are two-dimensional manifolds, etc. The area of each

point on the one-dimensional manifold is similar to a line
segment. The area of each point on the two-dimensional
manifold is similar to a flat region. A simple example is
given in Fig. 1. Data points of a two-dimensional manifold
(Fig. 1(a)) are embedded in three dimensions in three
different ways: a linear embedding (plane), Fig. 1(b), an
S-shape, Fig. 1(c), and a “Swiss roll”, Fig. 1(d).

In practice, more complicated examples of data
manifolds are met in image processing. Each picture is
digitized; i.e., a data point consists of colour parameters
of pixels, and, therefore, it is of very large dimension.
A question arises: Is the dimensionality of these data
really so large or maybe data points lie on a manifold of
much lower dimensionality? Data are often comprised of
pictures of the same object, by turning the object gradually
at a certain angle, or taking a picture of the object at
different moments, etc. In this way, the points slightly
differ from one another, making up a certain manifold.
Detailed examples are given by Tenenbaum et al. (2000),
Kouropteva et al. (2002), Saul and Roweis (2003) (face
analysis) and Karbauskaitė et al. (2007) (comparison of
pictures of an object rotated at different angles). It is
often very important to understand and analyse these
pictures in terms of their variability, for example, to view
how a position of a human being, facial expression or
a turn of the same object are changing (Weinberger and
Saul, 2006). It is useful when identifying an unknown
position of an object if we have a set of pictures of the
object in different positions.

In the work of Levina et al. (2007), the estimated
intrinsic dimensionality is applied to a real problem,
i.e., to the issue of determining the number of pure
components in a mixture from Raman spectroscopy
data. The authors show how the estimate of the
intrinsic dimensionality corresponds to the number of
pure components. Having an accurate estimate of the
number of pure components, it saves time in component
extraction, etc. Another possible application is given by
Karbauskaitė et al. (2011) as well as Karbauskaitė and
Dzemyda (2014) to find the number of degrees of freedom
of motion of the object in a set of pictures.

Due to an increased interest in dimensionality
reduction and manifold learning, a lot of techniques
have been proposed in order to estimate the intrinsic
dimensionality of a data set (Camastra, 2003; Brand,
2003; Costa and Hero, 2004; Kégl, 2003; Hein and
Audibert, 2005; Levina and Bickel, 2005; Weinberger and
Saul, 2006; Qiao and Zhang, 2009; Yata and Aoshima,
2010; Mo and Huang, 2012; Fan et al., 2013; Einbeck and
Kalantan, 2013; He et al., 2014).

Techniques for intrinsic dimensionality estimation
can be divided into two main groups (van der Maaten,
2007; Einbeck and Kalantan, 2013): (1) estimators
based on the analysis of local properties of the data
(the correlation dimension estimator (Grassberger and
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Fig. 1. Data points of a two-dimensional manifold (a) embedded in three dimensions: linear embedding (plane) (b), S-shape (c), “Swiss
roll” (d).

Procaccia, 1983), the nearest neighbour dimension
estimator (Verveer and Duin, 1995; Camastra, 2003;
Carter et al., 2010), the maximum likelihood estimator
(MLE) (Levina and Bickel, 2005), etc.), and (2)
estimators based on the analysis of global properties
of the data (the eigenvalue-based estimator (Fukunaga
and Olsen, 1971; Camastra, 2003), the packing numbers
estimator (PNE) (Kégl, 2003), and the geodesic minimal
spanning tree (GMST) estimator (Costa and Hero, 2004),
etc.). Local intrinsic dimensionality estimators are based
on the idea that the number of data points that are covered
by a hypersphere of some radius r around a given data
point grows in proportion to rd, where d is the intrinsic
dimensionality of the data manifold around that point. As
a result, the intrinsic dimensionality d can be estimated
by measuring the number of data points, covered by
a hypersphere with a growing radius r. While the
local estimators of the intrinsic dimensionality compute
the average over the local estimates of the intrinsic
dimensionality, the global estimators consider the data as
a whole when estimating the intrinsic dimensionality.

Multiple novel applications in local intrinsic
dimensionality estimation (anomalous activity in router
networks, data clustering, image segmentation, etc.) are
presented by Carter et al. (2010). The authors show the
advantage of local intrinsic dimensionality estimation
compared with the global one. They show that, by
estimating the dimensionality locally, they are able to
extend the use of dimensionality estimation in many
applications that are not possible in global estimation.

Intrinsic dimension estimation methods can be
categorized in another way, too, for example, into
projection techniques and geometric approaches (Qiao
and Zhang, 2009; Yata and Aoshima, 2010; Fan et al.,
2013). Projection techniques project the data onto a
low-dimensional space. The intrinsic dimensionality may
be estimated by comparing the projections to the space
of varying dimensionality with the initial data set. Such
methods include: principal component analysis (PCA)
and various PCA modifications, multidimensional scaling
methods (MDS), nonlinear manifold learning methods

(LLE, ISOMAP, LE, HLLE, etc.) (Camastra, 2003; Lee
and Verleysen, 2007). Geometric techniques find the
intrinsic dimensionality by investigating the geometric
structure of data. Geometric methods are mostly
based on fractal dimensions (box-counting dimension
or capacity dimension (Camastra, 2003), correlation
dimension (Grassberger and Procaccia, 1983), packing
dimension (PNE) (Kégl, 2003), etc.) or nearest
neighbour distances (Fukunaga–Olsen’s algorithm, the
near neighbour algorithm, topology representing network
based methods (TRN) (Camastra, 2003), the incising balls
method (Qiao and Zhang, 2009), the k-NNG method
(Costa and Hero, 2005), the geodesic minimal spanning
tree (GMST) (Costa and Hero, 2004), and the maximum
likelihood estimator (Levina and Bickel, 2005), etc.). A
good survey of intrinsic dimension estimation methods is
given by Camastra (2003).

In this paper, the maximum likelihood estimator of
the intrinsic dimensionality d is analysed. The way of
choosing the parameter r is proposed in this method.

2. Maximum likelihood estimator of
intrinsic dimensionality

The maximum likelihood estimator (Levina and Bickel,
2005) is one of the local estimators of the intrinsic
dimensionality. Similarly to the correlation dimension and
the nearest neighbour dimension estimator, the maximum
likelihood estimator of the intrinsic dimensionality
estimates the number of data points covered by a
hypersphere with a growing radius r. In contrast to the
former two techniques, the maximum likelihood estimator
does so by modelling the number of data points inside the
hypersphere as a Poisson process.

A detailed algorithm of the MLE is provided by
Levina and Bickel (2005). The idea is given in the sequel.

The analysed data set X consists ofmn-dimensional
points Xi = (xi1, . . . , xin), i = 1,m (Xi ∈ R

n). The
MLE finds the intrinsic dimensionality dMLE of the data
set X .

In the MLE algorithm, it is necessary to look for the
neighbouring data points. The search for the neighbours
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of each point Xi can be organized in two ways: (i) by
the fixed number k of the nearest points from Xi, starting
from the closest point to the k-th point according to the
distance, (ii) by all the points within some fixed radius r of
a hypersphere, whose center is the point Xi. In the works
of Tenenbaum et al. (2000), Levina and Bickel (2005), as
well as Karbauskaitė et al. (2011), the k points, obtained
in the first case, are called the k nearest neighbours of Xi.

Levina and Bickel (2005) provide a formula to
estimate the intrinsic dimensionality of the data point Xi:

dr (Xi) =

⎡
⎣ 1

N(r,Xi)

N(r, Xi)∑
j=1

log
r

Tj(Xi)

⎤
⎦
−1

, (1)

where Tj(Xi) is the radius of the smallest hypersphere
that is centred at Xi and contains j nearest neighbouring
data points, i.e., Tj(Xi) is the Euclidean distance
d(Xi, Xij) from the pointXi to the j-th nearest neighbour
Xij within the hypersphere centred at Xi; N(r,Xi)
counts the data points that are within the distance r from
Xi, i.e., it is the number of data points among Xs, s =
1,m, i �= s, that are covered by a hypersphere with the
centre Xi and the radius r.

However, according to the authors, in practice, it
is more convenient to fix the number k of the nearest
neighbours rather than the radius r of the hypersphere.
The maximum likelihood estimator given in the formula
(1) then becomes

dk (Xi) =

⎡
⎣ 1

k − 1

k−1∑
j=1

log
Tk(Xi)

Tj(Xi)

⎤
⎦
−1

, (2)

where Tk(Xi) represents the radius of the smallest
hypersphere with the centreXi that covers k neighbouring
data points. Levina and Bickel (2005) show that one could
divide by k − 2, rather than k − 1, to make the estimator
asymptotically unbiased:

dk (Xi) =

⎡
⎣ 1

k − 2

k−1∑
j=1

log
Tk(Xi)

Tj(Xi)

⎤
⎦
−1

. (3)

It is clear from the above equations that the estimate
depends on the parameter k (or the radius r of the
hypersphere), and it also depends on the point Xi.
Sometimes, the intrinsic dimensionality varies as a
function of the location (Xi) in the data set, as well as
the scale (k or r). Thus, it is a good idea to have estimates
of the intrinsic dimensionality at different locations and
scales.

Levina and Bickel (2005) assume that all the data
points come from the same manifold, and therefore they
average the estimated dimensions over all the observations

(m is the number of data points):

dk=
1

m

m∑
i=1

dk (Xi) . (4)

The choice of k affects the estimate. In general, for the
MLE to work well, the hypersphere should be small and,
at the same time, contain rather many points. Levina
and Bickel (2005) choose the value of the parameter k
automatically: in some heuristic way they simply average
over a range of small to moderate values k = k1, . . . , k2
to get the final estimate,

d̂MLE=
1

k2−k1+1

k2∑
k=k1

dk. (5)

According to the experimental investigations, Levina
and Bickel (2005) recommend k1 = 10 and k2 = 20.
However, these estimates are valid for some fixed data sets
only.

In the work of Karbauskaitė et al. (2011), the way of
achieving good estimates of the intrinsic dimensionality
by the MLE method is proposed. Since it is not known
how to choose the values of the parameters k1 and k2 in
the general case, by analysing the MLE algorithm, the
authors use only one control parameter k, the number
of the nearest neighbours for each data point, instead of
two control parameters k1 and k2. The MLE algorithm
is explored by evaluating two types of metrics: Euclidean
and geodesic. In both the cases, the values dk (4) of the
MLE are calculated with different values k of the nearest
neighbours. In such a way, dependences of the estimate
of the intrinsic dimensionality of data on the number k of
the nearest neighbours are obtained. The authors choose
such a value dk of the MLE that remains stable in a
long interval of k. But this method requires a human
participation in making a decision.

Levina et al. (2007) suggest to select the value of
k equal to 20 on the basis of a dataset with the known
number of pure components in the mixture of Raman
spectroscopy data.

This problem is considered by Carter et al. (2010)
as well. The authors state that one of the keys to local
dimensionality estimation is defining the value of k. There
must be a significant number of samples in order to obtain
a proper estimate, but it is also important to keep a small
sample size as to (ideally) only include samples that lie
on the same manifold. Although the authors agree that a
more definitive method of choosing k is necessary, Carter
et al. (2010) arbitrarily choose k, based on the size of the
data set.

3. Choice of the parameter r in the MLE

Levina and Bickel (2005) state that a more convenient way
to estimate the intrinsic dimensionality of data is to fix
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the number k of neighbours instead of the radius r of the
hypersphere. As far as we know, everyone who has been
investigating the MLE until now has used the formula (3),
too. For our investigations, we use the formula (1), i.e., we
fix the radius r of the hypersphere instead of the number k
of neighbours. Then, we suggest averaging the estimated
dimensions over all the m data points and get the final
estimate:

d̂MLE=
1

m

m∑
i=1

dr (Xi) . (6)

In (6), the value of d̂MLE is a real number. Assuming
that the intrinsic dimensionality of a data set is an integer
number, the value of d̂MLE is rounded to the nearest
integer. We denote this integer value by dMLE.

Significant features of our contribution are as
follows:

(i) We propose an automatic way to select the value of
the parameter, i.e., the radius r of the hypersphere in
the formula (1).

(ii) We show that the geodesic distances between data
points must be used instead of the Euclidean ones
when estimating the intrinsic dimensionality.

The geodesic distance is the length of the shortest
path between two points along the surface of a manifold.
Here the Euclidean distances are used when calculating
the length of the shortest path. In order to compute the
geodesic distances between the points X1, X2, . . . , Xm,
it is necessary to set some number of the nearest points
(neighbours) of each pointXi on the manifold. The search
for the neighbours of each point Xi can be organized
in two ways: (i) by the fixed number kgeod of the
nearest points from Xi, (ii) by all the points within
some fixed radius of a hypersphere whose center is the
point Xi. When the neighbours are found, a weighed
neighbourhood graph over the points is constructed: each
point Xi is connected with its neighbours; the weights
of edges are Euclidean distances between the point Xi

and its neighbours. Using one of the algorithms for
the shortest path distance in the graph, the shortest path
lengths between the pairs of all points are computed.
These lengths are estimates of the geodesic distances
between the points.

Let the radius r of the hypersphere be equal to the
average distance calculated in the following way:

1. The distances d(Xi, Xj), i < j, between all the data
points Xi, i = 1,m, are calculated.

2. The distances d(Xi, Xj) are distributed into l
intervals A1, . . . , Al.

3. A histogram is drawn with reference to the
intervals A1, . . . , Al (the abscissa axis corresponds

to distances, the ordinate axis corresponds to the
frequency—the number of distances that fall in each
interval).

4. The middle point d(j), j = 1, l, of each interval is
chosen and the number f(j), j = 1, l, of distances in
each interval is fixed.

5. The average distance between data points is given by
the expected value of D = {d (j), j = 1, l}; i.e., the
value of the parameter r is calculated by the formula

r = E (D) =

l∑
j=1

d (j) p(j), (7)

where p (j), j = 1, l, is a frequency estimator of
probability given by the formula

p(j) =
f(j)∑l
z=1 f(z)

. (8)

We chose the average pairwise distance as an
estimate of r. This idea comes from probability theory
and statistics. The expected value of a random variable
is the integral of a random variable with respect to its
probability measure. The expected value of a random
variable is the average of all the values it can take, and
thus the expected value is what one expects to happen on
average. If the values of a random variable are not equally
probable, then the simple average must be replaced by the
weighted average, which takes into account the fact that
some values are more likely than others. In our case, the
weighted average is defined by the formula (7).

The algorithm proposed above has the parameter
r whose value is calculated automatically by the
formula (7), as well as two other parameters l and kgeod
that should be set manually. We took l = 100 in the
experiments. The value of l is chosen rather large because
we do not try to optimize it, but we seek a more exact
result. Moreover, the larger value of l would increase
computing expenses. Since kgeod defines the number of
the nearest neighbours used to construct a weighted graph
while looking for geodesic distances, it is reasonable to
pick the value of this parameter rather small, because
too large a value of kgeod may lead to an inaccurate
estimate of the intrinsic dimensionality. The structure of a
nonlinear manifold is ignored when kgeod is too large; i.e.,
the nearest neighbours of a point may be points that are
distant on the manifold. If the value of kgeod is too small,
then the neighbourhood graph is not a connected one; i.e.,
there are some points between which there is no path in the
graph. As a result, geodesic distances between all the data
points cannot be calculated and the estimate dMLE is not
obtained. The experiments and detailed recommendations
for selecting the value of kgeod are presented in Section 5.
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In the next section, it is shown that good results are
obtained if the geodesic distances are used and the value of
the parameter r is calculated according to the formula (7).

An advantage of this algorithm, as compared with
that described by Karbauskaitė et al. (2011), is that there
is no need to have dependences of the estimate of the
intrinsic dimensionality on the parameter, because we
obtain the value of the parameter r automatically. These
dependences (Figs. 3, 5, 7, 9, 11, 13, 15) are drawn here to
illustrate the place of the results (the value r of the average
distance and the intrinsic dimensionality corresponding
to this value r) among other possible values of distances
only.

4. Data sets

The following data sets were used in the experiments:

• 1000 three-dimensional data points (m = 1000,
n = 3) that lie on a nonlinear two-dimensional
S-shaped manifold (Fig. 2(a)).

• 1000 three-dimensional data points (m = 1000,
n = 3) that lie on a nonlinear two-dimensional
8-shaped manifold (Fig. 2(b)). The components
(x1, x2, x3) of these data are calculated by the
parametric equations below:

x1 = cos(v),

x2 = sin(v) cos(v),

x3 = u,

where v ∈ [2π/m, 2π], u ∈ (0; 5), m is the number
of data points.

• 1801 three-dimensional data points (m = 1801,
n = 3) that lie on a nonlinear two-dimensional
manifold—right helicoid (Fig. 2(c)). The
components (x1, x2, x3) of these data are
calculated by the parametric equations below:

x1 = u cos(v),

x2 = u sin(v),

x3 = 0.5v,

where u, v ∈ [0, 10π].

• 1801 three-dimensional data points (m = 1801,
n = 3) that lie on a nonlinear one-dimensional
manifold—spiral (Fig. 2(d)). The components
(x1, x2, x3) of these data are calculated by the
parametric equations below:

x1 = 100 cos(t),

x2 = 100 sin(t),

x3 = t,

where t ∈ [0, 10π].

• 1000 three-dimensional data points (m = 1000,
n = 3) that lie on a nonlinear one-dimensional
manifold—helix (Fig. 2(e)). The components
(x1, x2, x3) of these data are calculated by the
parametric equations below:

x1 =
(
2 + cos(8t)

)
cos(t),

x2 =
(
2 + cos(8t)

)
sin(t),

x3 = sin(8t),

where t ∈ [2π/m, 2π], m is the number of data
points.

• A data set of uncoloured (greyscale) pictures of
a rotated duckling (Nene et al., 1996) (samples
of pictures are shown in Fig. 2(f)). The data are
comprised of uncoloured pictures of the same
object (a duckling), obtained by a gradually
rotated duckling at the 360◦ angle. The number of
pictures (data points) is m = 72. The images
have 128 × 128 greyscale pixels, therefore
the dimensionality of points characterizing
each picture in a multidimensional space is
n = 16384, and the intensity value (shade of
grey) is from the interval [0, 255] (source database:
www.cs.columbia.edu/CAVE/software/
softlib/coil-20.php. The coloured analogue
of the set of rotating duckling is presented at
www.cs.columbia.edu/CAVE/software/
softlib/coil-100.php). The number of
pictures (data points) is m = 72. The images
have 128 × 128 colour pixels, therefore the
dimensionality of points characterizing each
picture in a multidimensional space is three times
larger compared with the greyscale pictures, i.e.,
n = 49152, and the colour value is from the interval
[0, 255].

• Data sets of coloured pictures of rotated objects
(Nene et al., 1996). The data are comprised of
coloured pictures of the same object, obtained
by gradually rotating it at the 180◦ angle. Each
picture is digitized; i.e., a data point consists of
colour parameters of pixels, and, therefore, it
is of very large dimensionality. The number of
pictures (data points) is m = 35. The images have
128 × 128 colour pixels, therefore n = 49152. At
www.cs.columbia.edu/CAVE/software/
softlib/coil-100.php, 100 data sets of this
type are stored.

• A data set of uncoloured (greyscale) images of a
person’s face (Tenenbaum et al., 2000) (samples of
images are shown in Fig. 2(h)). The data consist
of many photos of the same person’s face observed
in different poses (left-and-right pose, up-and-down

www.cs.columbia.edu/CAVE/software/
softlib/coil-20.php
www.cs.columbia.edu/CAVE/software/
softlib/coil-100.php
www.cs.columbia.edu/CAVE/software/
softlib/coil-100.php
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Fig. 2. Data sets of manifolds: S-shaped manifold (a), 8-shaped manifold (b), right helicoid (c), spiral (d), helix (e), pictures of a
rotated duckling (f), images of a person’s face (g).

pose) and lighting conditions, in no particular order.
The number of photos (data points) is m = 698.
The images have 64× 64 greyscale pixels, therefore
the dimensionality of points that characterize each
photo in a multidimensional space is n = 4096
(source database: isomap.stanford.edu/
datasets.html).

5. Experimental exploration of the MLE

In this section, the MLE method is investigated
experimentally with various artificial and real data
sets. The analysed data points of artificial data sets
(Figs. 2(a)–(e)) lie on manifolds, whose dimensionality
is known in advance. Therefore, we will be able to
establish precisely whether the estimate of the intrinsic
data dimensionality obtained by the MLE is true. As a
result, we will be able to disclose the relation between the
intrinsic dimensionality of the data set of images and the
number of degrees of freedom of a possible motion of the
object.

The aim of these investigations is to find out (i)
which distances (Euclidean or geodesic) are better to be
used in the MLE algorithm while estimating the similarity

between data points and (ii) how to select the value of the
parameter r in order to get the true estimate of the intrinsic
dimensionality of data using the MLE.

5.1. Analysis of artificial data sets. The first
investigation is performed with the points of the
two-dimensional S-shaped manifold (m = 1000, n = 3),
(Fig. 2(a)). First, after estimating the distances (Euclidean
or geodesic (kgeod = 5)) between all the data points,
dependences of the estimate dMLE on those distances,
i.e., the possible values of the parameter r, are calculated.
In Fig. 3, when the value of the distance varies from
the least to the largest one, the estimate of the intrinsic
dimensionality obtained by the MLE acquires two values:
1 or 2. This means that the value of dMLE depends on the
distance. That is valid in both cases: (a) the Euclidean
distance, (b) geodesic distance. In Fig. 4, histograms
of the distribution of distance values ((a) the Euclidean
and (b) the geodesic) between the points of the S-shaped
manifold are shown. The frequency of various distances
is different. The average distance (the value of the control
parameter r) is calculated by the formula (7). In the
case of the Euclidean distances, r = 2.81, dMLE = 2,
and, in the case of the geodesic distances r = 4.42,

isomap.stanford.edu/
datasets.html
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Fig. 3. Estimate of the intrinsic dimensionality depending on
distances (Euclidean (a), geodesic, kgeod = 5 (b)); data
set: the S-shaped manifold.
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Fig. 4. Histograms of Euclidean (a) and geodesic (kgeod = 5)
(b) distances between the data points of the S-shaped
manifold.

dMLE = 2. So, in both cases, the intrinsic dimensionality
of data points of the two-dimensional S-shaped manifold
is evaluated truly by the MLE.
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Fig. 5. Estimate of the intrinsic dimensionality depending on
distances (Euclidean (a), geodesic, kgeod = 5 (b)); data
set: the 8-shaped manifold.

The second investigation is performed with the
points of the two-dimensional 8-shaped manifold (m =
1000, n = 3); see Fig. 2(b). The third investigation
is performed with the points of the two-dimensional
manifold—helicoid (m = 1801, n = 3); see Fig. 2(c).
The fourth investigation is performed with the points
(m = 1801, n = 3) of a spiral that is a one-dimensional
manifold (Fig. 2(d)). The results are shown in Figs. 5–10
and Table 1. As in the first experiment, in these three
experiments we see that the intrinsic dimensionality of the
data sets is evaluated exactly by the MLE, using both the
Euclidean and geodesic distances.

The fifth investigation is performed with the points
(m = 1000, n = 3) of the helix that is a one-dimensional
manifold (Fig. 2e). The results are given in Figs. 11,
12 and Table 1. Figure 11(a) shows that the estimate
of the intrinsic dimensionality obtained by the MLE
while evaluating the Euclidean distances has the values
{1, 2, 6}. However, if the geodesic distances (kgeod = 2)
are used, the obtained value of the estimate is a single
one and dMLE = 1. In Fig. 12, histograms of the
distribution of the distance values ((a) Euclidean, (b)
geodesic) between the points of the helix are shown.
We can see that the geodesic distances are distributed
almost uniformly. However, this cannot be said about the
Euclidean distances. The value of the average distance,
i.e., the value of the control parameter r, is calculated by
the formula (7). In the case of the Euclidean distances,
r = 2.92, dMLE = 2, and, in the case of the geodesic
distances, r = 13.01, dMLE = 1. Consequently, we
have the case where the value of dMLE is false if the
Euclidean distances are used. However, the intrinsic
dimensionality of the helix is evaluated exactly by the
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Fig. 6. Histograms of Euclidean (a) and geodesic (kgeod = 5)
(b) distances between the data points of the 8-shaped
manifold.
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Fig. 7. Estimate of the intrinsic dimensionality depending on
distances (Euclidean (a) and geodesic, kgeod = 5 (b));
data set: the helicoid.

MLE if the geodesic distances are evaluated.

5.2. Analysis of images. A challenging idea is to apply
the manifold learning methods to high-dimensional data.
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Fig. 8. Histograms of Euclidean (a) and geodesic (kgeod = 5)
(b) distances between the data points of the helicoid.
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Fig. 9. Estimate of the intrinsic dimensionality depending on
distances (Euclidean (a), geodesic, kgeod = 2 (b)); data
set: the spiral.

One of the fields where such data appear is the analysis
of images. Let us have a set of images of some moving
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Fig. 10. Histograms of Euclidean (a) and geodesic (kgeod = 2)

(b) distances between the data points of the spiral.
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Fig. 11. Estimate of the intrinsic dimensionality depending on
distances (Euclidean (a), geodesic, kgeod = 2 (b)); data
set: the helix.

object. Each image is described by the number of pixels
of different colour. The dimensionality of such a data set
is equal to the number of pixels in the greyscale case, or
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Fig. 12. Histograms of Euclidean (a) and geodesic (kgeod = 2)
(b) distances between the data points of the helix.

it is even three times larger than the number of pixels
in the coloured case. So, the dimensionality of these
data is very large. Since the intrinsic dimensionality of
a data set is defined as the minimal number of latent
variables or features necessary to describe the data (Lee
and Verleysen, 2007), one can assume that there are latent
variables or features that characterize the motion of the
object in the images and their number is highly related
to that of degrees of freedom of a possible motion of
the object. Therefore, the minimal possible intrinsic
dimensionality of a data set of images should be equal to
the number of degrees of freedom of a possible motion
of the object. However, the true intrinsic dimensionality
may be larger than the number of degrees of freedom of a
possible motion of the object.

The high-dimensional data obtained from the set
of images (greyscale or coloured pictures of a rotated
duckling and photos of the same person’s face observed
in different poses) are investigated. Since a duckling
was gradually rotated at a certain angle on the same
plane, that is, without turning the object itself, these
data have only one degree of freedom (i.e., the minimal
intrinsic dimensionality of these data may be equal even
to 1). The person’s face, analysed by Tenenbaum et al.
(2000), has two directions of motion (two poses): the
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left-and-right pose and up-and-down pose. Therefore,
the high-dimensional data corresponding to these pictures
have two degrees of freedom; i.e., the minimal possible
intrinsic dimensionality of these data should be equal to 2.

The results of the investigation with the
high-dimensional data points (m = 72, n = 16384),
corresponding to real pictures of a rotated duckling
(Fig. 2(f)), are given in Figs. 13 and 14. Like in the
previous investigations, two dependences of the estimate
dMLE on the distances that are possible values of r are
calculated. Figure 13 shows that the estimate of the
intrinsic dimensionality obtained by the MLE, acquires
various values in both cases: (a) dMLE ∈ {2, 3, 4, 5, 6}
(Euclidean case (Fig. 13(a))) and (b) dMLE ∈ {1, 2, 3}
(geodesic case, kgeod = 3 (Fig. 13(b))). Thus, the value
of dMLE strongly depends on the chosen value of r. In
Fig. 14, histograms of the distribution of the distance
values ((a) Euclidean, (b) geodesic) between the points of
the data are shown. The value of the control parameter r
(average distance) is calculated by the formula (7). In the
case of the Euclidean distances, r = 10243, dMLE = 3,
and, in the case of the geodesic distances, r = 35798,
dMLE = 1.

Let us analyse the colour pictures of a rotated
duckling instead of greyscale ones and measure the
intrinsic dimensionality of this data set. The results
are as follows: in the case of the Euclidean distances,
r = 11260, dMLE = 3, and in the case of the geodesic
distances (kgeod = 3), r = 54919, dMLE = 1. The results
obtained show that, in the case of a rotated duckling,
the presence of colours in the pictures does not influence
the estimate of the intrinsic dimensionality as compared
with the greyscale case. Taking into account that the
minimal intrinsic dimensionality of these data is 1, the
value of dMLE is false if the Euclidean distances are
used. However, the minimal intrinsic dimensionality of
these data is evaluated truly by the MLE if the geodesic
distances between the data points are evaluated.

The next investigation is performed with the
high-dimensional data points (m = 698, n = 4096),
corresponding to photos of the same person’s face
observed in different poses with a different lighting
direction (Fig. 2(g)). We can see the results in Figs. 15 and
16. In the case of the Euclidean distances, we obtained
r = 20.19, dMLE = 4. When investigating the case
of geodesic distances, we used different values of kgeod,
i.e., the fixed number kgeod of the nearest points from
each data point Xi in the geodesic distance calculation
algorithm. We obtained r = 72.64 as kgeod = 4, r =
49.06 as kgeod = 10, and r = 45.78 as kgeod = 13,
but in all these cases dMLE = 2 (see Fig. 15(b)–(d)).
Obviously, in Fig. 15, we got different dependences of
the intrinsic dimensionality on geodesic distances, using
various values of the parameter kgeod. In the case of (b),
we see two possible values of dMLE: 2 and 1. In the case
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Fig. 13. Estimate of the intrinsic dimensionality depending on
distances (Euclidean (a), geodesic, kgeod = 3) (b); data
set: pictures of a rotated duckling.
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Fig. 14. Histograms of Euclidean (a) and geodesic (kgeod = 3)
(b) distances between the data points corresponding to
the pictures of a rotated duckling.

of (c), there are three possible values of dMLE: 3, 2, and
1. In the case of (d), it is possible to get even four values
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0 
1 
2 
3 
4 
5 
6 

0 5 10 15 20 25 30 35 40 

dMLE 

Euclidean distance 

r 

(a) (b)

0 
1 
2 
3 
4 

0 20 40 60 80 100 120 

dMLE 

Geodesic distance (kgeod = 10) 

r 
0 
1 
2 
3 
4 
5 

0 20 40 60 80 100 120 

dMLE 

Geodesic distance (kgeod = 13) 

r 

(c) (d)

Fig. 15. Estimate of the intrinsic dimensionality depending on distances (Euclidean (a), geodesic (b), (c), (d)); data set: photos of a
face.
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Fig. 16. Histograms of Euclidean (a) and geodesic distances (kgeod = 4 (b), kgeod = 10 (c), kgeod = 13 (d)) between the data points
corresponding to the photos of a face.

of dMLE with different distances: 4, 3, 2, and 1. It seems
as though the value of the parameter kgeod influences the
results obtained. However, despite different dependences
of dMLE on geodesic distances using different values
of kgeod (see different cases with the face data set in

Fig. 15(b)–(d)), the new way, proposed in Section 3, of
choosing the value of the parameter r automatically in the
MLE method yields the same value of dMLE = 2 in all
these cases, and this value is coincident with the number
of degrees of freedom of the face in the photos. So, there
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is no dependence of dMLE on kgeod in these cases; i.e., in
one particular case (face data set), the estimated intrinsic
dimensionality dMLE is the same for three different values
of kgeod. But what about other datasets? The experiments
with other data sets from Section 4 are carried out and are
concluded in Section 5.3.

The intrinsic dimensionality of the face data set
(Tenenbaum et al., 2000) is analysed in several papers.
It is shown by Tenenbaum et al. (2000) that the intrinsic
dimensionality of this data set is 3. Levina and Bickel
(2005) state that the estimated dimensionality of about 4 is
very reasonable. In the work of Karbauskaitė et al. (2011),
the estimated dimensionality is equal to 2 when geodesic
distances are used in the MLE algorithm, and it is equal to
4 or 5 when Euclidean distances are used in the MLE. A
question arises as to which estimated dimensionality can
be taken as the true intrinsic dimensionality.

In order to answer this question, let us analyse
the face database (Tenenbaum et al., 2000) in detail.
At first, the 4096-dimensional data points are projected
on the 5-dimensional space by the ISOMAP method
(Tenenbaum et al., 2000). ISOMAP is used in the
investigation because currently it is one of the most
popular manifold learning methods. Thus, we get a
matrix of dimensions 698 × 5. The rows of this matrix
correspond to the objects Y1, Y2, . . . , Ym, m = 698, and
the columns correspond to the features y1, y2, . . . , yn∗ ,
n∗ = 5, which characterize the objects. Then the
covariance matrix C of the features is obtained:

C =

⎛
⎜⎜⎜⎜⎝

1538.8 0 0 0 0
0 419.3 0 0 0
0 0 276.3 0 0
0 0 0 86.8 0
0 0 0 0 79.1

⎞
⎟⎟⎟⎟⎠

. (9)

It is obvious from this covariance matrix that all
the 5 features yk and yl are not correlated because
their covariance coefficient is equal to zero: ckl =
clk = 0, k �= l. The covariance coefficient ckk , k = 1, n∗,
is the variance of feature yk. We see from (9) and Fig. 17
that the variances of the first three features are much larger
than others. The variances of the fourth and fifth features
are more than three times smaller than the variance of the
third one. It means that there are three main features,
but they are not the only ones. Therefore, the estimated
dimension of about 4 or 5 is very reasonable. A question
arises as to which features from y1, y2, y3 correspond to
the left-and-right pose, the up-and-down pose, and to the
lighting direction. In order to answer this question, we
visualized the first three features pairwise on the plane
(see Figs. 18–20). Figures 18–20 show that the feature
y1 corresponds to the left-and-right pose, the feature y2
corresponds to the up-and-down pose, and the feature
y3 corresponds to the lighting direction. Summarizing
everything, it is obvious that the first two features, i.e.,

Fig. 17. Variances of features.

both poses (left-and-right and up-and-down), are more
essential than the third feature that corresponds to the
lighting direction.

Since the face database consists of images of an
artificial face under three changing conditions: vertical
and horizontal orientation as well as illumination (lighting
direction), it is possible to assume that the intrinsic
dimensionality of this data set should be 3. The person’s
face has two directions of motion (two poses): the
left-and-right pose and the up-and-down pose. So, the
minimal intrinsic dimensionality of these data can be
assigned to 2, which is the number of degrees of freedom
of a possible motion of the object in the image. Of course,
the true intrinsic dimensionality is larger. However, the
most essential dimensions correspond to the directions of
motions. Thus, after such a discussion, we dare say that,
in this investigation, the minimal intrinsic dimensionality
of these data is evaluated well if the geodesic distances
between the data points are calculated.

The next investigation is based on the sets of
coloured pictures of rotated objects (Nene et al.,
1996). The real-valued estimates d̂MLE of the intrinsic
dimensionality of various data sets were calculated in
both cases where (a) Euclidean distances and (b) geodesic
(kgeod = 3) distances between data points are used in the
MLE algorithm (Fig. 21). The average of the intrinsic
dimensionality estimates is 4.23 in the case (a) and 1.26
in the case (b). Figure 21(a) shows that the estimates
d̂MLE of the intrinsic dimensionality of all the data sets
analysed are larger than 2. It is easy to notice in Fig. 21(b)
that, in the case of the geodesic distances, only several
samples of the analysed data sets obtain the estimate d̂MLE

of the intrinsic dimensionality that is larger than 1.5, i.e.,
dMLE = 2. Most data sets have the estimate lower than
1.5, i.e., dMLE = 1. As the particular data set analysed
consists of a set of pictures of a rotated object with the
degree of freedom equal to 1, the obtained dMLE value is
equal to that degree of freedom in most cases. This fact
cannot be stated when the Euclidean distances are used.
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5.3. Recommendations for selecting kgeod. Our
realization of the MLE method needs calculation of
geodesic distances between the points of the analysed
data set. To this end, we need to set the number kgeod
of the nearest neighbours which are used to construct
a weighted graph while looking for geodesic distances.
In Section 5.2, we did not observe the dependence of
dMLE on kgeod in the case of the face data set when
kgeod has the values 4, 10 and 13. But what are general
recommendations for selecting the values of kgeod?

From Table 2 with other data sets we see that the
value of dMLE obtained by the algorithm proposed in
Section 3 does not depend on the chosen value of kgeod, if
it is not large. However, we should note that the estimate
dMLE cannot be calculated with very small values of
kgeod. For one-dimensional manifolds, kgeod cannot be
set equal to one, and, in the case of two-dimensional
manifolds, the value of kgeod cannot be set as 1, 2, 3
or even 4 (for the helicoid). The reason is that the
neighbourhood graph over all the points of the analysed
data set appears not to be connected. Let us show that
by the example of the one-dimensional manifold (helix).
A neighbourhood graph over the points of the helix is
constructed: each point is connected with its kgeod nearest
neighbours. The neighbourhood graphs with various
values of kgeod are drawn in Fig. 22.

As shown in Table 2, the estimate dMLE is not
calculated if kgeod = 1. The reason is that the graph is
not a connected graph and it is impossible to find any path
from some points to other particular points in the graph
in this case (see Fig. 22(a)). A graph is a connected one
if there is a path from any point to any other point in
the graph. As a result, the geodesic distances between
a part of data points cannot be calculated and the estimate
dMLE is not obtained. However, the connected graphs
were obtained in the remaining cases (Fig. 22 (b)–(d)).
So, the values of dMLE can be calculated in all the three
cases. It is worth noticing that the neighbourhood graph
in the case (d) is different from the graphs in the cases
(b) and (c). If the value of kgeod is rather large, the
neighbours of each data point may be found wrongly,
i.e., false neighbours may be set to some data points.
The reason is as follows: since the Euclidean distances
are calculated between a point and its neighbours, the
nearest neighbours of the point may be points that are
distant on the manifold; i.e., the structure of a nonlinear
manifold is ignored if kgeod is too large. In Fig. 22(d),
we see the graph with a false neighbourhood. The wrong
neighbourhood graph and obtained geodesic distances
between data points according to this graph may influence
the false estimates dMLE of the intrinsic dimensionality. It
is obvious in Fig. 23. If kgeod = 2, . . . , 30, the estimate
dMLE = 1 that is the true intrinsic dimensionality of the
helix but the false value of the intrinsic dimensionality is
obtained starting from kgeod = 31.
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Fig. 18. Projections of the high-dimensional data points corre-
sponding to the photos of a face on a plane: left-and-
right pose, up-and-down pose.
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Fig. 19. Projections of the high-dimensional data points corre-
sponding to the photos of a face on a plane: left-and-
right pose, lightening direction.
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Fig. 20. Projections of the high-dimensional data points corre-
sponding to the photos of a face on a plane: up-and-
down pose, lightening direction.
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Fig. 21. Estimate ̂dMLE of the intrinsic dimensionality of data sets of coloured pictures of a rotated object: Euclidean distances (a) and
geodesic distances (kgeod = 3) (b).
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Fig. 22. Neighbourhood graphs with the various numbers kgeod of the nearest neighbours of each data point: kgeod = 1 (a), kgeod = 2
(b), kgeod = 30 (c), kgeod = 31 (d); data set: the helix.

Thus, our recommendation for selecting kgeod is as
follows: one should pick out the value of this parameter
rather small, i.e., such that the neighbourhood graph

would be connected and the value of dMLE calculated,
because too large a value of kgeod may lead to an
inaccurate estimate of the intrinsic dimensionality.
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Fig. 23. Estimate dMLE of the intrinsic dimensionality depending on the number kgeod of the nearest neighbours in the calculation
algorithm of geodesic distances; data set: the helix.

Table 1. Estimates of the average distance r and the intrinsic dimensionality dMLE.
Data sets Intrinsic Euclidean distances Geodesic distances

dimensionality d

r dMLE r dMLE

S-shaped 2 2.81 2 4.42 2
manifold
8-shaped 2 2.07 2 2.65 2
manifold
Helicoid 2 24.25 2 31.96 2
Spiral 1 128.51 1 1048.70 1
Helix 1 2.92 2 13.01 1
Greyscale pictures of a rotated duckling 1 10243 3 35798 1
Coloured pictures of a rotated duckling 1 11260 3 54919 1
Photos of a person’s face 3 20.19 4 72.64 2

6. Conclusions

Image analysis—face pose detection, face recognition,
the analysis of facial expressions, human motion data
interpretation, gait analysis, medical data analysis – is
a very challenging topic in exploratory data analysis.
The data points obtained from the images are of very
high dimensionality, because the picture is digitized, i.e.,
a data point consists of colour parameters of pixels.
However, such high-dimensional data can be efficiently
summarized in a space of much lower dimensionality, that
is, on a nonlinear manifold, because high-dimensional
data sets can have meaningful low-dimensional structures
hidden in the observation space (i.e., the data are of low
intrinsic dimensionality). The knowledge of the intrinsic
dimensionality of a data set is very useful information in
exploratory data analysis.

In this paper, one of the local estimators of
the intrinsic dimensionality—the maximum likelihood
estimator (MLE)—has been analysed and developed. As
far as we know, everyone who has been investigating the
MLE until now has used the formula (2) or (3), i.e., they
selected the number k (or an interval of k) of the nearest
neighbours in the MLE. In this paper, we suggest to use
the formula (1), i.e., we suggest to fix the radius r of the
hypersphere that covers neighbours of the analysed points
instead of the number k of the nearest neighbours. A new

way of choosing the value of the parameter r in the MLE
method has been proposed. It enables us to find the true
value of this parameter by the formula (7).

An advantage of this approach as compared with
that described by Karbauskaitė et al. (2011) is that there
is no need to draw dependences of the estimate of the
intrinsic dimensionality on the distances and to make
some human decisions, because we get the value of the
parameter r automatically. In our investigations, we have
discovered that the number of latent variables is highly
related to that of degrees of freedom of a possible motion
of the object. Therefore, the minimal possible intrinsic
dimensionality of a data set of images is equal to the
number of degrees of freedom of a possible motion of
the object. However, the true intrinsic dimensionality
may be larger than the number of degrees of freedom
of a possible motion of the object. With a view to
discover the influence of illumination and colours on
the estimates of the intrinsic dimensionality, we have
analysed both greyscale and coloured image data sets. The
results have shown that the presence of colours in the
pictures does not influence the estimate of the intrinsic
dimensionality, as compared with the greyscale case.
We have also explored which distances—Euclidean or
geodesic—should be evaluated between the data points in
the MLE algorithm. The obtained results are generalised
in Table 1. The experiments with different data sets,
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Table 2. Estimates dMLE of the intrinsic dimensionality obtained using the algorithm proposed in Section 3.
Data sets kgeod

1 2 3 4 5 6 7 8 9 10

S-shaped manifold – – – 2 2 2 2 2 2 2
8-shaped manifold – – – – 2 2 2 2 2 2
Helicoid – – – 2 2 2 2 2 2 2
Spiral – 1 1 1 1 1 1 1 1 1
Helix – 1 1 1 1 1 1 1 1 1
Greyscale pictures of a rotated duckling – 1 1 1 1 1 1 1 1 1

especially real data sets (images), have shown that
the MLE provides the right estimate of the intrinsic
dimensionality if the geodesic distances are used and the
value of the parameter r is equal to the expected value of
the distances.

The knowledge of the intrinsic dimensionality may
be very useful in the visualization of high-dimensional
data. Further research should be focused on the accuracy
of dimensionality reduction using the estimates of the
intrinsic dimensionality.
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