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In the subject literature, wavelets such as the Mexican hat (the second derivative of a Gaussian) or the quadratic box spline
are commonly used for the task of singularity detection. The disadvantage of the Mexican hat, however, is its unlimited
support; the disadvantage of the quadratic box spline is a phase shift introduced by the wavelet, making it difficult to locate
singular points. The paper deals with the construction and properties of wavelets in the form of cubic box splines which
have compact and short support and which do not introduce a phase shift. The digital filters associated with cubic box
wavelets that are applied in implementing the discrete dyadic wavelet transform are defined. The filters and the algorithme
à trous of the discrete dyadic wavelet transform are used in detecting signal singularities and in calculating the measures
of signal singularities in the form of a Lipschitz exponent. The article presents examples illustrating the use of cubic box
spline wavelets in the analysis of signal singularities.
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1. Introduction

An important issue in signal processing is to determine
a representation of the signal, which simplifies further
extraction of information contained in that signal.
Often, the relevant characteristics of the signal arise
from the existence of points where the signal varies
rapidly in value. The derivative of the signal may
be useful in determining the location of these points.
However, numerical differentiation of a discrete-time
signal, especially a noisy one, is an ill-conditioned
problem. The initial smoothing of the signal by
calculating the integral,

∫ +∞

−∞
f(u) θ(u − t) du = f � θ(t), (1)

may be helpful in solving the problem where f(t) is the
signal processed, θ(t) is the smoothing function with a
short support in relation to the domain of the signal or
rapidly vanishing as a Gaussian function, and where

∫ +∞

−∞
θ(t) dt �= 0,

θ(t) = θ(−t),

f � θ(t) =

∫ +∞

−∞
f(u) θ(t− u) du.

The derivative of the smoothed signal is equal to
a convolution of the signal with the derivative of the
smoothing function (see Section 2),

d

dt

[
f � θ(t)

]
= f � θ

′
(t), (2)

where θ
′
(t) = dθ(t)/dt. It may be useful to smooth

the signal using the scaled smoothing function and to
differentiate the smoothed signal in different scales,

d

dt

∫ +∞

−∞
f(u)

1√
s
θ

(
u− t

s

)
du =

d

dt

[
f � θs(t)

]
,

(3)
where s > 0 is the scale factor. Initial signal smoothing
and differentiation of the smoothed signal are particularly
useful in locating places where the signal has a sharp
transition. Such places are called singular points, and
their determination is referred to as signal singularity
detection (formal definition in Section 6), which applies to
one-dimensional signals as well as two-dimensional ones
(images).
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As far as the images are concerned, edges are a
good illustration of singular places. Smoothing introduces
inflection points in the signal where the first derivative
has local extremes and the second one has zero-crossings.
Babaud et al. (1986) show that the roots of the second
derivative of the smoothed signal, i.e., the points (t, s) in
the half-plane 0ts (t ∈ R, s > 0) that satisfy the equation

d2

dt2
[
f � θs(t)

]
= 0, (4)

when the smoothing function θ(t) is a Gaussian function,
form outlines that end at the singular points of the signal
as the scale decreases to zero, s → 0. Points on a coarse
scale that satisfy Eqn. (4) allow us to identify (suggest
the existence of) singular positions, while points on a
fine scale can localize, i.e., determine, the value of the
variable t where the singularity occurs. The ability to
identify singularities in a coarse scale is important because
the noise present in the signal may suggest the existence
of additional points corresponding to the contours that
appear in fine scales. At coarse scales, the noise is filtered
and the appearing contours correspond to real singular
points of the signal. However, at a coarse scale, due to
strong signal smoothing, it may be difficult to identify the
points of local extremes, particularly in the discrete form,
as the smoothed signal may have the same value at several
neighboring points. In such a case, identifying the points
forming the contours ending in singular points is allowed
by extremes in fine scales.

Smoothing and differentiation of the smoothed signal
are directly related to the calculation of the wavelet
transform of a signal using the wavelet equal to the
derivative of the smoothing function. The mathematical
foundation of singularity detection using the wavelet
transform was presented in several papers. Namely,
Mallat (1991) shows the application of the wavelet called
the Mexican hat (the second derivative of a Gaussian) for
singularity detection. Mallat and Hwang (1992) use a
quadratic box spline wavelet. Mallat and Zhong (1992)
define filter coefficients corresponding to the quadratic
box spline wavelet.

In this paper, we present the design and application
of digital filters corresponding to the scaling function
and the wavelet as a cubic box spline to detect signal
singularities. Box splines have a compact and short
support; the corresponding filters have finite and short
impulse responses. The cubic box spline is an even
function, and as a consequence there is no phase shift
introduced by the filter corresponding to that wavelet.

1.1. Definitions. Z denotes the set of integers,
L2(R) means the space of measurable, square-integrable
one-dimensional functions; l2(Z) means the space of
square-summable sequences, also known as the space of
finite energy sequences.

The convolution of two continuous-time signals
f(t) ∈ L2(R) and g(t) ∈ L2(R) has the following symbol
and definition:

f � g(t) =

∫ +∞

−∞
f(u) g(t− u) du. (5)

The convolution of two discrete-time signals f [n] ∈ l2(Z)
and g[n] ∈ l2(Z) has the following symbol and definition:

f � g[n] =
+∞∑

k=−∞
f [k] g[n− k]. (6)

The reversed signal in relation to the continuous-time
signal f(t) is

f(t) = f(−t). (7)

The reversed signal in relation to the discrete-time signal
f [n] is

f [n] = f [−n]. (8)

The Fourier transform of a continuous-time signal f(t) is
defined as

F (jω) =

∫ +∞

−∞
f(t) e−jωt dt. (9)

The Fourier transform of a discrete-time signal f [n] is
defined as

F (ejω) =

+∞∑
n=−∞

f [n] e−jωn. (10)

The scaled function fs(t) is defined as

fs(t) =
1√
s
f

(
t

s

)
. (11)

The scaled and translated function fu,s(t) is defined as

fu,s(t) =
1√
s
f

(
t− u

s

)
. (12)

θ′(t) represents the first derivative of the function θ(t),
thus θ′(t) = dθ(t)/dt; θ′′(t) represents the second
derivative of the function θ(t), thus θ′′(t) = d2θ(t)/dt2.

2. Wavelet analysis

In a wavelet analysis, there are two functions: a scaling
function φ(t) and a wavelet ψ(t), and two digital filters:
a low-pass filter h and a high-pass filter g. In terms
of signal processing, the scaling function is an impulse
response of a low-pass filter and the wavelet is an impulse
response of a band-pass filter. Both the wavelet and the
scaling function are characterized by fast decay, e.g., an
exponential or compact support. Relations between the
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scaling function, the wavelet and the filters are described
by the following two equations:

1√
2
φ(t/2) =

∑
n

h[n] φ(t − n), (13)

1√
2
ψ(t/2) =

∑
n

g[n] φ(t− n). (14)

Equation (13) is called the dilation equation. A
characteristic feature of the scaling function is a non-zero
value of the following integral:

∫ +∞

−∞
φ(t) dt �= 0. (15)

It is assumed that ||φ(t)|| = 1. The coefficient 1/
√
2

ensures preservation of the norm of the scaled function
in the space L2(R). In the frequency domain, the scaling
equation takes the form of

Φ(j2ω) =
1√
2
H(ejω) Φ(jω). (16)

The Fourier transform of the scaling function as a transfer
function of a low-pass filter is not equal to zero for ω = 0,
i.e., Φ(j0) �= 0. It is assumed that H(ej0) =

√
2, which

means that
∑+∞

n=−∞ h[n] =
√
2. The dilation equation

allows calculating the low-pass filter h for a given scaling
function φ(t).

Equation (14) is called the wavelet equation. The
main feature of the wavelet is a vanishing integral of the
wavelet, i.e., ∫ +∞

−∞
ψ(t) dt = 0. (17)

In the frequency domain, the wavelet equation takes the
form

Ψ(j2ω) =
1√
2
G(ejω) Φ(jω). (18)

Since Φ(j0) �= 0, the number of zeros p of the transfer
function G(jω) for ω = 0 determines the number of
zeros of the Fourier transform of Ψ(jω) for ω = 0. It
is equivalent to the fact that the wavelet has p vanishing
moments, thus

∫ +∞

−∞
tkf(t) dt = 0, 0 ≤ k ≤ p− 1. (19)

This property indicates that the wavelet is orthogonal to
the polynomial of degree k ≤ p−1. The wavelet equation
allows calculating the wavelet for a given scaling function
φ(t) and a given high-pass filter g.

A wavelet transform of a continuous-time signal (a
continuous spatial variable) is a function of two variables
and is a measure of the similarity between the signal
f(t) and the wavelet ψu,s(t) at scale s, shifted to the

time instant t = u. The formal definition of a wavelet
transform of a continuous-time signal is

Wf(u, s) =

∫ +∞

−∞
f(t)

1√
s
ψ

(
t− u

s

)
dt

=

∫ +∞

−∞
f(t)

1√
s
ψ

(
u− t

s

)
dt

(20)

and has the following symbolic notation:

Wf(u, s) = f � ψs(u). (21)

The coefficient 1/
√
s that appears before the scaled and

shifted wavelet preserves the norm of the scaled wavelet
in the space L2(R).

The relationship between the continuous-time
wavelet transform and a derivative of the smoothed signal
is shown by the following calculations:

d

dt

[
f � θs(t)

]
=

d

dt

∫ ∞

−∞
f(u)

1√
s
θ

(
t− u

s

)
du

=

∫ ∞

−∞
f(u)

1√
s

[
d

dt
θ

(
t− u

s

)]
du

=
1

s

∫ ∞

−∞
f(u) θ

′
s(t− u) du

=
1

s
f � θ

′
s(t). (22)

The last equation means that the derivative of the signal
smoothed by the scaled smoothing function is equal to the
convolution of the signal with a derivative of the scaled
smoothing function (with the accuracy to coefficient 1/s).

We define the wavelet in the form of a derivative of
the smoothing function with a minus sign,

ψ(t) = −θ′(t), (23)

which is equivalent to

ψ(t) = θ
′
(t), (24)

ψs(t) = θ
′
s(t). (25)

Taking into account (22) and (25), we obtain

d

dt

[
f � θs(t)

]
=

1

s
f � ψs(t). (26)

Thus, in accordance with (21),

Wf(t, s) = s
d

dt

[
f � θs(t)

]
. (27)

The wavelet can also take the form of the second
derivative of the smoothing function:

ψ(t) = θ′′(t). (28)
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Then

Wf(t, s) = s2
d2

dt2
[
f � θs(t)

]
. (29)

In the case of wavelets which are the first derivative
of the smoothing function, singular points correspond to
the modulus maxima of the wavelet transform; in the
case of wavelets which are the second derivative of the
smoothing function, singular points correspond to the
zero-crossing of the wavelet transform.

Examples of wavelets in the form of the first and
second derivatives of the smoothing function are shown
in Section 4.

The wavelet transform is an effective tool for
singularity detection. Mallat (1991), Mallat and Hwang
(1992) as well as Mallat and Zhong (1992) show that, if
the scale factor s tends to zero, then the points (t, s) on
the half-plane t ∈ R, s > 0 corresponding to the modulus
maxima of the wavelet transformWf(t, s) represent lines
that end in the singular points of the signal.

2.1. Dyadic signal representation. The signal
representation in the form of a continuous-time wavelet
transform which is a function of two variables (time and
scale) is a highly redundant representation. It is proven
(Mallat, 2009) that the signal can be reconstructed from
a dyadic wavelet transform, in which the scale is not a
continuous variable but a countable set of dyadic values:
{sk}k∈Z, where sk = 2k.

The dyadic wavelet transform is defined as follows:

W2kf(u) =

∫ +∞

−∞
f(t)

1√
2k

ψ

(
t− u

2k

)
dt

= f � ψ2k(u),

(30)

where k ∈ Z. This transform is a countable set of
functions of one variable (time or space).

In the frequency domain, the dyadic wavelet
transform is expressed as

W2kF (jω) =
√
2k F (jω) Ψ(j2kω). (31)

To calculate the wavelet transform at points (n, 2k),
n, k ∈ Z (linearly spaced points in time and a dyadic
scale), a fast algorithm can be used which is called in
French algorithme à trous (Holschneider et al., 1989;
Shensa, 1992).

The first step is to define a rectangle [tmin, tmax] ×
[smin, smax] in which the values of the wavelet transform
will be calculated. Two rectangles are commonly used:
[0, N−1]×[2, smax] or [0, 1)×[smin, 1], whereN = 2K .
In the case of the rectangle [0, N − 1] × [2, smax],
the wavelet transform values W2kf(n) are calculated in
points n = 0, 1, . . . , N − 1, for k = 1, 2, . . . ,K , where
K = log2N . In the case of the rectangle [0, 1) ×
[smin, 1], the wavelet transform values W2kf(n/N) are

calculated at points n = 0, 1, . . . , N − 1, for k = −(K −
1),−(K − 2), . . . , 0.

The application of the à trous algorithm to compute
the wavelet transform requires the knowledge the digital
representation of the signal f(t) in the finest scale, i.e.,
scale s = 1 in the case of window [0, N − 1]× [2, smax]
or scale s = 1/N in the case of window [0, 1)× [smin, 1].
From now, on the descriptions of the algorithms will
concern the rectangle [0, N − 1]× [2, smax] on the plane
0ts.

2.2. Discrete dyadic wavelet transform. Let

dk[n] =W2kf(n), (32)

aK [n] =

∫ +∞

−∞
f(u)

1√
2K

φ

(
u− n

2K

)
du

= f � φ2K (n),

(33)

k = 1, 2, . . . ,K and n = 0, 1, . . . , N − 1.
The sequence of the numbers

{ { dk[n] } n=0,1,...,N−1 } k=1,2,...,K , (34)

{ aK [n] } n=0,1,...,N−1 (35)

is called the discrete dyadic K-level wavelet transform of
signal f(t).

The wavelet coefficient dk[n] is a measure of the
similarity (in the sense of the inner product) of signal f(t)
in the surrounding of time instant (a point in space) t = n
to the wavelet ψ

(
t/2k

)
or the value of the signal filtered

with a band-pass filter with the impulse responseψ
(
t/2k

)
at t = n.

The coefficient aK [n] is a measure of a similarity of
signal f(t) in the surrounding of the time instant t = n to
the scaling function φ

(
t/2K

)
or the value of the signal

filtered by a low-pass filter with the impulse response
φ
(
t/2K

)
at t = n.

A fast algorithm for computing a discrete dyadic
wavelet transform by using digital filtering is described
in Section 2.4.

The following section describes how to obtain
a discrete-time signal {a0[n]}n∈Z which is a digital
representation of the signal f(t) at the finest scale and
forms input to the à trous algorithm for the calculation
of a discrete dyadic wavelet transform.

2.3. Digital representation of the signal at the finest
scale. The sequence of numbers equal to the inner
product of signal f(t) and the translation of the scaling
function φ(t− n)

a0[n] =

∫ +∞

−∞
f(t) φ(t− n) dt, n ∈ Z (36)
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is a discrete representation of signal f(t) at scale 20. By
introducing in the above equation a new variable u = t−
n, we obtain

a0[n] =

∫ +∞

−∞
f(n+ u) φ(u) du, n ∈ Z, (37)

showing that the n-th sample of the discrete signal is
produced by the averaging signal f(t) in the surrounding
of the time instant t = n, with the scaling function φ(u)
as a weighing function. The sequence (a0[n]) can also be
considered a sample of the signal filtered by the filter with
the impulse response equal φ̄(t) = φ(−t). Indeed, let the
signal f0(t) be the result of filtration. Thus,

f0(t) =

∫ +∞

−∞
f(u) φ̄(t− u) du, (38)

and then a0[n] = f0(n). The Fourier transform of signal
f0(t) is given by

F0(jω) = F (jω) Φ(jω). (39)

2.4. Algorithme à trous. In order to describe the
algorithm for computing the discrete dyadic wavelet
transform, numerical sequences are introduced and
defined as follows:

ak[n] =

∫ +∞

−∞
f(u)

1√
2k

φ

(
u− n

2k

)
du

= f � φ2k(n),

(40)

dk[n] =

∫ +∞

−∞
f(u)

1√
2k

ψ

(
u− n

2k

)
du

= f � ψ2k(n),

(41)

n = 0, 1, . . . , N − 1 and k = 1, . . . ,K .
Let hk = (hk[n]), k ≥ 0, be a digital filter with

the impulse response created from the impulse response
of filter h = (h[n]) in such a way that, between each two
adjacent coefficients of filter h, 2k − 1 zeros are inserted,
and hk[n] = hk[−n]; analogically, this is applied to
filters gk. The coefficients of the discrete dyadic wavelet
transform of signal a0 can be calculated in the iterative
process specified in the following theorem.

Theorem 1. For k ≥ 0,

dk+1[n] = ak � gk[n], (42)

ak+1[n] = ak � hk[n]. (43)

Proof. The proof of this theorem can be found in the book
of Mallat (2009). �

gk dk+1

hk ak+1

ak

Fig. 1. Filter bank performing one step of the à trous algorithm.

Figure 1 shows a bank of digital filters implementing
one step of the discrete dyadic wavelet transform.

The transfer functions of the filters gk and hk are
respectively equal to

Gk(e
jω) = G(ej2

kω), (44)

Hk(e
jω) = H(ej2

kω). (45)

3. Box splines

The starting point for the construction of a box spline is
defining the gate function (Unser, 1999; Press et al., 2007;
Boor, 1978)

b(t) =

⎧⎨
⎩

1, 0 ≤ t < 1,

0, otherwise.

The Fourier transform of the gate function is

B(jω) =
1− e−jω

jω

= e−jω/2 sin(ω/2)

ω/2
.

(46)

The gate function b(t) is a box spline of zero degree b0(t).
The box spline of m degree is defined recursively as a
convolution of the gate function b(t) with the box spline
ofm−1 degree, thus bm(t) = bm−1 �b(t), m = 1, 2, . . . .
The support of the box spline of m degree is included in
interval [0, m+ 1].

The convolution in the time domain corresponds
to multiplication in the frequency domain of Fourier
transforms, so the Fourier transform of the box spline of
the m-th degree is

Bm(jω) = e−j(m+1)ω/2

[
sin(ω/2)

ω/2

]m+1

. (47)
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The box spline of degreem can be calculated by using the
box splines of degreem− 1,

bm(t) = [ t bm−1(t) + (m+ 1− t) bm−1(t− 1) ] /m.
(48)

The derivative of box spline of degreem can be calculated
by using the box spline of degree m− 1,

b′m(t) = bm−1(t)− bm−1(t− 1). (49)

The integer translations of box splines bm(t− n), n ∈ Z,
are not orthogonal to one another. Thus

∫ +∞

−∞
bm(t− n) bm(t− k) dt �= δ[n− k]. (50)

There is a procedure of orthogonalization; however,
splines received as a result do not have a compact support
but decay quickly (exponentially).

3.1. Box spline of the third degree. The box spline of
degree 3 b3(t) has a support equal to interval [0, 4].

On each of the subintervals [k, k + 1], 0 ≤ k ≤
3, the value of the function is determined by another
polynomial of the third degree, but a connection of
different polynomials in the internal nodes, i.e., at points
t = 1, 2, 3, is twice continuously differentiable.

Table 1 shows polynomials defining the box spline
of the third degree, and Fig. 2 presents the shape of the
function.

Table 1. Polynomials describing the box spline of the third de-
gree b3(t).

Interval b3(t)

t < 0 0

0 ≤ t < 1 1
6
t3

1 ≤ t < 2 − 1
2
t3 + 2t2 − 2t+ 2

3

2 ≤ t < 3 − 1
2
(4− t)3 + 2(4− t)2 − 2(4− t) + 2

3

3 ≤ t < 4 1
6
(4− t)3

t ≥ 4 0

The Fourier transform of the cubic box spline is

B3(jω) = e−j2ω

[
sin(ω/2)

ω/2

]4
. (51)

4. Scaling function and wavelet in the form
of a cubic box spline

The scaling function is expressed as a box spline function
of the third degree shifted to the left by two units. Thus

φ(t) = b3(t+ 2). (52)

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 2. Box spline of the third degree b3(t).

Figure 3 shows the graph of the scaling function and
Table 2 the polynomials describing that function.

The Fourier transform of the scaling function is equal

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 3. Scaling function φ(t) in the form of translation of the
cubic box spline.

Table 2. Polynomials describing the scaling function φ(t) in the
form of the cubic box spline.

Interval φ(t)

t < −2 0

−2 ≤ t < −1 (t+ 2)3/6

−1 ≤ t < 0 −t3/2− t2 + 2/3

0 ≤ t < 1 t3/2− t2 + 2/3

1 ≤ t < 2 (2− t)3/6

t ≥ 2 0
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-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Fig. 4. Magnitude of the Fourier transform of the scaling func-
tion φ(t) in the form of a cubic box spline.

to

Φ(jω) =

[
sin(ω/2)

ω/2

]4
. (53)

Figure 4 shows the magnitude of the Fourier transform of
the scaling function in the form of a cubic box spline. The
transfer function of filter h corresponding to the scaling
function φ(t) can be calculated from the dilation equation
expressed in the frequency domain (13),

H
(
ejω

)
=

√
2
Φ(j2ω)

Φ(jω)
. (54)

The transfer function of filter h corresponding to the
scaling function as a cubic box spline is

H
(
ejω

)
=

√
2

(
sinω

ω

)4 [
sin(ω/2)

ω/2

]−4

=
√
2
(
cos

ω

2

)4

=

√
2

16

(
ej2ω + 4 ejω + 6

+4 e−jω + e−j2ω
)
.

(55)

The magnitude of the transfer function of filter h is shown
in Fig. 5. The coefficients of filter h are summarized in
Table 3.

Table 3. Coefficients of the lowpass filter h[n] corresponding to
the scaling function φ(t) as a cubic box spline.

n −2 −1 0 1 2

h[n]
√

2
16

√
2

4
3
√

2
8

√
2

4

√
2

16

The wavelet ψ(t) can be constructed based on
Eqn. (14) by first selecting the high-pass filter g. The

shortest high-pass filter is the Haar one, for which the
impulse response coefficients are given in Table 4 and the
transfer function is equal to

G
(
ejω

)
= −

√
2

2
+

√
2

2
e−jω

= −j√2 e−j ω
2 sin

ω

2
.

(56)

Table 4. Coefficients of the high-pass filter g[n] corresponding
to the wavelet ψ(t) in the form of the cubic spline (57).

n 0 1

g[n] −
√

2
2

√
2

2

The wavelet corresponding to this filter is equal to

ψ(t) = −φ(2t) + φ(2t− 1). (57)

From (52), we obtain φ(2t) = b3(2t+2) and φ(2t− 1) =
b3(2t+ 1), so

ψ(t) = −b3(2t+ 2) + b3(2t+ 1). (58)

It is easy to see that the support of the wavelet is the
interval [−1, 1.5].

By introducing a new variable τ = 2t+ 2, Eqn. (58)
takes the form of

− ψ

(
τ − 2

2

)
= b3(τ)− b3(τ − 1). (59)

The right hand-side of the above equation, according to
(49), is the derivative of b4(τ), so

ψ

(
τ − 2

2

)
= − d

dτ
b4(τ). (60)
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Fig. 5. Magnitude of the transfer function of filter h correspond-
ing to the scaling function as a cubic box spline.
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Going back to the variable t, we obtain

ψ(t) = − d

dt

[
1

2
b4(2t+ 2)

]
, (61)

which means that the smoothing function is equal to

θ(t) =
1

2
b4(2t+ 2) (62)

and ψ(t) = −θ′(t).
The Fourier transform of the wavelet is calculated

using the wavelet equation (14),

Ψ(jω) =
1√
2
G(ej

ω
2 ) Φ(jω/2)

=
−jω
4

e−j ω
4

[
sin(ω/4)

ω/4

]5
.

(63)

The transfer function of filter g expressed by the
formula (56) has one zero for ω = 0, so the corresponding
wavelet has one vanishing moment.

Table 5. Polynomials describing the wavelet ψ(t) in the form of
a cubic spline corresponding to filter g with coefficients
given in Table 4.

Interval ψ(t)

t < −1 0

−1 ≤ t < −0.5 − 4
3
(1 + t)3

−0.5 ≤ t < 0 16
3
t3 + 6t2 + t− 1

2

0 ≤ t < 0.5 −8t3 + 6t2 + t− 1
2

0.5 ≤ t < 1 16
3
t3 − 14t2 + 11t − 13

6

1 ≤ t < 1.5 4
3
( 3
2
− t)3

t ≥ 1.5 0

Table 6. Smoothing function θ(t) in the form of a scaled and
translated box spline of the fourth degree.

Interval θ(t)

t < −1 0

−1 ≤ t < −0.5 − 1
3
(1 + t)4

−0.5 ≤ t < 0 − 4
3
t4 − 2t3 − 1

2
t2 + 1

2
t+ 11

48

0 ≤ t < 0.5 2t4 − 2t3 − 1
2
t2 + 1

2
t+ 11

48

0.5 ≤ t < 1 − 4
3
t4 + 14

3
t3 − 11

2
t2 + 13

6
t+ 1

48

1 ≤ t < 1.5 1
3
(1.5− t)4

t ≥ 1.5 0

An alternative wavelet ψ(t) can be constructed by
selecting the high-pass filter g with three impulse response
coefficients given in Table 7 and the transfer function
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0
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Fig. 6. Wavelet ψ(t) in the form of a cubic spline corresponding
to filter g with coefficients given in Table 4.

equal to

G
(
ejω

)
=

√
2

4
ejω −

√
2

2
+

√
2

4
e−jω

= −√
2
(
sin

ω

2

)2

.

(64)

Table 7. Coefficients of the high-pass filter g[n] corresponding
to the wavelet ψ(t) in the form of a spline function of
the third degree (65).

n −1 0 1

g[n]
√
2

4
−

√
2

2

√
2

4

The wavelet corresponding to this filter is equal to

ψ(t) =
1

2
φ(2t+ 1)− φ(2t) +

1

2
φ(2t− 1), (65)

and has support [−1.5, 1.5]. Filter g with the transfer
function (64) has two zeros for ω = 0, so the
corresponding wavelet has two vanishing moments. In
Fig. 10, it can be seen that the wavelet has three local
extremes. The Fourier transform of the wavelet is equal
to

Ψ(jω) =
(jω)2

4

[
sin(ω/4)

ω/4

]6
. (66)

The expression
1

2

[
sin(ω/4)

ω/4

]6
(67)

is, in accordance with (47), the Fourier transform
of b5

(
2(t+ 3

2 )
)
. The value (jω)2 in the Fourier

transform corresponds to the second derivative of function
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Fig. 7. Magnitude of the Fourier transform of the wavelet ψ(t)
in the form of a cubic spline corresponding to filter g
with coefficients given in Table 4.

b5
(
2(t+ 3

2 )
)
. Thus, the wavelet

ψ(t) =
d2

dt2

{
1

2
b5

[
2

(
t+

3

2

)]}
, (68)

and the smoothing function is

θ(t) =
1

2
b5(2t+ 3). (69)

The discussed wavelet is similar to the Mexican hat
wavelet, described by

ψ(t) =
2

π1/4
√
3
(t2 − 1)e−t2/2 (70)

and shown in Fig. 12.
The Mexican hat wavelet is the second derivative

of the Gaussian function. The Gaussian function is
the result of convolution of an infinite number of gate
functions, i.e., limm→+∞ bm(t); it belongs to the space
of function C∞ and, as the scale factor tends to zero, the
Gaussian function tends to the Dirac distribution δ(t). The
whole axis (−∞, + ∞) is the support of the Gaussian
function and the Mexican hat wavelet. The Mexican
hat wavelet was the first one used for multiscale filtering
(Witkin, 1983; 1984) and detection of signal singularities
(Mallat, 1991).

If there is a need for having synthesis filters
(reconstruction filters), then a low-pass filter of the
synthesis can be assumed equal to the low-pass filter
analysis, i.e., h̃ = h, as a consequence of the synthesis
scaling function φ̃(t) = φ(t). The transfer function of the
high-pass synthesis filter g̃ can be calculated from the con-
ditions of a perfect signal reconstruction (Mallat, 2009;
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Fig. 8. Smoothing function θ(t) in the form of a scaled and
translated box spline of the fourth degree.
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Fig. 9. Magnitude of the Fourier transform of the smoothing
function θ(t) as a scaled and translated box spline of the
fourth degree.

Rakowski, 2003) expressed by

H̃(ejω) H∗(ejω) + G̃(ejω) G∗(ejω) = 2, (71)

from which

G̃(ejω) =
2− |H(ejω)|2
G∗(ejω)

. (72)

Having the transfer function of the filter G̃(ejω), one can
calculate the coefficients of the impulse response g̃[n],
and the synthesis wavelet ψ̃(t) is calculated using the
wavelet equation (14). Different synthesis wavelet filters
calculated with the FFT algorithm are presented by Zhao
et al. (2013).
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Fig. 10. Wavelet ψ(t) in the form of a cubic spline correspond-
ing to filter g with coefficients given in Table 7.

5. Scale-frequency analysis of a dyadic
wavelet transform

Multiscale signal decomposition by a dyadic wavelet
transform can be seen as a band decomposition of a signal
in the frequency domain.

Figure 13 shows a filter configuration carrying
K-level discrete dyadic decomposition of signal a0. It
follows from it that the Fourier transform of signals dk,
k = 1, 2, . . . ,K , can be expressed as

D1(e
jω) = A0(e

jω) G0(e
jω), (73)

Dk(e
jω) = A0(e

jω) Gk−1(e
jω)

k−2∏
l=0

H l(e
jω), (74)

k = 2, 3, . . . ,K. Defining the equivalent filter transfer
functions at scales 2k, k = 1, 2, . . . ,K , as

Pk(e
jω) = Dk(e

jω)/A0(e
jω) (75)

and taking into account (44) and (45), we obtain

P1(e
jω) = G(ejω), (76)

Pk(e
jω) = G(ej2

k−1ω)

k−2∏
l=0

H(ej2
lω), (77)

k = 2, 3, . . . ,K.
In the case of filters h̄, ḡ with real impulse response

coefficients, the transfer functions take the form of

P1(e
jω) = G∗(ejω), (78)

Pk(e
jω) = G∗(ej2

k−1ω)

k−2∏
l=0

H∗(ej2
lω), (79)

k = 2, 3, . . . ,K .
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Fig. 11. Magnitude of the Fourier transform of the wavelet ψ(t)
in the form of a cubic spline corresponding to filter g
with coefficients given in Table 7.

5.1. Frequency characteristics of the equivalent cu-
bic filters. The starting point for the construction of the
frequency characteristics of the equivalent cubic filters
Pk , k = 2, 3, . . . ,K , is a transfer function of the filter
associated with the scaling function (55),

H(ejω) =
√
2
(
cos

ω

2

)4

, (80)

and a transfer function of the filter associated with a
wavelet.

5.1.1. Wavelet as the first derivative of a smoothing
function. In this case, the smoothing function is a box
spline of the fourth degree and the wavelet is a cubic box
spline. A transfer function of the filter corresponding to
the wavelet as the first derivative of a smoothing function,
according to (56), is equal to

G(ejω) = −j
√
2 e−j ω

2 sin
ω

2
. (81)

Transfer functions of equivalent filters are obtained after
inserting (80) and (81) into (78) and (79). Figure 14 shows
the magnitudes of the filter transfer functions at scales
22, 23, 24, 25. Table 8 presents 3dB pass-bands of these
filters.

5.1.2. Wavelet as the second derivative of a smooth-
ing function. In this case, the smoothing function is a
box spline of the fifth degree and the wavelet is a cubic
spline. A transfer function of the filter associated with
the wavelet in the form of the second derivative of a
smoothing function, according to (64), is equal to

G(ejω) = −
√
2
(
sin

ω

2

)2

. (82)
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Fig. 12. Mexican hat wavelet.
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Fig. 13. Filter bank implementing the à trous algorithm.

Transfer functions of the equivalent filters are
obtained after inserting (80) and (82) into (78) and (79).
Figure 15 shows magnitudes of the transfer functions of
the equivalent filters at scales 22, 23, 24, 25. Table 9 shows
3 dB passband of these filters.

6. Regularity and singularity of a signal

The formal definition of the singularity of a signal is
associated with the Lipschitz exponent and Lipschitz
regularity, explained below. If the signal f(t) is
differentiable, then the number of the derivatives is a
measure of its smoothness. Let the signal f(t) have the
Fourier transform F (jω) and be m-times differentiable.
The Fourier transform of the m-th derivative of the signal
is (jω)mF (jω). If the value of α is in the interval
m ≤ α < m+ 1 and such that

∫ +∞

−∞
|F (jω)| ( 1 + |ω|α) dω < +∞, (83)
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c) | P4(ej�) | (prim)

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2
d) | P5(ej�) | (prim)

0 0.1 0.2 0.3 0.4
0

1

2

3

Fig. 14. Magnitudes of the filter transfer functions associated
with the cubic box wavelet in the form of the first
derivative of the smoothing function at scales 22, 23,
24, 25.

Table 8. 3 dB pass bands of equivalent filters Pk(e
jω) at scales

s = 2k, k = 1, 2, 3, 4, 5

Scale Passband 3 dB [rad]

s = 21 0.2500 0.5000

s = 22 0.0654 0.2129

s = 23 0.0303 0.0986

s = 24 0.0156 0.0488

s = 25 0.0078 0.0234

then it is said that the signal f(t) is uniformly Lipschitz
with exponent α. If the supremum of values α satisfies
the above condition of convergence of the integral, then
the supremum is a measure of the global regularity of
the signal. The notion of regularity is an extension
of the concept of smoothness measured by the number
of derivatives. For example, the scaling functions
corresponding to the 9/7 low-pass filters (Fig. 16) used
in the JPEG2000 image compression standard (Skodras
et al., 2001) have Lipschitz exponents equal respectively
to 1.07 and 1.70 (Unser and Blu, 2003).

The Fourier transform of the signal does not allow
determination of the local regularity of the signal, i.e., the
regularity at a point and its surrounding. Point regularity
in terms of the Lipschitz exponent is associated with
estimation of the error of signal approximation by the
Taylor polynomial.

Let the signal f(t) have m continuous derivatives.
The Taylor polynomial

pv(t) = f(v) +

m∑
k=1

f (k)(t)

k!
(t− v)k (84)
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Fig. 15. Magnitudes of the transfer functions of the equivalent
filters associated with the cubic wavelet as the second
derivative of the smoothing function at scales 22, 23,
24, 25.

Table 9. 3 dB pass bands of equivalent filters Pk(e
jω) at scales

s = 2k, k = 1, 2, 3, 4, 5.

scale 3 dB band [rad]

s = 21 0.3184 0.5000

s = 22 0.1045 0.2344

s = 23 0.0498 0.1104

s = 24 0.0244 0.0547

s = 25 0.0127 0.0264

approximates the signal f(t) in the neighborhood of point
v with the error

ev(t) = f(t)− pv(t). (85)

The Lipschitz exponent estimates the approximation error
and determines the regularity of the signal in the following
way (Mallat, 2009):

• At a point the signal f(t) has v the Lipschitz
exponent α ≥ 0 if there exist a constant K > 0 and
polynomial pv(t) of degree m = 	α
 such that, for
each t ∈ R,

| f(t)− pv(t) | ≤ K |t− v|α. (86)

• The signal f(t) is uniformly Lipschitz α into interval
[a, b] if it satisfies the Lipschitz condition (86) for all
v ∈ [a, b] with a constant K independent of v.

• The Lipschitz regularity of the signal f(t) at a point v
or in the interval [a, b] is defined by the supremum of
the values α such that f(t) has Lipschitz exponentα.
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Fig. 16. Scaling functions corresponding to 9/7 biorthogonal fil-
ters.

If 0 ≤ α < 1, then the signal is non-differentiable at the
point v and the Lipschitz condition is expressed by the
following inequality:

| f(t)− f(v) | ≤ K |t− v|α. (87)

A signal that is bounded but non-continuous at a
point v has the Lipschitz exponent equal to 0. If 0 < α <
1, then the signal at the point v is singular. If α ≥ 1, then
f (p)(t), where p = 	α
 has the Lipschitz exponent equal
to α− p, and if α− p > 0, then that value is a measure of
the singularity of the p-th derivative of the signal f(t).

A wavelet transform of a signal, calculated with a
wavelet that has enough vanishing moments is equal to the
wavelet transform of the error approximation (85). Let the
vanishing moment number p of the wavelet be no less than
the Lipschitz exponent α, i.e., p ≥ α. Thus,

Wf(t, s) =Wpv(t, s) +Wev(t, s)

=Wev(t, s),
(88)

because the wavelet is orthogonal to pv(t). It follows
that, if 0 ≤ α ≤ 1, then a wavelet with one vanishing
moment can be used; if 1 < α ≤ 2, then a wavelet with
two vanishing moments should be used. Among all the
singular points, the so-called isolated singularities stand
out. A point v is an isolated singular point if the maximum
values of the wavelet transform modulus at a scale s less
than a certain scale s0 are located in a cone

|t− v| ≤ Cs, (89)

where C is a certain positive constant. Mallat (2009)
shows that in the case of the isolated singular points there
exists a constant A > 0 such that

|Wf(t, s)| ≤ A sα+1/2. (90)



Application of cubic box spline wavelets in the analysis of signal singularities 939

An equivalent form can be obtained by applying a
logarithm on both sides of the inequality

log2 |Wf(t, s)| ≤ (α+ 1/2) log2 s+ log2 A, (91)

from which it follows that α+ 1/2 is the maximum slope
of a straight line y = rx + q, where x = log2 s and y =
log2 |Wf(t, s)|.

7. Numerical results

Below are two examples illustrating the use of a discrete
dyadic wavelet transform and cubic wavelets for detection
of slopes (edges) of the signal.

Example 1. Figure 17 presents an artificial signal f [n]
of the length of 512 samples containing different slopes.
The first two slopes are respectively the leading edge
and the trailing edge of the rectangular pulse; the next
pulse is a Dirac delta; the further pulse contains step-and
cubic slopes; the one but last pulse contains a slope
sigmoidal, and the last slope is exponential. A five-level
discrete dyadic wavelet decomposition of the signal was
computed using the à trous algorithm with a cubic box
spline as the scaling function and the wavelet as the first
derivative of the smoothing function as shown in Fig. 6.
The low-pass filter coefficients associated with the scaling
function are shown in Table 3, whereas the high-pass filter
coefficients associated with the wavelet are presented in
Table 4. Since the wavelet used is the first derivative of

f[n
]
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Fig. 17. Example of a digital signal f [n], a modulus of wavelet
coefficients |d1[n]|, |d2[n]|, |d3[n]|, |d4[n]|, |d5[n]|
and a smoothed signal a5[n] of a five-level dyadic de-
composition using digital filters from Tables 3 and 4.

the smoothing function, the local modulus maxima of the
wavelet coefficients dk[n] indicate the singular points of
the signal. Noticing that the high-pass filter associated
with the wavelet in the form of the first derivative of the
smoothing function is not symmetric or antisymmetric

at zero (see Table 4), signals dk[n] are shifted to the
left (according to Eqns. (79) and (81)) by 2k−2 samples.
Therefore, the position of the modulus of local extrema in
the signals dk[n] is shifted to the left by 2k−2 samples with
respect to singular points of the signal (smoothed signal
inflection points).

Figure 17 shows that at fine scales (signals d1[n],
d2[n]) the wavelet coefficients corresponding to smooth
slopes are much smaller than those corresponding to sharp
slopes. However, in coarse scales (signals d4[n], d5[n]),
coefficients are comparable. Owing to that fact, the
multiscale analysis allows us to identify singular points
at coarse scales and facilitates accurate location of these
points at fine scales. Figure 18 shows a signal from Fig. 17
with an added noise. Decomposition of a noisy signal
was performed using the same filters that were used for
the signal decomposition in Fig. 17. Figure 18 shows
that the wavelet analysis of a noisy signal at fine scales
practically does not allow detection of singular points, and
the multiscale analysis, due to filtration of noise at coarse
scales, allows identification and location of these points.
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Fig. 18. Example of a signal f [n] with noise, a mod-
ulus of wavelet coefficients |d1[n]|, |d2[n]|,
|d3[n]|, |d4[n]|, |d5[n]| and a smoothed signal
a5[n] of five-level dyadic decomposition using digital
filters from the Tables 3 and 4.

Example 2. This example relates to the dyadic
decomposition of the signals from Example 1 with
the difference that the wavelet is the second derivative
of a smoothing function (Fig. 10). The highpass
filter associated with the wavelet is given in Table 7.
Both the wavelet and the filter are symmetric at zero
and do not introduce phase shift in signals dk[n].
Singular points of the analyzed signal correspond to
the places of intersection of signals dk[n] with the
x-axis (zero-crossings). Figures 19 and 20 illustrate
the usefulness of dyadic multiscale analysis in detection
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of signal singularities, particularly in the case of noisy
signals. �
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Fig. 19. Example of a digital signal f [n], wavelet coefficients
d1[n], d2[n], d3[n], d4[n], d5[n] and a smoothed sig-
nal a5[n] of a five-level dyadic decomposition using
digital filters from Tables 3 and 7.
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Fig. 20. Example of a digital signal f [n] with noise, wavelet
coefficients d1[n], d2[n], d3[n], d4[n], d5[n] and a
smoothed signal a5[n] of five-level dyadic decomposi-
tion using digital filters from Tables 3 and 7.

8. Conclusion

The paper presents a discrete dyadic wavelet
decomposition of signals utilizing cubic box spline
wavelets to detect the signal edges and allowing the signal
singularity detection and calculation of a singularity
measure in the form of Lipschitz exponent. Low-pass
filter banks associated with cubic box spline wavelets
used for wavelet decomposition do not shift the signal,
thereby easing the tracking of lines that end at singular
points of the signal. A cubic box spline wavelet that is
the first derivative of the smoothing function introduces

a phase shift that is easy to correct, and the cubic spline
wavelet which is the second derivative of the smoothing
function does not shift the signal at all.

Both the wavelets were applied for the dyadic
decomposition of a noiseless as well as a noisy signal. The
results of calculations illustrate the usefulness of cubic
box spline wavelets for the detection of signal edges,
particularly for noisy signals.

The singularity detection method presented in this
paper utilises real wavelets with compact and short
supports, and a fast algorithm for dyadic wavelet
decomposition (algorithm à trous). Tu and Hwang (2005)
show that complex-valued wavelets can be used to analyze
signal singularities. Their paper constitutes an extension
of Mallat’s work on the subject discussed in this paper.
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gree from the Łódz University of Technology in
2003. Since 2004, he has been a professor at the
Białystok University of Technology. His research
interests are focused on signal and image pro-
cessing, in particular wavelets applications, and

on computer graphics.

Received: 27 June 2014
Revised: 3 April 2015


	Introduction
	Definitions

	Wavelet analysis
	Dyadic signal representation
	Discrete dyadic wavelet transform
	Digital representation of the signal at the finest scale
	Algorithme à trous

	Box splines
	Box spline of the third degree

	Scaling function and wavelet in the form of a cubic box spline
	Scale-frequency analysis of a dyadic wavelet transform
	Frequency characteristics of the equivalent cubic filters
	Wavelet as the first derivative of a smoothing function
	Wavelet as the second derivative of a smoothing function


	Regularity and singularity of a signal
	Numerical results
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




