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The main aim is to present recent developments in applications of symbolic computing in probabilistic and stochastic
analysis, and this is done using the example of the well-known MAPLE system. The key theoretical methods discussed
are (i) analytical derivations, (ii) the classical Monte-Carlo simulation approach, (iii) the stochastic perturbation technique,
as well as (iv) some semi-analytical approaches. It is demonstrated in particular how to engage the basic symbolic tools
implemented in any system to derive the basic equations for the stochastic perturbation technique and how to make an
efficient implementation of the semi-analytical methods using an automatic differentiation and integration provided by the
computer algebra program itself. The second important illustration is probabilistic extension of the finite element and
finite difference methods coded in MAPLE, showing how to solve boundary value problems with random parameters in
the environment of symbolic computing. The response function method belongs to the third group, where interference of
classical deterministic software with the non-linear fitting numerical techniques available in various symbolic environments
is displayed. We recover in this context the probabilistic structural response in engineering systems and show how to solve
partial differential equations including Gaussian randomness in their coefficients.
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1. Introduction

Probabilistic and stochastic computational analysis in
engineering is important considering determination of
reliability measures like reliability indices or failure
probability (Sobczyk and Spencer, 1992), as well
as both time-independent and dependent stochastic
durability predictions (Melchers, 2002; Van Noortwijk
and Frangopol, 2004). Some state of the art papers
and analysis have been reported in the literature in the
last years (Hurtado and Barbat, 1998; Grigoriu, 2000;
Schueller, 2007; Chakraverty, 2014). On the other
hand, the well-known applications of a similar nature
are available in both economics (Wiggins, 1987) and,
traditionally, in physics (Binder and Heermann, 1997).
Since the enormous progress of all discrete computational
techniques like the finite difference (To and Kiu, 1994) or
finite element methods (Zienkiewicz and Taylor, 2005),
the boundary element method (Burczyński, 1995), the
finite volume method, the discrete element method or
some meshless alternatives, one needs to explore the
opportunity to expand them all towards uncertainty
analysis in symbolic computing environments. The most

convenient idea would be to provide the general purpose
codes in such platforms like MAPLE, MATHEMATICA,
MATHCAD or MAXIMA, for instance, to automatically
randomize most of the existing deterministic codes
through direct intervention or external interoperability
with the engineering systems like ABAQUS, ADINA,
ANSYS or BEASY.

It is known that symbolic analysis has been employed
in recent years mainly in the artificial intelligence area
(Shachter et al., 1990; Kwiatkowska et al., 2004; 2007;
López et al., 2006) with no well documented applications
in engineering analysis. The proposed idea is discussed
in this paper in the context of the MAPLE scripts
serving for determination of the fundamental probabilistic
characteristics of several resulting functions of input
random variables in the statistical, probabilistic and
stochastic context (Moller and Beer, 2004; Spanos and
Ghanem, 1991). This is done thanks to the Monte-Carlo
simulation (Binder and Heermann, 1997; Brandt, 1999),
analytical symbolic calculus as well as the stochastic
perturbation technique (Kamiński, 2013), implemented in
a dual way thanks to the direct differentiation method
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(DDM) as well as the response function method (RFM).
Numerical illustrations included here are focused on
the single input random variable distributed according
to the Gaussian distribution, but multi-variable analysis
is also available. A very important and somewhat
different issue is a scientific visualization of the resulting
randomness in any problem—as a function of the
input uncertainty dispersion level, with respect to the
perturbation parameter, the total number of random trials
or the perturbation method order.

2. Mathematical foundations

2.1. Probabilistic and statistical definitions. The
following definitions are employed concerning the
random variable B, its probability density function (PDF)
pB(x) and its number of realizations (assuming the same
probabilities of their occurrence) equal to M (Feller,
1965; Spanos and Ghanem, 1991):

(a) expected values,

E[B] =

∫ ∞

−∞
B pB(x)dx,

Ê[B] =
1

M

M∑
i=1

B(i);

(1)

(b) variances,

Var(B) =

∫ +∞

−∞
(B − E[B])2 pB(x) dx,

V̂ar(B) =
1

M − 1

M∑
i=1

(B(i) − E[B])2;

(2)

(c) standard deviation,

σB =
√

Var(B); (3)

(d) coefficient of variation,

α(B) =

√
Var(B)

E[B]
; (4)

(e) k-th central probabilistic moments (for k > 2),

μk(B) =

∫ +∞

−∞
(B − E[B])k pB(x) dx,

μ̂k(B) =
1

M

M∑
i=1

(B(i) − E[B])k;

(5)

(f) coefficient of skewness,

β(B) =
μ3(B)

σ3
B

=
E[B3]− 3μ(B)σ2

B − μ3(B)

σ3
B

;

(6)

(g) coefficient of flatness and kurtosis,

γ(B) =
μ4(B)

σ4
B

, κ(B) = γ(B)− 3; (7)

where the dashed quantities denote the additional
statistical estimators.

As is known, analytical derivations may result
in extremely long expansions, especially for higher
probabilistic moments like the third or the fourth one,
so that, alternatively, they may be carried out using
the complex exponential characteristic functions of B
itself. A very interesting property (unimplemented in
the symbolic computing environments) is probabilistic
entropy known from information theory, having its
deterministic counterpart in classical thermodynamics.
Probabilistic entropy illustrates the uncertainty of
occurrence of some random event at the next moment,
so that the entropy equal to 0 accompanies a probability
equal to 1 (or 0) for any random experiment showing no
randomness at all. If a countable set of random events has
n elements associated with the probabilities pi for i = 1,
. . . , n, then the entropy in this space is defined uniquely
by the following sum (Shannon, 1948):

H = −
n∑

i=1

pi logr(pi), (8)

where the logarithm basis r is the entropy unit;
computational information theory is naturally based on
bits, where r = 2. This discrete definition restricts the
entropy values to non-negative real numbers, where H
reaches maximum, i.e., for two elements, random space
with both events having the same probability −1 (like a
bit of entropy per a single throw with the geometrically
regular coin).

Although some computational applications show
that consequences of the definition (8) may be of the
paramount importance in data compression algorithms, its
usage in the composite materials area, together with other
structural engineering applications, demands continuous
distributions, so that we propose (Kamiński, 2013)

hB = −
∫ +∞

−∞
pB(x) log(pB(x)) dx. (9)

We may study entropy variations in different
boundary value problems with random parameters from
this formula to check if the given problem amplifies
or damps an input uncertainty level. Let us note that
this problem is of special importance in the composite
materials area and homogenization theory, where the
total number of uncertainty sources is huge (periodicity,
material properties, interface defects location and size,
etc.). Substituting the Gaussian probability density



Symbolic computing in probabilistic and stochastic analysis 963

function into Eqn. (9),

pB(x) =
1

σB

√
2π

exp

(
− (x− E[B])2

2σ2
B

)
, (10)

one determines this entropy as

hB =
1

2
log
(
2πeσ2

B

)
. (11)

Once we need to analyse the truncated Gaussian random
fields, then an integration process must be bounded using
three-sigma rule, for instance.

2.2. Stochastic perturbation technique. The main
philosophy of this method (Nayfeh, 2000) is to expand
all the structural or system parameters and the response
functions in the initial deterministic problem (heat
conductivity or capacity, temperature, as well as its
gradient) using a given order Taylor series with random
coefficients. It was provided in the literature using
the first order method (Sakata et al., 2008), the second
order technique (Kleiber and Hien, 1992), the third order
approach (Peng et al., 1998) and general usually higher
order extension (Kamiński, 2013). It is done with the
following representation of the random function u(B)
around its mean value (Kamiński, 2013):

u(B) = u0(B0)+ · · ·+ εn

n!

∂nu(B)

∂Bn

⏐⏐⏐⏐
B=B0

ΔBn, (12)

where ε is a given small perturbation (taken usually as
equal to 1), while the n-th order variation is given as
follows:

εnΔBn = (δB)n = εn(B −B0)n. (13)

The expected values are exactly given with the use of
the 10th order expansion as

E[u(B)] = u0(B0) + . . .+
ε10

10!

∂10u(B)

∂B10
μ10(B) (14)

for any natural m with μ2m(B) being central probabilistic
moment of the 2m-th order. Quite similarly, one
may derive analytical relations for higher probabilistic
moments taking into account that

μp(B) =

{
0, p = 2k + 1,

{σB}p(p− 1)!!, p = 2k
(15)

for any natural k ≥ 1 . As one may suppose, the higher
order moments we need to compute, the higher order
perturbations need to be included into all formulas, so
that the complexity of the computational model increases

non-proportionally, together with the precision and the
size of the output information needed.

The crucial numerical issue here may be
determination of partial derivatives of the state function
u(B) with respect to the input parameter B, and,
depending on the case study we can apply an analytical
technique, fully implemented in the computer algebra
system, a semi-analytical approach—a combination of
the symbolic calculus with some other discrete technique
implementation software or, finally, just a typical
numerical solution provided entirely by this solver itself.
Nevertheless, let us consider the following equations
system:

L(B)u(B) = f(B), (16)

where L(B) usually represents the main system matrix,
f(B) includes the boundary conditions imposed onto the
system, while u(B) is the structural response. According
to the main philosophy proposed above, we provide the
n-th order expansion at both of sides of this statement,
getting

{
ε0L0(B0) +

n∑
j=1

εj
∂jL(B)

∂Bj
(ΔB)j

}

×
{
ε0u0(B0) +

n∑
j=1

εj
∂ju(B)

∂Bj
(ΔB)j

}

= f0(B0) +

n∑
j=1

εj
∂jf(B)

∂Bj
(ΔB)j . (17)

After multiplication at the L.H.S. in Eqn. (17),
we collect the components of the same order of the
perturbation parameter ε, arriving at the increasing order
hierarchical equilibrium equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε0 : L0(B0)u0(B0) = f0(B0),

ε1 :
∂L(B)

∂B
u0(B) + L0(B)

∂u(B)

∂B
=

∂f(B)

∂B
,

...

εn :
∑n

j=0

(
n
j

)∂n−jL(B)

∂Bn−j

∂ju(B)

∂Bj
=

∂nf(B)

∂Bn
.

(18)
Further, leaving the highest order derivative of the

solution u(B) on the L.H.S. only and using simple
algebra, one gets zeroth, first, second and, finally, n-th
order equations as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0(B0) = {L0(B0)}−1f0(B0),
∂u(B)

∂B
= {L0(B0)}−1

{
∂f(B)

∂B
− ∂L(B)

∂B
u0(B)

}
,

...
(19)

A primary objective is the real function u of the following
polynomial form:
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u(B;n) =

n∑
j=0

D(j)Bj , (20)

where Dj , j = 1, . . . , n, are some real parameters and
B is the given Gaussian random variable. The key issue
is determination of the basic probabilistic moments and
characteristics of this power series expansion with respect
to the expectation and standard deviation of B itself. Let
us note that physical and engineering applications are
usually focused on the expectations, variances, standard
deviations, coefficients of variation, third and fourth
probabilistic moments, as well as the skewness and
kurtosis of the structural random response.

2.3. Least squares method. Further, we provide
a mathematical basis for the least squares method
(LSM) adjacent to the fourth order tensor in both the
non-weighted (NLSM) and the weighted (WLSM) version
(Bjorck, 1996). We use a polynomial approximation of
the s-th order (indexed by j here) through n numerical
tests of the specific problem solved around the mean value
of the given input random parameter B. We look for the
following polynomial approximation:

u(B) ∼= DjBj = f(D, B),

j = 1, . . . , s, s < n, (21)

because approximation is applied as it guarantees
automatic zeroing of partial derivatives with respect to B
of an order higher than this polynomial.

We introduce residuals at each trial point to get an
algebraic condition for this expansion coefficients, i.e.,

r(i) = u(i) − f(D, Bi), i = 1, . . . , n. (22)

This is done by a minimization of the functional of
weighted residuals

S =

n∑
i=1

wiir
2
(i), i = 1, . . . , n, (23)

so that

∂S

∂D(j)
= −2

n∑
i=1

wiir(i)
∂f(D, Bi)

∂D(j)
. (24)

Further, we adopt the following notation:

J = Jij =
∂f(D, Bi)

∂D(j)
, (25)

and we form the modified equations as

n∑
i=1

s∑
j=1

JijwiiJijD
(j) =

n∑
i=1

Jijwiiu
(i), (26)

Fig. 1. Cosine-based probability density function.

obtaining the normal equations
(
(J)TwJ

)
D = (J)Twu. (27)

This equations system (with the dimensions n × s) is
solved symbolically in MAPLE.

3. Computational illustrations

3.1. Analytical symbolic derivations. One of
the most important aspects of symbolic computing
in the probabilistic aspect—in both applications and
teaching of mathematics and theoretical engineering
subjects like structural reliability—is the opportunity to
derive analytical formulas describing basic probabilistic
characteristics for various distributions. A fundamental
linear transform for the binomial distribution is shown
below for probabilistic characteristics up to the fourth
order.

Algorithm 1. Analytical derivation of the basic
probabilistic characteristics for a linear transformC of the
binomial distribution.
> restart: with(Statistics):
B := RandomVariable(Binomial(n,p)): C := a ∗B + b :
{The binomial variable is the number of successes
in a set of n Bernoulli trials (p—probability of the
success)}
> E := ExpectedValue(C); CoV :=Variation(C);
D2 :=Variance(C); S :=Skewness(C);
K :=Kurtosis(C);

The same may be done using just numerical
integration with a variety of specific algorithms because
most of the random variables in engineering applications
have their own upper and lower bounds. A slightly
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non-standard application of the computer algebra
system together with its visualization procedures is the
development of new probability density functions (see
Fig. 1).

3.2. Technical aspects of the crude Monte-Carlo sim-
ulation. The next important problem is determination
of the accuracy of the simulation method, which means
defining the number of random trials decisive for an
efficient Monte-Carlo simulation of the given boundary
value problem. Some perspective may be given by the
following numerical error analysis, where we study initial
numerical discrepancy for the Gaussian random variable
and, in particular, for its probabilistic characteristics up
to the fourth order for 104 random samples generated in
MAPLE (see Algorithm 2). This very simple verification
shows that the same, rather significant, number of random
trials returns a 1.0% error in expectations, only a 1.5%
error for the variance, but 2.2% and an almost 4% error
level for the skewness and kurtosis. This justifies the
general idea that really precise determination of higher
order statistics needs many more random trials than
estimation of expectations and variances.

Algorithm 2. A priori computational error analysis in the
Monte-Carlo simulation.
> restart: with(Statistics):
> B :=RandomVariable(Normal(10,1)):
A :=Sample(B, 10000):
> Bootstrap(Mean,A,replications=10000,
output=[’value’,’standarderror’]);
> Mean(B);
> Bootstrap(Variance,A,replications=10000,
output=[’value’,’standarderror’];
>Variance(B);
> Bootstrap(Skewness,A,replications=10000,
output=[’value’,’standarderror’]);
>Skewness(B);
>Bootstrap(Kurtosis,A,replications=10000,
output=[’value’,’standarderror’]);
> Kurtosis(B);

The second, purely computational, issue is the import
of data from the additional acquisition software and their
further processing in the symbolic computing program. It
is illustrated in the script contained in Algorithm 3. We
take several measurements of the strength of the given
material and transfer them to MS EXCEL. We need to
plot a histogram and try to fit some probability density
function, and this is to make a conversion into the MAPLE
format; some basic estimators are calculated from these
random trials, too. As documented in Fig. 2, mathematical
fitting with some traditional analytical form is not so
easy as the distribution finally appears to be of a bimodal
character. This practically means that statistical estimators

Fig. 2. Bimodal distribution histogram.

are taken from two different populations, and this
conclusion may be more important than their numerical
values; verification of the admissibility condition for
the proposed PDF (for both bounded and unbounded
integrals) is also quite straightforward, as in the previous
case.

Algorithm 3. Statistics using interoperability of MAPLE
and EXCEL.
> restart: with(stats): with(plots): with (describe):
with(plottools): with(stats[statplots]): with(Statistics):
{Experimental data are taken from the following file
and converted to MAPLE}
> wyniki:=ExcelTools:
-Import(”D : \\Statistics\\data.xls”, ”data”);
> lista1:=convert(data,list): lista2:=sort(lista1):
{Histogram of the estimated distribution}
> p1:=histogram(lista2,color=blue): display(p1);
{Data analysis}
> EX:=evalf(describe[mean](lista2));
> M:=evalf(describe[mode](lista2));
> S:=evalf(describe[standardeviation](lista2));
> COV:=evalf(describe[coefficientofvariation](lista2));
> SK:=evalf(describe[skewness](lista2));
> K:=evalf(describe[kurtosis](lista2));
{We try to fit some function as the PDF}
> f:=proc(x) options operator,arrow;
> piecewise(x¡34,0,x¡44.5,(-1)*.16/(x-45.8)-.16/11.8,
x¡49.5,(1/29)*sin((3/5)*Pi*(x-44.5))+84/767,x¡60,.16/
(x-48.2)-0.16/11.8,0) end proc;
> p2:=plot(f(x),x=33..60,color=red): display({p1,p2});
{We check the basic integral condition of the PDF}
> c1:=Int(f(x),x=-infinity..infinity);

3.3. Stochastic finite difference method. The next
case study shows how efficient symbolic computing is
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in the implementation of the stochastic finite difference
method in 1D structural analysis of the beams resting
on an elastic foundation with some random design
parameters (cf. Fig. 3).

Let us consider for this purpose the following
ordinary fourth order differential equation for the linear
elastic isotropic and statistically homogeneous beam
exposed to the transversally distributed load q(x):

d2

dx2

(
e(x)J(x)

d2v(x)

dx2

)
= −kv(x) + q(x). (28)

It fulfills classical boundary conditions applicable in
engineering theories of elastic beams, where e(x) [Pa]
denotes the Young modulus of the beam, J(x) [m4]
is the inertia moment of this structure, k [Pa] is the
compliance coefficient of the subsoil and v(x) [m] denotes
the deflection function of the beam.

Fig. 3. Elastic beam on the Winkler foundation.

Let us also note that we further neglect the influence
of the longitudinal and transversal forces as well as reduce
the analysis to small deformations, which significantly
simplifies the final form of the differential equilibrium
equation; let us divide the entire domain of the beam
length l [m] into n equidistant sub-domains. The
following approximation of the spatial derivative of the
function v(x) with central differences for the fourth
derivative is employed:
(
d4v

dx4

)
i

∼=
(
Δ4v

Δx4

)
i

=
vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2

Δx4
.

(29)

The particular case of the bending stiffness
e(x)J(x) = const. = eJ enables us to transform this
formula into a definitely simpler form,

vi−2 − 4vi−1 +

(
6 +

kΔx4

eJ

)
vi

− 4vi+1 + vi+2 =
qiΔx4

eJ
. (30)

The case study deals with a cantilever I-beam made
of stainless steel e = 205 GPa, having a constant

cross-sectional area, an inertia moment equal to J =
1.71 × 10−6 m4 (I 100), and resting on the elastic
foundation characterized by the expected value of the
compliance coefficient E[k] = 5 × 107 N/m2, while its
standard deviation equals σ(k) = 0.30E[k]; the external
distributed load is constant along this beam, q = 10 kN/m,
for l = 3 m, with its boundary conditions ( y(x = 0) = 0
and y′(x = 0) = 0 ) discretised as follows:

v0 = 0, v−1 = v1, vn+1 = 2vn − vn−1,

vn+2 = 4vn − 4vn−1 + vn−2,
(31)

where the nodes indexed with the numbers n+2 and n+1
are fictitious. The computational grid is partitioned into
n = 25 equidistant intervals and n is treated here as an
additional parameter of this solution.

The computer code programmed in the MAPLE
system allows for an automatic generation and
computation of the first four probabilistic moments,
all according to the 10th order stochastic perturbation
approach. This code enables a computation of the
expected values (Fig. 5(a)) and coefficients of variation
(Fig. 5(b)) of the vertical displacements for this beam,
and this is done in a semi-analytical manner; the
resulting discrete displacements are analytical functions
of the design parameters and, when differentiated
ten times with respect to the parameter k, they form
expectations and coefficients of variation of the
structural response. This type of solution procedure
is unavailable without the symbolic environment and
enables relatively easy verification of the stochastic
sensitivity of any system subjected to external forcing.
Once we have a non-Gaussian input, one can modify
the perturbation-based equations of equilibrium towards
the computation of higher order statistics, too. As the
solution is done via matrices with an analytically defined
stiffness, there is no need to form and to solve (up to the
tenth order) equilibrium equations similar to Eqns.(18) or
(19).

Fig. 4. SFDM discretisation of the elastic beam on the Winkler
foundation.
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3.4. Stochastic finite element method. Computa-
tional implementation of the generalised perturbation
technique in conjunction with the finite element analysis
is performed in the MAPLE symbolic environment. It
enables (a) relatively easy extension of the technique
to any perturbation order, (b) convergence analysis for
particular probabilistic moments, (c) integration with
FORTRAN codes for FEM programs, as well as (d)
efficient visualization of the results. This code is tested
using the example of 10 finite elements discretisation
(1D bar elements) of the simple tension of a prismatic
beam with a constant cross-section. The following data

Fig. 5. Numerical discretisation of the SFEM test.

Fig. 6. Expectations of random displacements of the elastic bar
under tension.

have been adopted: E[e] = 200 GPa (Gaussian Young
modulus), A = 10−4m2 (cross-sectional area), L = 0, 1
m, P = 102 kN (concentrated force applied), where L
stands for each finite element length. The zeroth order
stiffness matrix of a single finite element is given here as

K0
2x2 =

e0A

L

[
1 −1
−1 1

]
. (32)

This test problem is a good illustration of
probabilistic convergence because of an infinite number of
non-zero partial derivatives with respect to a random input
parameter, so that each new perturbation order introduces
new components into the probabilistic output. Next, it is

Algorithm 4. SFDM solution for the elastic beam on the
Winkler foundation.
> restart: with(plots): with(plottools): n:=25:
> for i from 1 by 1 to n do eqn[i] := v[i−2]−4∗v[i−1]+(6+
k∗(dx)4/(E∗J))∗v[i]−4∗v[i+1]+v[i+2] = (dx)4/(E∗J)∗q
end do:
>eqn[1] := subs(v[−1] = v[1], v[0] = 0, v[n+1] = 2∗v[n]−
v[n−1], v[n+2] = 4∗v[n]−4∗v[n−1]+v[n−2], eqn[1]) :
>eqn[2] := subs(v[−1] = v[1], v[0] = 0, v[n+1] = 2∗v[n]−
v[n−1], v[n+2] = 4∗v[n]−4∗v[n−1]+v[n−2], eqn[2]) :
> eqn[n − 1] := subs(v[−1] = v[1], v[0] =
0, v[n + 1] = 2 ∗ v[n] − v[n − 1], v[n + 2] =
4 ∗ v[n]− 4 ∗ v[n− 1] + v[n− 2], eqn[n− 1]) :
> eqn[n] := subs(v[−1] = v[1], v[0] = 0, v[n + 1] =
2 ∗ v[n]− v[n− 1], v[n+2] = 4 ∗ v[n]− 4 ∗ v[n− 1] + v[n−
2], eqn[n]) :
> for i from 1 by 1 to n do eqn[i] end do:
> q := 104 : J := 1.71 ∗ 10(−6) : E := 20.5 ∗ 1010 : l :=
3.0 : dx := l/n :
> eqnsys:=seq(eqn[j],j=1..n): varlist:=seq(v[k],k=1..n):
> solution:=solve([eqnsys],[varlist]): assign(%):
> for i from 0 by 1 to n do l[i]:=i*dx end do:
> for i from 1 by 1 to n do
M1v[i] := v[i] + .5 ∗ sk2 ∗ (diff (v[i], k$2)) + .25 ∗ sk4 ∗
(diff (v[i], k$4))+ .167 ∗ sk6 ∗ (diff (v[i], k$6))+ .125 ∗ sk8 ∗
(diff (v[i], k$8)) + .1 ∗ sk10 ∗ (diff (v[i], k$10)) end do:
> for i from 1 by 1 to n do M2v[i] := (25.2 ∗
(diff (v[i], k$5))2 + 42. ∗ (diff (v[i], k$4)) ∗ (diff (v[i],
k$6)) + 24. ∗ (diff (v[i], k$3)) ∗ (diff (v[i], k$7)) + 9. ∗
(diff (v[i], k$2))
∗(diff (v[i], k$8)) + 2. ∗ (diff (v[i], k)) ∗ (diff (v[i], k$9))) ∗
sk10 + (7. ∗ (diff (v[i],
k$2)) ∗ (diff (v[i], k$6)) + 8.75 ∗ (diff (v[i], k$4))2 + 14. ∗
(diff (v[i], k$3))
∗(diff (v[i], k$5)) + 2. ∗ (diff (v[i], k)) ∗ (diff (v[i], k$7))) ∗
sk8 + (3.333 ∗ (diff (v[i],
k$3))2 + 2. ∗ (diff (v[i], k)) ∗ (diff (v[i], k$5)) + 5. ∗
(diff (v[i], k$2)) ∗ (diff (v[i],
k$4))) ∗ sk6 + (2. ∗ (diff (v[i], k)) ∗ (diff (v[i], k$3)) + 1.5 ∗
(diff (v[i],
k$2))2) ∗ sk4 + sk2 ∗ (diff (v[i], k))2 end do:
> for i from 1 by 1 to n do stdv[i]:=sqrt(M2v[i]) end do:
> for i from 1 by 1 to n do alfav[i]:=stdv[i]/M1v[i] end do:
> k := 5 ∗ 107 : sk := 0.30 ∗ 5 ∗ 107 :
> M1v[0]:=0: M2v[0]:=0: alfav[0]:=0:
> points1 := (seq([l[m],M1v[m]], m = 0..n)) :
pointplot(points1, axes = boxed, axis = [gridlines =
[colour = green,majorlines = 2]],
axesfont = [T imes, kold, 12], title =′

expectation′, titlefont = [T imes, bold, 12]);
> points6 := (seq([l[m], alfav[m]], m = 0..n)) :
pointplot(points6, axes = boxed, axis
= [gridlines = [colour = green,majorlines =
2]], axesfont = [T imes, kold, 12], title =′

alfaw′, titlefont
= [T imes, bold, 12]);
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Algorithm 5. SFEM algorithm.

> restart : with(linalg) : with(plots) :
with(plottools) :
> #deterministicproblemsolution, 2 −
nodedlinearfiniteelementswith2degreesoffreedom
> C := matrix([[1,−1, 0, 0, 0, 0, 0, 0,
0, 0, 0], [−1, 2,−1, 0, 0, 0, 0, 0, 0, 0, 0], [0,−1, 2,−1, 0, 0,
0, 0, 0, 0, 0], [0, 0,−1, 2,−1, 0, 0, 0, 0, 0, 0], [0, 0, 0,−1, 2,
−1, 0, 0, 0, 0, 0], [0, 0, 0, 0,−1, 2,−1, 0, 0, 0, 0], [0, 0, 0, 0,
0,−1, 2,−1, 0, 0, 0], [0, 0, 0, 0, 0, 0,−1, 2,−1, 0, 0], [0, 0,
0, 0, 0, 0, 0,−1, 2,−1, 0], [0, 0, 0, 0, 0, 0, 0, 0,−1, 2,−1],
[0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1]])
: kk := Y ∗A/L : K := kk ∗ C : evalm(K) :
> ff := vector([−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]) : pp :=
P : rhs0 := pp ∗ ff :
>#randomquantitydefinition
> b := Y : soln :=
evalm(leastsqrs(K, rhs0,′ optimize′)) : assign(q =
soln) :
>#1stordersolutiontotheproblem
> K1 := diff (kk, b) ∗ C : evalm(K1) : f1 :=
diff (pp, b) ∗ ff : rhs1 := f1 − multiply(K1, q) :
evalm(rhs1) :
> soln1 := evalm(leastsqrs(K, rhs1,′ optimize′)) :
assign(q1 = soln1) :
{}
>#10thordersolutiontotheproblem
>K10 := diff (kk, b$10) ∗ C : evalm(K10) :
f10 := diff (pp, b$10) ∗ ff : rhs10 :=
f10 − 10 ∗ multiply(K1, q9) : evalm(rhs10) :
q10 := evalm(leastsqrs(K, rhs10,′ optimize′)) :
>#InputprobabilisticdatafortheGaussianvariableb
> Y := 210e9 : A := 1E − 4 : L := 1.0E − 1 : sigb :=
alfab ∗ Y : P := 10E5 : mi2b := sigb2 : mi4b :=
3 ∗ sigb4 : mi6b := 1 ∗ 3 ∗ 5 ∗ sigb6 : mi8b :=
1 ∗ 3 ∗ 5 ∗ 7 ∗ sigb8 : mi10b := 1 ∗ 3 ∗ 5 ∗ 7 ∗ 9 ∗ sigb10 :
{Computations of probabilistic moments for the output}
{Expected values in various orders of the perturbation
analysis}
>E2q := evalm(q+1/(2!)∗eps2∗q2∗mi2b) : E4q :=
evalm(E2q + 1/(4!) ∗ eps4 ∗ q4 ∗mi4b) :
> E6q := evalm(E4q + 1/(6!) ∗ eps6 ∗ q6 ∗ mi6b) :
E8q := evalm(E6q + 1/(8!) ∗ eps8 ∗ q8 ∗mi8b) :
>E10q := evalm(E8q+1/(10!)∗eps10∗q10∗mi10b) :

observed that the exact analytical solution for this problem
consists of an inversion of the Gaussian input quantity,
which means that the integral equivalent to the expected
value does not converge and its value can be obtained
by numerical integration only. Contrary to the SFDM
experiment, now the solution is provided as a function of
two variables—an input coefficient of variation as well as
the perturbation parameter. This is a unique opportunity to
verify numerically the influence of this parameter choice

and to show the polynomial character of the probabilistic
response with respect to this specific variable. As one may
notice in Fig. 6, the code is based on the least squares
solution to the equilibrium problem, and the full DDM
scheme is implemented to solve up to the 10th order
perturbation-based equations; therefore, symbolic partial
differentiation is applied now to the system matrices and
vectors.

The expected values of displacements computed
according to the 2nd, 4th, 6th, 8th and 10th order
perturbation approach at the tensioned edge of a beam
are plotted in Fig. 7 in the parametric space of the
perturbation parameter and input coefficient of variation.
As is intuitively clear, the larger the perturbation
parameter, the larger the resulting expectation—the
same remains true for the interrelation of the observed
expectation versus input coefficient of variation. It
is hard to state which parameter of these two is
more influential, but it is apparent that the differences
between neighbouring orders in the perturbation approach
systematically decrease, which confirms numerically at
least probabilistic convergence of this method; for full
verification, the reader is referred to the work of Kamiński
(2013).

3.5. Probabilistic response determination with the
WLSM. The last computational illustration shows the
interoperability of the FEM system ABAQUS with
MAPLE to use the series of boundary value problems of
linear elasticity to solve a stochastic problem in the area
of composite materials. We determine the effective elastic
characteristics (Kamiński, 2005) of the polymeric matrix
filled with rubber particles uniformly distributed in space.

This is done through equating deformation energies
for the original and effective homogeneous material
contained in the same volume, i.e., into the representative
volume element containing here a single particle and
surrounding matrix. Probabilistic calculation is provided
on the basis of a series of numerical experiments
leading to the determination of response functions of
effective characteristics versus material characteristics of
the composite (subjected to some initial uncertainty).
We solve for the basic probabilistic characteristics of
the homogenized tensor with the use of the weighted
least squares method implemented in the MAPLE system
(into the curve fitting library). Determination of the
effective material tensor needs the strain energy of the
heterogeneous medium that equals

U (α) =
1

2

∫
Ω

C
(α)
ijklε

(α)
ij ε

(α)
kl dΩ, (33)

where α indices the series of numerical experiments for
the needs of the WLSM. The homogenized medium is a
linear and isotropic one and accumulates the same amount
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(a) (b)

Fig. 7. Expectations (a) and coefficients of variation (b) of displacements of the elastic beam.

of energy having effective elastic characteristics series
C

(eff)(α)
ijkl , so that we compare this against the energy

stored in the homogenized medium,

Fig. 8. ABAQUS discretization of the RVE for the particle-
filled polymer.

U (α) =
1

2

∫
Ω

C
(α)
ijklε

(α)
ij ε

(α)
kl dΩ

= U hom(α)

=
1

2

∫
Ω

C
(eff)(α)
ijkl ε

h(α)
ij ε

h(α)
kl dΩ,

(34)

where εijh(α) denotes the strain tensor adjacent to the
homogenized equivalent medium. Numerical experiments
with the homogenization method are completed in the
FEM system ABAQUS, where a 3D model of the RVE
is created, and where the series of the cell problems
are solved for the series of the elastic energies in
unidirectional and biaxial tension. Elastic parameters of
the rubber particle are taken as E(p) = 1.0 MPa,v(p) =
0.4888, and for the polymer matrix as E(m) = 4.0 GPa,
v(m) = 0.34. Spatial discretisation of the RVE domain

with tetrahedral elements C3D4 is given schematically for
the full particle and half of the matrix in Fig. 8 (61,265 for
the matrix and 3,829 elements for the particle); the entire
cell has unit dimensions in all directions, while the particle
has a diameter equal to 0.5 (effectively, a particle volume
fraction of 6.5%).

According to the well documented better stability of
the weighted least squares method (WLSM) (Kamiński,
2013), we propose the Dirac distribution of the
weights around the mean value of the internal energy
and of the effective tensor components to determine
their probabilistic moments. This is done in the
symbolic environment of the MAPLE program using
various approximating polynomial orders—we determine
analogous series of the effective elasticity tensor,
whose probabilistic characteristics are computed by the
weighting scheme [1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1] (6 stands
for the input expectation) using 11 point representations
of the Young modulus for the matrix and for the
particle around their mean values (uncorrelated Gaussian
variables). The resulting probabilistic characteristics of
internal energy in unidirectional tension of the RVE are
presented in Figs. 9(a)–12(b) (expectations, coefficients
of variation, skewness and kurtosis). The output
probabilistic characteristics are plotted as functions of
the approximating polynomial order as well as the
random dispersion of the given uncertainty source,
where the left series corresponds to the random Young
modulus of the matrix, while the right one to the
uncertainty of the same modulus of the particle filler.
Randomization of the particle elastic modulus results
in almost constant expectations of the deformation
energy (Fig. 9), independent of the initial uncertainty
level (with some small fluctuations depending on the
approximating polynomial order). Figure 9(b) shows
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(a) (b)

Fig. 9. Expected values of the internal energy versus Young modulus uncertainty of the matrix (a), of the particle (b).

(a) (b)

Fig. 10. Coefficients of variation of the internal energy versus Young modulus uncertainty of the matrix (a), of the particle (b).

(a) (b)

Fig. 11. Skewness of the internal energy versus Young modulus uncertainty of the matrix (a), of the particle (b).
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(a) (b)

Fig. 12. Kurtosis of the internal energy versus Young modulus uncertainty of the matrix (a), of the particle (b).

that it results also in almost non-random variations in
this energy, whose probabilistic distribution, considering
Figs. 11 and 12, is rather distant from the Gaussian
one. This is due to the fact that volume ratio of the
particle into the RVE is very small. The situation
changes significantly, while the matrix elastic modulus
is an uncertainty source in the homogenization problem.
Although the expectations behave in a quite similar
way and are also almost constant, the coefficient of
variation remains linearly dependent upon the input one
and keeps its input values (no probabilistic entropy
loss at all during the homogenization), which means
that the homogenization process has no influence on
the uncertainty level of the composite material itself.
Finally, one can notice in Figs. 11(a)–12(a) that the
resulting probability distribution of the deformation
energy can be treated as the Gaussian one with a
relatively small error. As is known, this significantly
simplifies any further numerical experiments as the first
two probabilistic moments determine the entire random
distribution (effective characteristics depend linearly upon
this energy). This is of paramount importance when
randomization is provided by the Monte-Carlo simulation
scheme because of the numerical errors displayed in the
first numerical experiment.

4. Concluding remarks

Computer algebra systems are very efficient in the
implementation of statistical, probabilistic and stochastic
techniques in the context of analytical, semi-analytical,
discrete (simulation) as well as the stochastic perturbation
technique. This is due to internal statistical functions as
well as additional visualization procedures but thanks
to the symbolic integration, differentiation, Taylor

expansions as well as the least squares approximation
for some data series. There is no doubt that further
implementations are necessary to explore the usage of
probabilistic entropies computations as well as PDF
recognition schemes (available in MAPLE in a limited
range as the kernel density analysis). An interoperability
with academic source codes relevant to discrete methods
like the FDM or FEM as well as fast data interchange
with the existing statistical packages may be crucial
in the nearest future for the next significant milestones
towards stochastic computations developments. The
particular applications shown in the paper may be
extended on the interval or stratified sampling with
MAPLE or, in the framework of response functions
recovery, towards a full Taylor–Newton–Gauss algorithm
based on any real function continuous function fitting into
the given data series (like exponential, power series or
harmonic signals combination). It should be underlined
that most of the MAPLE scripts discussed above are
available online through the Maple Application Center (at
http://www.maplesoft.com/applications/
index.aspx/).

It is apparent from the above that the stochastic
perturbation technique may deserve separate
implementation into the existing computer algebra
system, because it may (i) extend the capabilities of
other commercial systems and, on the other hand, (ii)
enable automatic randomization of almost all engineering
and applied science problems that can be solved right
now in the deterministic context including especially
non-Gaussian random variables (Falsone, 2005). As
was shown, symbolic implementation of the stochastic
perturbation method returns very concise computer
codes for both direct differentiation of the fundamental

http://www.maplesoft.com/applications/
index.aspx/).
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governing equation of the given problem as well as for
least squares recovery of the analytical response function
through several deterministic solutions. There are of
course some particular issues that could be resolved in
symbolic computing environments (like for MAPLE at
least), such as the programming of legends for 3D graphs
and an increase in their resolution or some new, more
detailed statistical commands.
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