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Service life of many real-life systems cannot be considered infinite, and thus the systems will be eventually stopped or
will break down. Some of them may be re-launched after possible maintenance under likely new initial conditions. In
such systems, which are often modelled by birth and death processes, the assumption of stationarity may be too strong
and performance characteristics obtained under this assumption may not make much sense. In such circumstances, time-
dependent analysis is more meaningful. In this paper, transient analysis of one class of Markov processes defined on
non-negative integers, specifically, inhomogeneous birth and death processes allowing special transitions from and to the
origin, is carried out. Whenever the process is at the origin, transition can occur to any state, not necessarily a neighbouring
one. Being in any other state, besides ordinary transitions to neighbouring states, a transition to the origin can occur. All
possible transition intensities are assumed to be non-random functions of time and may depend (except for transition to
the origin) on the process state. To the best of our knowledge, first ergodicity and perturbation bounds for this class of
processes are obtained. Extensive numerical results are also provided.
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1. Introduction

This paper is devoted to time-dependent analysis of one
subclass of continuous-time Markov chains, specifically,
inhomogeneous birth and death processes with additional
transitions from/to the origin. Suppose that the state space
is X = {0, 1, 2 . . .}; then a transition, whenever it occurs
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from state 0, can be to any state i > 0. Transition from
state i > 0 can be either to a neighbouring state (i − 1)
or (i + 1), or to state 0. All possible transition intensities
are assumed to be non-random functions of time, and may
depend (except for transition to state 0) on the state of the
process. This subclass of processes is of particular interest
in queueing theory for an analysis of queueing systems
with catastrophes and bulk arrivals. It is well known that
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transient solutions, even for simple queueing models are
more difficult to obtain than steady-state solutions and
their importance is especially high in practical situations
when the time horizon of a system’s operation eventually
terminates and/or remains finite.

A motivation for this research is due to the works
of Parthasarathy and Kumar (1991) as well as Chen
and Renshaw (1997). The former studied the transient
behaviour of a time-homogeneous birth and death process
with state space X and intensities dependent on the
current process state. Being in state i > 0, i ∈ X ,
the process can move only either to neighbouring states
or back to state i. But whenever the process arrives to
state i = 0, immigration can occur, i.e., the process
can jump to any state j > 0, j ∈ X . With respect
to queueing theory, this immigration is transition which
occurs according to a homogeneous Poisson process
with the size of arriving groups being independent and
identically distributed random variables. For this birth and
death process, the authors obtain an explicit expression
for its state distribution at arbitrary time, asymptotic
behaviour of extinction probability (eventually reaching
state i = 0) and its mean value.

Inspired by Parthasarathy and Kumar (1991), Chen
and Renshaw (1997) introduced an M/M/1 queueing
model with the same type of immigration and possible
catastrophes, which the authors call “mass arrivals when
empty” and “mass exodus”, respectively. Expressions
were obtained for the number of customers in the system
at arbitrary time and its moments. For Chen and Renshaw
(1997) the term “mass exodus” means that, whenever a
system is not empty, transition to an empty state occurs
with intensity β > 0. Having at hand the notion of
negative customers (also known as signals or triggers),
introduced by E. Gelenbe, one can say that there is an
additional flow (independent of others) of customers that
empty the system.

Since the publication of Chen and Renshaw (1997),
some papers have appeared devoted to the study of
birth and death processes with “mass exodus” and “mass
arrivals when empty” (see, e.g., Chen et al., 2010; Chen
and Renshaw, 2004; Li and Chen, 2013; Gaidamaka
et al., 2014), and what they all have in common is
that transition intensities are assumed to be constants
independent of time. We tried to look further and
see if the time-dependent analysis of such birth and
death processes can be extended to the case when all
possible transition intensities are non-random functions of
time. Exact computation of a transient state probability
distribution is not a very appealing way to treat these
processes because it leads to a solution of an infinite
system of differential equations and has well-known
drawbacks. An alternative way is the construction of
bounds for performance characteristics of interest which
can be computed fast and are tight enough to make the

results meaningful. In this paper, we follow the latter
way and obtain first ergodicity and perturbation bounds
for this subclass of continuous-time Markov processes.
In our analysis we heavily rely on the methodology
developed by Granovsky and Zeifman (2004), Zeifman
(1995) and Zeifman et al. (2008; 2006), which is based
on the logarithmic norm of linear operators and special
transformations of the intensity matrix of the Markov
chain governing the behaviour of the process.

The article is organized as follows. In the next
section, a description of the subclass of birth and death
processes under consideration and preliminary remarks
are given. In Sections 3 and 4, it is explained how one can
obtain ergodicity and perturbation bounds. Section 5 is
devoted to a method of truncation that allows calculation
of the limiting characteristics, and Section 6 provides
extensive numerical results, illustrating the efficiency of
the bounds. The conclusion contains a summary of the
obtained results and directions of further research.

2. Birth and death process

In order to keep a connection with the results previously
obtained by other authors, in what follows we will use
terms of mass exodus and mass arrivals when empty in
order to describe transitions to and from the origin.

Let the process X(t), t ≥ 0, be an inhomogeneous
continuous-time Markov chain with state space X =
{0, 1, 2 . . .}. Transition, whenever it occurs from state
0, can be to any state i > 0. Transition from state i > 0
can be either to neighbouring states (i − 1) or (i + 1), or
to state 0. All possible transition intensities are assumed
to be non-random functions of time, and may depend
(except for transition to 0) on the process state. Denote
by pij(s, t) = Pr {X(t) = j |X(s) = i}, i, j ≥ 0, 0 ≤
s ≤ t transition probabilities of X(t) and by pi(t) =
Pr {X(t) = i} the probability that the Markov chain X(t)

is in state i at time t. Let p(t) = (p0(t), p1(t), . . . )
T be

the probability distribution vector at time t. Then, for the
discussed process X(t), we assume that, for j �= i

Pr (X (t+ h) = j|X (t) = i)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λi (t)h+ αij (t, h) , if j = i+ 1, i > 0,

μi (t)h+ αij (t, h) , if j = i− 1, i > 1,

β (t)h+ αij (t, h) , if j = 0, i > 1,

rj (t)h+ αij (t, h) , if j ≥ 1, i = 0,

(μ1 (t) + β (t))h

+αij (t, h) , if j = i− 1, i = 1,

αij (t, h) otherwise,

(1)

where all αij(t, h) are o(h) uniformly in i, i.e.,
supi |αij(t, h)| = o(h). Intensity functions β (t) and
rj (t), j ≥ 1, are henceforth called mass exodus and mass
arrivals intensities.
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In the inhomogeneous case, we assume that all
intensity functions are linear combinations of a finite
number of nonnegative functions locally integrable on
[0,∞). Then the corresponding intensity matrix is

Q(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a00(t) r1(t) r2(t) r3(t) r4(t) . . . . . .

β(t) + μ1(t) a11(t) λ1(t) 0 0 . . . . . .

β(t) μ2(t) a22(t) λ2(t) 0 . . . . . .

. . . . . . . . . . . . . . . . . . . . .

β(t) 0 . . . μr(t) arr(t) λr(t) . . .

. . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let aij(t) = qji(t) for j �= i and

aii(t) = −
∑

j �=i

aji(t) = −
∑

j �=i

qij(t).

According to the standard approach, which was applied
by Granovsky and Zeifman (2004), Zeifman (1995) and
Zeifman et al. (2008; 2006), we assume that the intensity
matrix is essentially bounded, i.e.,

|aii(t)| ≤ L < ∞ (2)

for almost all t ≥ 0.
Probabilistic dynamics of the analysed process X(t)

are given by the forward Kolmogorov system,

dp(t)

dt
= A(t)p(t), (3)

where A(t) = QT (t) is the transposed intensity matrix of
the process. Throughout the paper, by ‖ · ‖ we denote the
l1-norm, i.e., ‖x‖ =

∑
i |xi|, and ‖B‖ = supj

∑
i |bij |

for B = (bij)
∞
i,j=0. Let Ω be the set of all stochastic

vectors, i.e., l1 – vectors with nonnegative coordinates and
unit norm. Then, we have ‖A(t)‖ = 2 supk |akk(t)| ≤ 2L
for almost all t ≥ 0. Hence, the operator function A(t)
from l1 into itself is bounded for almost all t ≥ 0 and
locally integrable on [0;∞). Therefore, we can consider
(3) as a differential equation in the space l1 with a bounded
operator.

It is well known (see Daleckij and Krein, 1975) that
the Cauchy problem for the differential equation (3) has
a unique solution for an arbitrary initial condition, and
p(s) ∈ Ω implies p(t) ∈ Ω for t ≥ s ≥ 0.

Denote by E(t, k) = E {X(t) |X(0) = k } the
expected value (mean) of the process X(t) at moment t
under the initial condition X(0) = k.

Recall that the process X(t) is called weakly ergodic
if ‖p∗(t) − p∗∗(t)‖ → 0 as t → ∞ for any initial
conditions p∗(0),p∗∗(0), where p∗(t) and p∗∗(t) are the
corresponding solutions of (3). The process X(t) has the
limiting mean ϕ(t) if limt→∞ (ϕ(t)− E(t, k)) = 0 for
any k.

3. Ergodicity bounds

Theorem 1. Let the mass exodus intensity be essential,
i.e., ∫ ∞

0

β(t) dt = ∞. (4)

Then, for any arrival and service intensities and any mass
arrivals, the process X(t) is weakly ergodic (in the uni-
form operator topology) and the following bound for the
rate of convergence holds:

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫

0

β(τ) dτ
(5)

for any initial conditions p∗(0),p∗∗(0) and any t ≥ 0.

Proof. We can apply the approach of Zeifman
and Korotysheva (2012). Namely, rewrite the forward
Kolmogorov equation (3) as

dp(t)

dt
= A∗ (t)p(t) + g(t), t ≥ 0, (6)

where g(t) = (β(t), 0, 0, . . . )T , A∗(t) = (a∗ij(t))
∞
i,j=0

and

a∗ij(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a00(t)− β(t) if j = i = 0,

μ1(t) if j = 1, i = 0,

0 if j > 1, i = 0,

aij(t) otherwise.

(7)

Recall the definition of the logarithmic norm of an
operator function (see Van Doorn et al., 2010; Granovsky
and Zeifman, 2004; Zeifman et al., 2006).

Let B (t), t ≥ 0, be a one-parameter family of
bounded linear operators on a Banach space B, and let
I denote the identity operator. For a given t ≥ 0, the
number

γ (B (t))B= lim
h→+0

‖I + hB (t)‖ − 1

h

is called the logarithmic norm of the operator B (t) .
If B is an (N + 1)-dimensional vector space with l1-

norm such that the operator B(t) is given by the matrix
B(t) = (bij(t))

N
i,j=0, t ≥ 0, then the logarithmic norm of

B(t) can be found explicitly:

γ (B (t))=sup
j

(
bjj (t) +

∑

i�=j

|bij (t)|
)
, t ≥ 0.

On the other hand, the logarithmic norm of the operator
B(t) is related to the Cauchy operator V (t, s) of the
system

dx(t)

dt
= B (t)x(t), t ≥ 0,
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in the following way:

γ (B (t))B = lim
h→+0

‖V (t+ h, t)‖ − 1

h
, t ≥ 0.

From the latter, one can deduce the following bounds of
the Cauchy operator V (t, s):

‖V (t, s)‖B ≤ e

t∫

s

γ(B(τ)) dτ
, 0 ≤ s ≤ t.

Here we can find the exact value of the logarithmic norm
of operator function A∗(t), namely,

γ (A∗(t))=sup
i

(
a∗ii(t) +

∑

j �=i

∣
∣a∗ji(t)

∣
∣
)
=−β(t). (8)

Let U∗(t, s) be the Cauchy operator for Eqn. (6).
Then we obtain

‖U∗(t, s)‖ ≤ e
−

t∫

s

β(τ) dτ
, (9)

and hence we have

‖p∗(t)−p∗∗(t)‖ ≤ e
−

t∫

0

β(τ) dτ‖p∗(0)−p∗∗(0)‖ (10)

for any initial conditions p∗(0),p∗∗(0) and any t ≥ 0,
which implies our claim. �

Now we study the existence of the limiting mean. To
this end, we apply the approach of Zeifman et al. (2010)
with modifications that concern only the way the estimates
are made. Let l1E = {z = (p0, p1, p2, . . .)} be the space
of sequences such that ‖z‖1E =

∑
k≥0 k|pk| < ∞.

Consider the diagonal matrix Dk,

Dk = diag
(
k, k, k, . . . , k
︸ ︷︷ ︸

k+1

, k + 1, k + 2, . . .
)
, (11)

and the corresponding space of sequences l1k =
{z = (p0, p1, p2, . . .)} such that ‖z‖1k = ‖Dkz‖1 < ∞.
Then ‖z‖1E ≤ ‖z‖1k for any k ∈ N.

Assume now that

∑

j≥1

jrj+k(t)

k
≤ ρβ(t),

λi+k(t)

k
≤ ρβ(t), (12)

for some k ∈ N, almost all t ≥ 0, any i ≥ 0, and some
ρ ∈ (0, 1). Then we can obtain the following estimate for
the logarithmic norm of the operator function A∗(t) in the

l1k-norm:

γ (A∗(t))1k

= γ
(
DkA

∗(t)D−1
k

)
= sup

i

(
a∗ii(t) +

∑

j �=i

∣
∣
∣
∣
dj
di

a∗ji(t)
∣
∣
∣

)

≤ −min

(

β(t) −
∑

i≥1

irk+i(t)

k
, β(t)− λk(t)

k
,

β(t) + inf
i≥1

μi+k(t)− λi+k(t)

i+ k

)

≤ −(1−ρ)β(t).

(13)

On the other hand, we have ‖ej − e0‖1k = k (1 + j)
for any j and k such that k ≥ j. Hence, the following
estimate holds:

|E(t, j)− E(t, 0)| ≤ e
−

t∫

0

(1−ρ)β(τ) dτ‖ej − e0‖1k

≤ k (1 + j) e
−

t∫

0

(1−ρ)β(τ) dτ

(14)

for any initial condition j and any t ≥ 0.

Theorem 2. Under the assumptions of Theorem 1, let
(12) hold for some k ∈ N and some ρ ∈ (0, 1). Then the
process X(t) has the limiting mean, say φ(t) = E(t, 0),
and the following bound for the rate of convergence holds:

|E(t, j)− E(t, 0)| ≤ k (1 + j) e
−

t∫

0

(1−ρ)β(τ) dτ
(15)

for any initial condition X(0) = j and any t ≥ 0.

4. Perturbation bounds

Let X̄(t), t ≥ 0, be a “perturbed” process with an
intensity matrix Q̄(t) and a transposed intensity matrix
Ā(t), where the perturbation matrix Â(t) = A(t) − Ā(t)
is small in some sense. We will consider some bounds of
stability of the main characteristics for the process X(t)
under such perturbations. Here we study the simplest
situation of the exponential ergodicity of X(t). Namely,
we suppose that

e−
∫ t
s
β(u) du ≤ Me−a(t−s), (16)

for any s and t such that 0 ≤ s ≤ t. The next statement
follows immediately from Theorem 1 of Zeifman and
Korotysheva (2012), see also the general approach of
Zeifman and Korolev (2014).

Theorem 3. Let the mass exodus intensity satisfy (16),
and let perturbations be uniformly small, i.e.,

‖Â(t)‖ ≤ ε (17)
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for almost all t ≥ 0. Then

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + logM)

a
(18)

for any initial conditions p(0) and p̄(0).

Corollary 1. Let all intensities be 1-periodic functions.
Let

∫ 1

0
β(t) dt ≥ θ∗ > 0 instead of (16). Then the bound

(18) holds for

M = eK , a = θ∗, (19)

where K = sup|t−s|≤1

∫ t

s
β(τ) dτ < ∞.

Remark 1. Note that in Theorem 3 and Corollary 1 the
structure of the perturbation matrix Â(t) may be arbitrary.

The investigation of perturbation bounds for the
mean is much more complicated. We assume now that the
perturbed process has the same structure, i.e., X̄(t) is also
an inhomogeneous birth and death process with the same
mass exodus and mass arrivals intensities and, in addition
to (12) and (17), we assume that

∑

j≥1

jr̂j+k(t)

k
≤ ε,

λ̂i+k(t)

k
≤ ε, (20)

for almost all t ≥ 0 and any i.
Let

dp̄(t)

dt
= Ā∗(t)p̄(t) + ḡ(t) (21)

be the respective system for the perturbed process, instead
of (6). If we rewrite (6) in the form

dp(t)

dt
= Ā∗(t)p(t) + ḡ(t) + Â∗(t)p(t) + ĝ(t), (22)

then

p(t) = Ū∗(t)p(0) +
∫ t

0

Ū∗(t, τ)ḡ(τ) dτ

+

∫ t

0

Ū∗(t, τ)
(
Â∗(τ)p(τ)+ĝ(τ)

)
dτ

(23)

and

p̄(t) = Ū∗(t)p̄(0) +
∫ t

0

Ū∗(t, τ)ḡ(τ) dτ. (24)

Hence, in any norm,

‖p(t)− p̄(t)‖ ≤
∫ t

0

‖Ū∗(t, τ)‖

×
(
‖Â∗(τ)‖‖p(τ)‖ + ‖ĝ(τ)‖

)
dτ (25)

if the initial conditions for the perturbed and original
processes are the same.

Now, notice that

‖Â∗(t)‖1k ≤ 3ε (26)

for almost any t ≥ 0 in accordance with (17) and (20).
Then we can write

γ(Ā∗(t))1k ≤ γ(DkA
∗(t)D−1

k )1 + ‖Â∗(t)‖1k
≤ − (1− ρ)β(t) + 3ε. (27)

On the other hand, we have

‖p(t)‖1k ≤ ‖U∗(t)p(0)‖1k

+

t∫

0

‖U∗(t, τ)g(τ) dτ‖1k

≤ e

t∫

0

(−(1−ρ)β(u)) du‖p(0)‖1k

+ k

t∫

0

β(τ)e

t∫

τ

(−(1−ρ)β(u)) du
dτ

≤ M1−ρe−a(1−ρ)t‖p(0)‖1k + k

1− ρ

≤ M1−ρ‖p(0)‖1k + k

1− ρ
(28)

for any p(0), because ‖g(τ)‖1k = kβ(τ).
Finally, we obtain

|E(t, j)− Ē(t, j)|
≤ ‖p(t)− p̄(t)‖1k
≤

(

3ε

(

M1−ρ‖p(0)‖1k + k

1− ρ

)

+ kε

)

×
∫ t

0

e−
∫

t
τ
((1−ρ)β(u)−3ε) du dτ

≤ εM1−ρ

a(1− ρ)− 3ε

(

3

(

jkM1−ρ +
k

1− ρ

)

+k

)

, (29)

where p(0) = p̄(0) = ej , and the following theorem
holds.

Theorem 4. Under the assumptions of Theorem 2, let the
perturbations be such that (17) and (20) hold. Then

lim sup
t→∞

|E(t, j)− Ē(t, j)|

≤ εkM1−ρ

a(1− ρ)− 3ε

(

3jM1−ρ +
3

1− ρ
+ 1

)

(30)

for any initial condition X(0) = j and any t ≥ 0.

5. Truncations

For the calculation of the limiting characteristics of
processes X(t) and X̄(t), we apply the approach of
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Zeifman et al. (2006), because the structure of the
infinitesimal matrix does not allow us to use the uniform
bounds and another approach of Zeifman et al. (2014). In
this section, we additionally assume that there exists q > 1
such that rk(t) ≤ q−k for any k.

Consider a “truncated” process Xn(t) on the state
space En = {0, 1, . . . , n} with the corresponding reduced
intensity matrix A∗

n(t). Below we will identify the finite
vector with entries, say, (a1, . . . , an)T , and the infinite
vector with the same first n coordinates and the others
equal to zero. Let us rewrite the system (6) as

dp(t)

dt
= A∗

n(t)p(t) + g(t) + (A∗(t)−A∗
n(t))p(t),

(31)
and consider the corresponding “truncated” system

dpn(t)

dt
= A∗

n(t)pn(t) + g(t). (32)

In any norm, we can write

‖p(t)− pn(t)‖

=
∥
∥
∥

t∫

0

U∗
n (t, τ) (A∗(τ)− A∗

n(τ))p(τ) dτ
∥
∥
∥. (33)

Consider the corresponding Cauchy matrix

U∗
n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

un
00 . . . . un

0n 0 0 · · ·
un
10 . . . . un

1n 0 0 · · ·
... . . . .

... 0 0 · · ·
un
n0 . . . . un

nn 0 0 · · ·
0 0 0 0 1 0 · · ·
0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (34)

For the sake of brevity, we will omit the argument t till the
end of this section. Having noticed that

(A∗ −A∗
n)p

=
(
0, . . . , μn+1pn+1, rn+1p0

+ λnpn−(λn+1+μn+1+β) pn+1+μn+2pn+2, . . .
)T

,

we obtain

U∗
n (A∗−A∗

n)p=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

un
0nμn+1pn+1

un
1nμn+1pn+1

...
un
nnμn+1pn+1[

rn+1p0 + λnpn
−(λn+1+μn+1+β) pn+1

+μn+2pn+2

]

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (35)

The inequalities un
ij(t, τ) ≥ 0 (for any i, j, t, τ ) and

the inequalities
∑

i u
n
ij(t, τ) ≤ 1 (for any j, t, τ ) imply

the bounds

‖U∗
n (A∗ −A∗

n)p‖
≤ |μn+1pn+1|

∑

k≤n

un
kn +

∑

k≥n

∣
∣rk+1p0+λnpk

− (λn+1+μn+1+β) pk+1+μn+2pk+2

∣
∣

≤
∑

k≥n

|rk| p0 + 2L
∑

k≥n+1

pk + L
∑

k≥n+1

pk + 2L
∑

k≥n

pk

≤ 1

(q − 1)qn−1
+ 5L

∑

k≥n

pk

≤ 1

(q − 1)qn−1
+

5L

n

∑

k≥n

kpk (36)

and

‖U∗
n (A∗ −A∗

n)p‖1E
= |μn+1pn+1|

∑

k≤n

kun
kn +

∑

k≥n

(k + 1)
∣
∣rk+1p0 + λnpk

− (λn+1 + μn+1 + β) pk+1 ++μn+2pk+2

∣
∣

≤ n

(q − 1)qn
+

1

(q − 1)2qn−1
+ L

∑

k≥n

(2k + 1)pk

≤ n+ 1

(q − 1)2qn−1
+

3L(n+ 1)

n

∑

k≥n

kpk. (37)

On the other hand, we have

dnpn + dn+1pn+1 + · · ·
=

dn
n
npn +

dn+1

n+ 1
pn+1 + · · · ≥ inf

i≥n

di
i

∑

k≥n

kpk (38)

and

∑

k≥n

kpk ≤ 1

infi≥n
di

i

∑

k≥n

dnpn

≤ 1

infi≥n
di

i

‖p‖1D ≤ d0

infi≥n
di

i

. (39)

Therefore, we get the following bounds of truncation:

‖p(t)−pn(t)‖ ≤ 1

(q − 1)qn−1
+

5Ld0t

n infi≥n
di

i

, (40)

|Ep(t)−Epn(t)| ≤
n+ 1

(q − 1)2qn−1
+
3Ld0(n+ 1)t

n infi≥n
di

i

. (41)

In the next section, we proceed to numerical
examples, illustrating the efficiency of the obtained
bounds.
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6. Examples

The efficiency of the bounds obtained for the processX(t)
in the previous sections will be illustrated in the queueing
theory context. Specifically, we consider a Mt/Mt/S
queue with catastrophes and bulk arrivals when empty
when intensities are periodic functions of time which can
be described by the process X(t). In each example it is
shown how to find approximations for the limiting value
of the mean number of customers in the system and the
limiting value of an empty system with a given error. For
convenience, we first give a detailed description of the
system and then proceed to examples.

The queueing system consists of a single infinite
capacity queue and S servers. Two flows of customers
arrive at the system: a flow of ordinary customers
and a flow of catastrophes. If at time t there
is at least one customer in the system, then new
arrivals of ordinary customers happen according to an
inhomogeneous Poisson process with intensity λ(t). But
if at time t the system is empty, ordinary customers arrive
in bulk (or groups) in accordance with an inhomogeneous
Poisson process of intensity r(t). The size of an arriving
group is a random variable with a probability distribution
gn, n = 1, 2, . . . , having a finite mean. The sizes
and interarrival times of successive arriving groups are
stochastically independent.

Let rn(t) = gnr(t). Each ordinary customer upon
arrival occupies one place in the queue and waits for
service. Whenever the server becomes free, a customer
from the queue (if there is any) enters the server and
gets served according to the exponential distribution with
intensity μ(t) (service discipline is unimportant, and for
certainty one can assume that the customers are served in
a FIFO manner). An additional inhomogeneous Poisson
flow of catastrophes of intensity β(t) arrives at the system.
If an arriving customer of this flow finds the system busy,
it removes all customers from the system and leaves it.
Otherwise, it has no effect on it.

The only non-trivial cases are those when there are
few servers in the system and when there are many servers
in the system. They are considered in what follows.

6.1. Case when S = 3. Let the number of servers
in the system be equal to S = 3. We will consider four
examples, which differ in periods of transition intensities.

Example 1. Let the intensities have the form

λn(t) = λ(t) = 1 + sin 2πt,

μn(t) = min(n, S)μ(t) = min(n, 3) (1− sin 2πt) ,

β(t) = 2 + cos 2πt,

rn(t) =
1 + sin 2πt

4n
.

�

Then the process X(t) is weakly ergodic, has the
limiting 1-periodic regime, and the bound

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫

0

β(τ) dτ ≤ 4e−2t (42)

holds for any initial conditions p∗(0),p∗∗(0) and any t ≥
0. Moreover, the inequality (12) holds for k = 2, ρ =
0.5. Hence, X(t) has a limiting (1-periodic) mean with
the bound

|E(t, j)− E(t, 0)| ≤ 3(j + 1)e−t (43)

for any initial condition j and any t ≥ 0. We now have
M = e1/π and a = 2, and thus the perturbation bound

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + logM)

a
< ε (44)

holds for any initial conditionsp(0) and p̄(0), and for any
structure of the perturbed intensity matrix.

If the perturbed intensity matrix has a certain
structure (e.g., the relation (20) holds), then the
perturbation bound can be made more precise:

lim sup
t→∞

|E(t, j)− Ē(t, j)| < ε (9j + 17)

1− 3ε
(45)

for any j.
Setting dn = 2n−1, applying this approach and using

the obtained bounds, we can find the approximation to the
limiting mean of the queue, and the limiting probability
of the empty queue with a truncation error of 10−5 for
n = 35 and t ∈ [15, 16] (see Figs.1–4).

Example 2. Let the intensities have the form

λn(t) = λ(t) = 1 + sin 20πt,

μn(t) = min(n, S)μ(t) = min(n, 3) (1− sin 20πt) ,

β(t) = 2 + cos 20πt,

rn(t) =
1 + sin 20πt

4n
.

Fig. 1. Example 1: approximation of the limiting probability of
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [15, 16].
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Then the process X(t) is weakly ergodic, has the
limiting 0.1-periodic regime and the bound

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫

0

β(τ) dτ ≤ 4e−2t (46)

holds for any initial conditions p∗(0),p∗∗(0) and any t ≥
0. The inequality (12) holds for k = 2, ρ = 0.5, as well as
in Example 1. Hence X(t) has the limiting (0.1-periodic)
mean with bound

|E(t, j)− E(t, 0)| ≤ 3(j + 1)e−t (47)

for any initial condition j and any t ≥ 0. We have that

Fig. 2. Example 1: approximation of the limiting mean Ē(t, 0)
on [15, 16].

Fig. 3. Example 1: approximation of the probability of the
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [0, 16].

Fig. 4. Example 1: approximation of the probability of the
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [0, 16].

M = e1/10π and a = 2. Thus the perturbation bound

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + logM)

a
< ε (48)

is valid for any initial conditions p(0) and p̄(0), and for
any structure of the perturbed intensity matrix.

If the perturbed intensity matrix has a certain
structure (e.g., the relation (20) holds), then the
perturbation bound is

lim sup
t→∞

|E(t, j)− Ē(t, j)| < ε (7j + 15)

1− 3ε
(49)

for any j.
Setting dn = 2n−1, applying this approach and using

the obtained bounds, we can find the approximation of the
limiting mean of the queue, and the limiting probability
of the empty queue with a truncation error of 10−5 for
n = 35 and t ∈ [15, 15.1] (see Figs. 5–8).

�
Example 3. Let the intensities have the form

λn(t) = λ(t) = 1 + sin 0.2πt,

μn(t) = min(n, S)μ(t) = min(n, 3) (1− sin 0.2πt) ,

β(t) = 2 + cos 0.2πt,

rn(t) =
1 + sin 0.2πt

4n
.

Fig. 5. Example 2: approximation of the limiting probability of
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [15, 15.1].

Fig. 6. Example 2: approximation of the limiting mean Ē(t, 0)
on [15, 15.1].
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Then the process X(t) is weakly ergodic, has the
limiting 10-periodic regime, and the bound

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫

0

β(τ) dτ ≤ 10e−2t (50)

holds for any initial conditions p∗(0),p∗∗(0) and any t ≥
0. Moreover, the inequality (12) holds for k = 2, ρ = 0.5,
and thus X(t) has the limiting (10-periodic) mean with
bound

|E(t, j)− E(t, 0)| ≤ 5(j + 1)e−t (51)

for any initial condition j and any t ≥ 0.
We have M = e10/π and a = 2, and the perturbation

bound

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + logM)

a
< 6ε (52)

holds for any initial conditions p(0) and p̄(0), and for any
structure of the perturbed intensity matrix.

If the perturbed intensity matrix has a certain
structure (e.g., (20) holds), then, in addition, the
perturbation bound

lim sup
t→∞

|E(t, j)− Ē(t, j)| < ε (145j + 69)

1− 3ε
(53)

holds for any j.

Fig. 7. Example 2: approximation of the probability of the
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [0, 5].

Fig. 8. Example 2: approximation of the probability of the
empty queue Pr{X̄(t) = 0/X̄(0) = 35} on [0, 5].

Setting dn = 2n−1, applying this approach and using
the obtained bounds, we can find an approximation to the
limiting mean of the queue, and the limiting probability
of the empty queue with a truncation error of 10−5 for
n = 35 and t ∈ [15, 25] (see Figs. 9–12). �

Fig. 9. Example 3: approximation of the limiting probability of
the empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [15, 25].

Fig. 10. Example 3: approximation of the limiting mean Ē(t, 0)
on [15, 25].

Fig. 11. Example 3: approximation of the probability of the
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [0, 25].
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Example 4. Let the intensities have the form

λn(t) = λ(t) = 1 + 0.5 sin 2πt+ 0.5 sin 20π,

μn(t) = min(n, S)μ(t)

= min(n, 3) (1− 0.5 sin2πt− 0.5 sin 20πt) ,

β(t) = 2 + 0.5 cos 2πt+ 0.5 cos 20π,

rn(t) =
1 + 0.5 sin 2πt+ 0.5 sin 20πt

4n
.

Then the process X(t) is weakly ergodic, has the
limiting 1-periodic regime, and the bound

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫

0

β(τ) dτ ≤ 4e−2t (54)

holds for any initial conditions p∗(0),p∗∗(0) and any t ≥
0. Moreover, the inequality (12) is fulfilled for k = 2,
ρ = 0.5. Hence X(t) has the limiting (1-periodic) mean
and the bound

|E(t, j)− E(t, 0)| ≤ 3(j + 1)e−t (55)

holds for any initial condition j and any t ≥ 0.
Now we have M = e1/2π+1/20π and a = 2; hence,

the corresponding perturbation bound

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + logM)

a
< ε (56)

holds for any initial conditionsp(0) and p̄(0), and for any
structure of the perturbed intensity matrix.

If the perturbed intensity matrix has a certain
structure (e.g., (20) holds), then, in addition, the
perturbation bound

lim sup
t→∞

|E(t, j)− Ē(t, j)| < ε (8j + 16)

1− 3ε
(57)

holds for any j.
Set dn = 2n−1; then, applying this approach and

using the obtained bounds, we can find the approximation
of the limiting mean of the queue, and the limiting
probability of the empty queue with a truncation error of
10−5 for n = 35 and t ∈ [15, 16] (see Figs. 13–16). �

Fig. 12. Example 3: approximation of the probability of the
empty queue Pr{X̄(t) = 0/X̄(0) = 35} on [0, 25].

6.2. Case when S = 1000. Let the number of
servers in the system be equal to S = 1000.
Here we will consider again four examples as in the
previous subsection, which differ in periods of transition
intensities.

Example 5. Let the intensities have the form

λn(t) = λ(t) = 103 (1 + sin 2πt) ,

μn(t) = min(n, S)μ(t)

= min(n, 1000) (1− sin 2πt) ,

Fig. 13. Example 4: approximation of the limiting probability
of the empty queue Pr{X̄(t) = 0|X̄(0) = 0} on
[15, 16].

Fig. 14. Example 4: approximation of the limiting mean Ē(t, 0)
on [15, 16].

Fig. 15. Example 4: approximation of the probability of the
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [0, 16].
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β(t) = 2 + cos 2πt,

rn(t) =
1 + sin 2πt

4n
.

Then the process X(t) is weakly ergodic, has the
limiting 1-periodic regime, and the bound

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫

0

β(τ) dτ ≤ 4e−2t (58)

holds for any initial conditions p∗(0),p∗∗(0) and any t ≥
0. Moreover, the inequality (12) holds for k = 2 · 103,
ρ = 0.5, hence X(t) has the limiting (1−periodic) mean,
and the bound

|E(t, j)− E(t, 0)| ≤ 3 · 103(j + 1)e−t (59)

holds for any initial condition j and any t ≥ 0. Now
we have M = e1/π and a = 2; hence the corresponding
perturbation bound

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + logM)

a
< ε, (60)

holds for any initial conditions p(0) and p̄(0), and for any
structure of perturbed intensity matrix.

If the perturbed intensity matrix has a certain
structure (e.g., (20) holds), then, in addition, the
perturbation bound

lim sup
t→∞

|E(t, j)− Ē(t, j)| < 103ε (9j + 17)

1− 3ε
(61)

holds for any j.
Set dn = 4n−1. Then applying this approach and

using the obtained bounds, we can find an approximation
to the limiting mean of the queue, and the limiting
probability of the empty queue with a truncation error of
10−5 for n = 22 and t ∈ [23, 24] (see Figs. 17–20). �

Fig. 16. Example 4: approximation of the probability of the
empty queue Pr{X̄(t) = 0/X̄(0) = 35} on [0, 16].

Example 6. Let the intensities have the form

λn(t) = λ(t) = 103 (1 + sin 20πt) ,

μn(t) = min(n, S)μ(t)

= min(n, 1000) (1− sin 20πt) ,

β(t) = 2 + cos 20πt,

rn(t) =
1 + sin 20πt

4n
.

Then the process X(t) is weakly ergodic, has the

Fig. 17. Example 5: approximation of the limiting probability
of the empty queue Pr{X̄(t) = 0|X̄(0) = 0} on
[23, 24].

Fig. 18. Example 5: approximation of the limiting mean E(t, 0)
on [23, 24].

Fig. 19. Example 5: approximation of the probability of the
empty queue Pr{X̄(t) = 0/X̄(0) = 22} on [0, 24].
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limiting 0.1-periodic regime, and the bound

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫

0

β(τ)dτ ≤ 4e−2t (62)

holds for any initial conditions p∗(0),p∗∗(0) and any t ≥
0. Moreover, the inequality (12) is fulfilled for k = 2·103,
ρ = 0.5 hence X(t) has the limiting (0.1−periodic) mean,
and the bound

|E(t, j)− E(t, 0)| ≤ 3 · 103(j + 1)e−t (63)

holds for any initial condition j and any t ≥ 0. Here we
have M = e1/10π and a = 200. Hence the corresponding
perturbation bound

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + logM)

a
< ε (64)

holds for any initial conditionsp(0) and p̄(0), and for any
structure of perturbed intensity matrix.

If the perturbed intensity matrix has a certain
structure (e.g., (20) holds), then, in addition, the
perturbation bound

lim sup
t→∞

|E(t, j)− Ē(t, j)| < 103ε (7j + 15)

1− 3ε
(65)

holds for any j.
Setting dn = 4n−1, applying this approach and using

the obtained bounds, we can find the approximation to the
limiting mean of the queue, and the limiting probability
of the empty queue with truncation error 10−5 for n = 22
and t ∈ [23, 23.1] (see Figs. 21–24). �
Example 7. Let the intensities have the form

λn(t) = λ(t) = 103 (1 + sin 0.2πt) ,

μn(t) = min(n, S)μ(t)

= min(n, 1000) (1− sin 0.2πt) ,

β(t) = 2 + cos 0.2πt,

rn(t) =
1 + sin 0.2πt

4n
.

Fig. 20. Example 5: approximation of the probability of the
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [0, 24].

Then the process X(t) is weakly ergodic, has the limiting
10-periodic regime, and the bound

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫

0

β(τ) dτ ≤ 10e−2t (66)

holds for any initial conditions p∗(0),p∗∗(0) and any t ≥
0. Moreover, the inequality (12) is fulfilled for k = 2·103,
ρ = 0.5; hence X(t) has the limiting (10-periodic) mean
and the bound

|E(t, j)− E(t, 0)| ≤ 5 · 103(j + 1)e−t (67)

holds for any initial condition j and any t ≥ 0.

Fig. 21. Example 6: approximation of the limiting probability
of the empty queue Pr{X̄(t) = 0|X̄(0) = 0} on
[23, 23.1].

Fig. 22. Example 6: approximation of the limiting mean E(t, 0)
on [23, 23.1].

Fig. 23. Example 6: approximation of the probability of the
empty queue Pr{X̄(t) = 0/X̄(0) = 22} on [0, 5].
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Now we have M = e10/π and a = 2; hence, the
respective perturbation bound

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + logM)

a
< 6ε (68)

holds for any initial conditions p(0) and p̄(0), and for any
structure of perturbed intensity matrix.

If the perturbed intensity matrix has a certain
structure (e.g., (20) holds), then, in addition, the
perturbation bound

lim sup
t→∞

|E(t, j)− Ē(t, j)| < 103ε (15j + 70)

1− 3ε
(69)

holds for any j.

Setting dn = 4n−1, applying this approach and using
the obtained bounds, we can find an approximation to the
limiting mean of the queue, and the limiting probability
of the empty queue with a truncation error of 10−5 for
n = 22 and t ∈ [23, 33] (see Figs. 25–28). �

Fig. 24. Example 6: approximation of the probability of the
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [0, 5].

Fig. 25. Example 7: approximation of the limiting probability
of the empty queue Pr{X̄(t) = 0|X̄(0) = 0} on
[23, 33].

Example 8. Let the intensities have the form

λn(t) = λ(t) = 103 (1 + 0.5 sin 2πt+ 0.5 sin 20π) ,

μn(t) = min(n, S)μ(t)

= min(n, 1000)

= (1− 0.5 sin 2πt− 0.5 sin 20πt) ,

β(t) = 2 + 0.5 cos 2πt+ 0.5 cos 20π,

rn(t) =
1 + 0.5 sin 2πt+ 0.5 sin 20πt

4n
.

Then the process X(t) is weakly ergodic, has the

Fig. 26. Example 7: approximation of the limiting mean E(t, 0)
on [23, 33].

Fig. 27. Example 7: approximation of the probability of the
empty queue Pr{X̄(t) = 0/X̄(0) = 22} on [0, 33].

Fig. 28. Example 7: approximation of the probability of the
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [0, 33].



800 A. Zeifman et al.

limiting 1-periodic regime, and the bound

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫

0

β(τ) dτ ≤ 4e−2t (70)

holds for any initial conditions p∗(0),p∗∗(0) and any t ≥
0. Moreover, the inequality (12) holds for k = 2 · 103,
ρ = 0.5; hence, X(t) has the limiting (1-periodic) mean
and the bound

|E(t, j)− E(t, 0)| ≤ 3 · 103(j + 1)e−t (71)

holds for any initial condition j and any t ≥ 0. We
now have M = e1/2π+1/20π and a = 2; hence the
corresponding perturbation bound

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + logM)

a
< ε (72)

holds for any initial conditionsp(0) and p̄(0), and for any
structure of the perturbed intensity matrix.

If the perturbed intensity matrix has a certain
structure (e.g., (20) holds), then, in addition, the
perturbation bound

lim sup
t→∞

|E(t, j)− Ē(t, j)| < 103ε (8j + 16)

1− 3ε
(73)

holds for any j.
Setting dn = 4n−1, applying this approach and using

the obtained bounds, we can find an approximation to the
limiting mean of the queue, and the limiting probability
of the empty queue with a truncation error of 10−5 for
n = 22 and t ∈ [23, 24] (see Figs. 29–32). �

7. Conclusion

Time-dependent analysis of an inhomogeneous birth and
death process with an additional arrival from/to origin
was carried out. All possible transition intensities were
assumed to be non-random functions of time. To the

Fig. 29. Example 8: approximation of the limiting probability
of the empty queue Pr{X̄(t) = 0|X̄(0) = 0} on
[23, 24].

best of our knowledge, first ergodicity and perturbation
bounds for such a model were obtained, which allow
us to find limiting performance characteristics for an
arbitrary finite number of servers with a given error.
All obtained results were compared with simulation and
showed good accuracy. It is worth noting that obtaining
results for time-dependent characteristics may be a time
consuming way because the number of replications that
leads to accurate results requires a careful investigation.
Nevertheless, the use of simulation in further studies of
possible optimization problems is a promising research
direction.

Fig. 30. Example 8: approximation of the limiting mean E(t, 0)
on [23, 24].

Fig. 31. Example 8: approximation of the probability of the
empty queue Pr{X̄(t) = 0/X̄(0) = 22} on [0, 24].

Fig. 32. Example 8: approximation of the probability of the
empty queue Pr{X̄(t) = 0|X̄(0) = 0} on [0, 24].
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