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POSITIVITY AND LINEARIZATION OF A CLASS OF NONLINEAR
CONTINUOUS–TIME SYSTEMS BY STATE FEEDBACKS
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The positivity and linearization of a class of nonlinear continuous-time system by nonlinear state feedbacks are addressed.
Necessary and sufficient conditions for the positivity of the class of nonlinear systems are established. A method for line-
arization of nonlinear systems by nonlinear state feedbacks is presented. It is shown that by a suitable choice of the state
feedback it is possible to obtain an asymptotically stable and controllable linear system, and if the closed-loop system is
positive then it is unstable.
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1. Introduction

In positive systems inputs, state variables and outputs
take only nonnegative values. Examples of positive
systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns,
storage systems, compartmental systems, water and
atmospheric pollution models. A variety of models having
positive linear behavior can be found in engineering,
management science, economics, social sciences, biology
and medicine, etc. Positive linear systems are defined on
cones and not on linear spaces. Therefore, the theory of
positive systems is more complicated and less advanced.

An overview of the state of the art in positive
systems theory is given by Farina and Rinaldi (2000) as
well as Kaczorek (2002), who also addressed positive
linear systems consisting of n subsystems with different
fractional orders (Kaczorek, 2011; 2012) along with
minimum energy control of positive discrete-time and
continuous-time linear systems (Kaczorek, 2014a; 2013;
2014b; 2014c). The theory of the geometrical approach
to the analysis of nonlinear systems based on the Lie
algebra was given by Brockett (1976) and Isidori (1989).
The problem of linearization of nonlinear systems by
nonlinear state feedbacks was investigated by Aguilar et
al. (1995), Charlet et al. (1991), Daizhan et al. (1985),
Fang and Kelkar (2003), Jakubczyk (2001), Jakubczyk
and Respondek (1980), Isidori (1989), Malesza (2008),

Marino and Tomei (1995), Melhem et al. (2006), Taylor
and Antoniotti (1993), as well as Wei-Bing and Dang-Nan
(1992).

In this paper the positivity and linearization of a class
of nonlinear continuous-time systems by nonlinear state
feedbacks will be addressed. The paper is organized as
follows. In Section 2, necessary and sufficient conditions
for the positivity of a class of nonlinear systems are
established. Linearization of the nonlinear system by a
nonlinear state feedback is addressed in Section 3. An
example illustrating the discussion is given in Section 4.
Concluding remarks are presented in Section 5.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n×m real matrices and R

n =
R

n×1; Rn×m
+ , the set of n×m matrices with nonnegative

entries and R
n
+ = R

n×1
+ ; Mn, the set of n × n Metzler

matrices (with nonnegative off-diagonal entries); In, the
n× n identity matrix.

2. Positivity of nonlinear systems

Consider the nonlinear system

ẋ = Ax+ f(x) +Bu, (1)
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where

x =

⎡
⎢⎣

x1

...
xn

⎤
⎥⎦ , A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
,

f(x) =

⎡
⎢⎢⎢⎣

f1(x1)
f2(x1, x2)

...
fn(x1, . . . , xn)

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ ,

(2)

x = x(t) ∈ R
n, u = u(t) ∈ R are the state vector and the

input vector, respectively.
It is assumed that the functions fk(x1, . . . ., xk), k =

1, 2, . . . , n, are continuously differentiable for all their
arguments.

Definition 1. The nonlinear system (1) is called
(internally) positive if x(t) ∈ R

n
+ for all x(0) ∈ R

n
+, t ≥ 0

and every u(t) ∈ R+, t ≥ 0.

Theorem 1. The nonlinear system (1) is positive if and
only if

fk(x̄) ∈ R+ for
x̄ = [x1, . . . , xj−1, 0, xj+1, . . . , xk(t)]

T ∈ R+,
j = 1, 2, . . . , k and u(t) ∈ R+, t ≥ 0.

}

(3)

Proof. For given f(x), the solution of (1) has the form

x(t) = eAtx(0)+

∫ t

0

eA(t−τ)[f(x(τ))+Bu(τ)] dτ. (4)

The linear system obtained from (1) for fk(x1, . . . , xk) =
0, k = 1, 2, . . . , n, is positive since the matrix A is a
Meltzer matrix, B ∈ R

n
+.

Using the well-known Picard method, the
k-approximation of the solution of (1) can be found
from the formula

xk+1(t) = eAtx(0)

+

∫ t

0

eA(t−τ)[f(xk(τ)) +Bu(τ)] dτ
(5)

for k = 1, 2, . . . .
The Lipschitz conditions for (1) are satisfied since,

by assumption, the functions fk(x1, . . . , xk), k =
1, 2, . . . , n, are continuously differentiable. Using the
Picard method, it is easy to show that Eqn. (1) has
nonnegative solution x(t) ∈ R

n
+, t ≥ 0 if and only if

the conditions (3) are satisfied. �

The proof can be also accomplished using the
method presented by Malesza and Respondek (2007).

3. Linearization by state feedbacks

For the nonlinear system (1), we introduce the following
new state variables (the components of the new state
vector z = [ z1 . . . zn ]T ):

z1 = x1,

z2 = x2 + f1(x1),

z3 = x3 + f2(x1, x2) +
∂f1
∂x1

[x2 + f1(x1)]

= x3 + f̄2(x1, x2),

z4 = x4 + f3(x1, x2, x3) +
∂f̄2
∂x1

[x2 + f1(x1)]

+
∂f̄2
∂x2

[x3 + f2(x1, x2)]

= x4 + f̄3(x1, x2, x3),

...

zn = xn + f̄n−1(x1, . . . , xn−1).

(6)

The relations (6) can be written shortly as z = φ(x).
From (6), we have

x1 = z1,

x2 = z2 − f1(z1),

x3 = z3 − f̄2(z1, z2),

...

xn = zn − f̄n−1(z1, . . . , zn−1).

(7)

This can be briefly expressed as x = φ−1(z).
The nonlinear system (1) in the new state variables

(6) has the form

ż1 = ẋ1 = x2 + f1(x1) = z2,

ż2 = ẋ2 +
∂f1
∂x1

ẋ1 = x3 + f2(x1, x2)

+
∂f1
∂x1

[x2 + f1(x1)] = z3,

...

żn−1 = xn + fn−1(x1, . . . , xn−1)

+
∂f̄n−2

∂x1
[x2 + f1(x1)] + · · ·+ ∂f̄n−2

∂xn−2

× [xn−1fn−2(x1, . . . , xn−2)] = zn,

żn = fn(x1, . . . , xn) + u+
∂f̄n−1

∂x1
[x2 + f1(x1)]

+ · · ·+ ∂f̄n−1

∂xn−1

× [xn + fn−1(x1, . . . , xn−1)]
∣∣∣
x=φ−1(z)

= −a0z1 − a1z2 − · · · − an−1zn + v,

(8)
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where

v = u+ g(x),

g(x) =

n−1∑
i=0

aizi+1

∣∣∣
z=φ(x)

+ fn(x1, . . . , xn)

+
∂f̄n−1

∂x1
[x2 + f1(x1)]

+ · · ·+ ∂f̄n−1

∂xn−1
[xn + fn−1(x1, . . . , xn−1)].

(9)

Equations (8) can be written in the form

ż = Az +Bv, z(0) = φ[x(0)] ∈ R
n, (10)

where

Ā =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎥⎦
,

B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ .

(11)

Note that applying to the nonlinear system (8) the
nonlinear state feedback

u = v − g(x), (12)

we obtain the linear closed-loop system described by
Eqn. (10).

The coefficients ak, k = 0, 1, . . . , n − 1, can be
chosen so that the linear system (10) is asymptotically
stable.

For all values of the coefficients ak, k =
0, 1, . . . , n − 2, the pair (11) is controllable since
(Jakubczyk and Respondek, 1980; Isidori, 1989)

rank[ B ĀB . . . Ān−1B ] = n. (13)

Note that the linear system (10) with (11) is positive if and
only if ak = 0, k = 0, 1, . . . , n− 1. In this case, the linear
system is unstable.

Therefore, the following results have been proven.

Theorem 2. The nonlinear system (1) can be linearized
by the nonlinear state feedback (12) and for a suitable
choice of the coefficients ak, k = 0, 1, . . . , n − 1, the li-
near closed-loop system (10) is asymptotically stable and
controllable.

Theorem 3. The nonlinear system (1) can be linearized
by the nonlinear state feedback (12), so that the closed-
loop system (10) for ak = 0, k = 0, 1, . . . , n− 1, is posi-
tive but unstable.

4. Example

Consider the nonlinear system described by the equations

ẋ =

⎡
⎣

ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣

x2 + x2
1

x3 + x1x2

x2x3 + u

⎤
⎦ , x(0) ∈ R

3
+. (14)

The system (14) is positive since Eqn. (14) satisfies
the conditions (3) and u = u(t) ∈ R+, t ≥ 0. In this
case, the new state variables zk, k = 1, 2, 3, are defined as
follows:

z =

⎡
⎣

z1
z2
z3

⎤
⎦ =

⎡
⎣

x1

x2 + x2
1

x3 + 3x1x2 + 2x3
1

⎤
⎦ = φ(x) (15)

and

x =

⎡
⎣

x1

x2

x3

⎤
⎦ =

⎡
⎣

z1
z2 − z21

z3 − 3z1z2 + z31

⎤
⎦ . (16)

The nonlinear system (14) in the new state variables is
described by Eqn. (17).

To linearize the nonlinear system (17), we apply the
nonlinear state feedback (12) of the form

u = v − g(z)

= v − a0z1 − a1z2 − a2z3 + z51 + 2z41 − 4z31z2

+ 3z21z2 + z21z3 − 3z22 + 3z1z
2
2

− 3z1z3 − z2z3,

(18)

and we obtain the linear system (10) with

A =

⎡
⎣

0 1 0
0 0 1

−a0 −a1 −a2

⎤
⎦ , B =

⎡
⎣

0
0
1

⎤
⎦ . (19)

The linear system is controllable for all values of the
coefficients ak, k = 0, 1, 2, and it is asymptotically stable
if and only if ak > 0, k = 0, 1, 2, and a1a2 > a0.

The linear system (10) with (19) is positive if and
only if ak = 0, k = 0, 1 since in this case

A =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ ∈ M3. (20)

In this case the linear system is unstable.

5. Concluding remarks

The positivity and linearization of a class of nonlinear
systems by nonlinear state feedbacks were addressed.
Necessary and sufficient conditions for the positivity
of the class of nonlinear systems (Theorem 1) were
established. It was shown that the nonlinear systems
can be linearized by nonlinear feedbacks, so that the
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ż =

⎡
⎣

ż1
ż2
ż3

⎤
⎦ =

⎡
⎣

z2
z3

−z51 − 2z41 + 4z31z2 − 3z21z2 − z21z3 + 3z22 − 3z1z
2
2 + 3z1z3 + z2z3 + u

⎤
⎦ . (17)

linear close-loop system is asymptotically stable and
controllable (Theorem 2) and positive but unstable
(Theorem 3). The discussion was illustrated by an
example. An open problem is the extension of these
deliberations to fractional nonlinear systems.
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