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The paper considers the forecasting of the euro/Polish złoty (EUR/PLN) spot exchange rate by applying state space wavelet
network and econometric forecast combination models. Both prediction methods are applied to produce one-trading-day-
ahead forecasts of the EUR/PLN exchange rate. The paper presents the general state space wavelet network and forecast
combination models as well as their underlying principles. The state space wavelet network model is, in contrast to econo-
metric forecast combinations, a non-parametric prediction technique which does not make any distributional assumptions
regarding the underlying input variables. Both methods can be used as forecasting tools in portfolio investment manage-
ment, asset valuation, IT security and integrated business risk intelligence in volatile market conditions.
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1. Introduction

Many statistical models developed before the start of the
global financial crisis of 2008 that aimed at forecasting
financial and macroeconomic time series failed to act
as good forecasting models after the crisis outbreak,
in the market environment characterized by increased
volatility. The volatility increase was driven, among other
things, by financial problems of banks and other financial
institutions primarily in the US and the Eurozone, the
crisis on international government debt markets and
deteriorating macroeconomic conditions in the Eurozone
economies, as well as changing investment decisions of
international investors driven by global risk-aversion.

The new, rapidly changing and highly volatile
financial market environment called for more flexible
forecast models that are able to react to changing global
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circumstances as well as to handle many variables
instantaneously.

This paper presents two forecasting methods: the
state space wavelet network (SSWN) and forecast
combinations (FCs) models, and demonstrates how
these methods can be effectively used in a changing
and highly volatile market environment, facilitating
investment decisions.

The first approach, i.e., the state space wavelet
network, structures a model using sets of unknown
parameters and lets the optimization routine seek the
best fitting parameters to obtain the desired results
based on historical correlations. Importantly, the SSWN
model does not impose any statistical constraints or
assumptions in generating predictions and therefore is
suited for modelling financial time series in volatile
market conditions.

The second model is the forecast combinations

mtbrdys@outlook.com 
sebastian.michal.maciejewski@gmail.com


162 M.A. Brdyś et al.

method based on linear econometric regressions. This
approach is used in applied econometrics with the aim
of approximating the unknown and highly complex
true market model that generates the time series of
interest. More specifically, the econometric forecast
combinations model combines forecasts from different
single regressions producing more accurate and stable
forecasts than any of the single regression models treated
separately. This happens because the complex true model
that generates the time series of interest is approximated
by a set of single regressions, and not by one regression
only. This feature also makes forecast combinations
more suitable for modelling changing market conditions
as compared, e.g., with single regressions.

The paper is organised as follows. In Section 2
the dynamics and evolution of the foreign exchange
market as well as the EUR/PLN exchange rate pair
are introduced. Section 3 determines input variables.
The SSWN and FC prediction methods are presented in
Sections 4 and 5, respectively. The validation results
obtained by both the methods based on real data records
and comparison of method performance are presented in
Section 6. Conclusions in Section 7 complete the paper.

2. Dynamics and evolution of the foreign
exchange market today and the
EUR/PLN exchange rate

The global foreign exchange market is largely made up of
banks, institutional investors, hedge funds, corporations,
governments as well as currency speculators. It is an
over-the-counter (OTC), decentralized market connected
electronically.

The size of the global foreign exchange market has
grown exponentially in the last decade. According to BIS
(2013), foreign-exchange trading increased to an average
of $5.3 trillion (thousand billion) a day in April 2013. This
is up from $4.0 trillion in April 2010 and $3.3 trillion in
April 2007.1

As the most traded currency, the US dollar makes
up 85% of the forex trading volume. At nearly 40% of
the trading volume, the euro is ahead of the third place
Japanese yen, which takes almost 20%. Foreign exchange
swaps were the most actively traded instruments in April
2013, at $2.2 trillion per day, followed by spot trading at
$2.0 trillion (BIS, 2013).

The Polish złoty is the currency of Poland, with a free
floating exchange rate regime. According to NBP (2013),
roughly 72% of all transactions concluded in April 2013
on the Polish foreign exchange market involved the Polish

1The Bank for International Settlements collected data from around
1,300 banks and other financial institutions from 53 countries on trans-
actions (i.e., spot transactions, outright forwards, FX swaps, currency
swaps and currency options) concluded in April 2013 on the foreign ex-
change market.

złoty. The most popular Polish złoty exchange rate is the
EUR to PLN rate (EUR/PLN), due to strong economic
ties between Poland and the European Monetary Union
(EMU) countries, which is reflected, among others, by the
trade volume amounting to 50% of Poland’s total foreign
trade volume in 2013 (CSO, 2014).

According to NBP (2013), foreign exchange trading
on the Polish foreign exchange market amounted to $7.6
billion a day in April 2013. This was down from $7.9
billion in April 2013. Foreign exchange swaps were
the most actively traded instruments in April 2013 on
the Polish foreign exchange market, at $4.6 billion per
day, followed by spot transactions at $2.3 billion. The
EUR/PLN pair constituted 55% of the net turnover of
spot transactions (the second pair being EUR/USD, with a
17% share) and 61 % of FX swaps (the second pair being
USD/PLN, with a 15% share) in April 2013.

Overall, the EUR/PLN pair was by far the most
heavily traded currency on the Polish foreign exchange
market in April 2013 in terms of all foreign exchange
transactions’ net turnover. Given the relative importance
of the EUR/PLN exchange rate, two forecasting
methods—state space wavelet network (SSWN) and
forecast combinations (FCs) models—are applied to
forecasting of the EUR/PLN spot exchange rate. The
aim of the proposed models is to facilitate the investment
decision-making of investors trading actively on the spot
market and investing in instruments of shortest maturity,
including FX swaps and outright forwards.

3. Selection of input variables for
EUR/PLN exchange rate forecasting

The SSWN and FC models capture such features of the
EUR/PLN rate dynamics as financial and macroeconomic
factors volatility (e.g., government debt and financial
markets current levels), and their correlation with
EUR/PLN, as well as auto-regression and volatility
clustering in the EUR/PLN series. In addition, the
SSWN model offers effective mechanisms for handling
nonlinearities, uncertainty in the inputs structure and
different time scales in the EUR/PLN rate trading
dynamics. However, significant structural changes in
global forex flows and shifts in economic cycles require
an on-line adaptation of the model internal structure (Qi
and Brdyś, 2008; 2009).

Correct selection of essential inputs to the EUR/PLN
rate system is a mile stone in designing the SSWN and
FC models. As relations between the economic indicators
on foreign exchange markets are extremely complex and
almost impossible to be measured or estimated, it is
impossible to choose all the factors that influence the
exchange rate level considered. Therefore, it is attempted
to choose only the most important factors that influence
the predicted exchange rate level. Unknown, complex
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Table 1. Results of correlation analysis for the period of 11/08/2011 to 14/04/2014.
Indicator symbol Correlation coefficient Description of indicator

EURPLN 1.00 EUR/PLN close at the end of trading session
WIG20 −0.54 Value of the WIG20 equity index at the end of a trading session
PL106670 −0.55 Price of the 10 year maturity benchmark bond at the end of a trading session
VIX 0.61 Value of the volatility index at the end of a trading session
DAX −0.44 Value of the DAX equity index at the end of a trading session
FTSE −0.40 Value of the FTSE equity index at the end of a trading session
STOXX50 −0.41 Value of the EURO STOXX 50 equity index at the end of a trading session
SPX −0.38 Value of the S&P equity index at the end of a trading session
EURUSD 0.07 EUR/USD close at the end of a trading session

and nonlinear relations between inputs and outputs of the
SSWN an FC models are estimated during the process
of learning, which is discussed in the following sections.
A standard approach to selecting the input variables
is to construct, based on qualitative knowledge, a list
of potential measurable inputs and to apply a standard
data correlation analysis to calculate the correlation
coefficients between the input and the output considered.
The final input selection is then based on the correlation
coefficient values. The larger the coefficient, the higher
selection priority assigned to the corresponding input.
The correlation analysis based on preselected 20 input
variables and future values of the EUR/PLN rate has
supported the final selection of 9 variables as shown in
Table 1. Other pre-selected variables were the FRA,
OIS and LIBOR rates, bond yields, CDS spreads and
commodity futures.

All the above-listed variables are available for the
period of 11/08/2011 to 14/04/2014, and all subjected
time series are raw (seasonally unadjusted) daily data. The
inputs to the SSWN and FC predictors will be designed
based on these variables.

It has to be emphasised that the correlation analysis
is strictly valid only for linear relationships between
the predicted rate and the economic indicators that are
the inputs. In reality, these relationships are typically
heavily nonlinear. Hence, the analysis should be seen as
qualitative. The final selection of the inputs needs to be
done within an iterative process, where different inputs
are substituted; the predictor is validated and, based on the
validation results, new inputs are produced. The process
stops when the required prediction accuracy is reached.

Based on the correlation analysis, 9 variables
(indicators) are selected as the base for designing inputs
to the FC predictor in the following sections: EURPLN,
WIG20, PL106670, VIX, DAX, FTSE, STOXX50, SPX
and EURUSD. As described in the following section, the
SSWN has a dedicated mechanism designed in order to
achieve robustness with respect to an uncertainty in the
structure of variables having an impact on the output. In
order to quantify by simulation this robustness, only 5 of
the indicators in Table 1 are selected to design 7 inputs

to the SSWN predictor in Section 4.2: EURPLN, WIG20,
PL106670, DAX and VIX.

4. State space wavelet network predictor

Artificial intelligence models based on neural
networks and/or fuzzy systems are of an increasing
interest in financial engineering applications for
prediction/forecasting purposes (Zhang et al., 1998; Kuo
et al., 2001; Tsang et al., 2007). In this paper, a
recently developed artificial dynamic neural network with
wavelet processing nodes and internal states called the
state space wavelet network (SSWN) is applied. The
SSWN was initially proposed for modelling nonlinear
and non-stationary processes with multiple time scales
in internal dynamics and non-measurable states under
uncertainty in the inputs and dynamic models. It was
successfully applied to input-output modelling in a
state-space form of a wastewater treatment plant (Borowa
et al., 2007) for model predictive control purposes and
on-line prediction of a future WIG20 index level as a
key financial indicator of the Polish equities listed on the
Warsaw Stock Exchange (WSE) (Brdyś et al., 2009).

4.1. SSWN mathematical model. A general structure
of the SSWN is illustrated in Fig. 1, where yi,
i = 1, . . . , N , xi, i = 1, . . . ,M , and ui, i = 1, . . . ,K ,
denote network outputs, internal states and inputs,
respectively. All the variables are discrete time, and the
time variable is denoted by k.

Network internal states do not have to be related to
states of the modelled system. In the case of unknown
or unmeasurable system states, this is a great advantage
of the network model. Identifying state variables of a
complex system is in most cases impossible. However,
artificial neural model states can still correctly describe
the impact of system state variable dynamics on the
system output (Zammarreno and Pastora, 1998; Kulawski
and Brdyś, 2000). This vastly improves the ability of
the model to approximate unknown system input-output
dynamics. The EUR/PLN exchange rate reflects both
the complexity of financial markets and the depth of the
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Fig. 1. General structure of the SSWN.

global forex market. The SSWN input–output relationship
can be written as

xi(k + 1) =

L∑

j=1

wN+i,jΨj(x(k), u(k)),

i = 1, . . . ,M, (1)

yi(k) =

L∑

j=1

wi,jΨj(x(k), u(k)),

i = 1, . . . , N, (2)

where wi,j , i = 1, . . . , N + M , j = 1, . . . , L, are
the network weights to be determined and u(k), x(k)
are the network input and state vectors at time instant
k, respectively. The network nodes that process the
input information at time instants k are multidimensional
radial wavelons (MRWs) (Zhang, 1992). The MRW
processing mappings are denoted by Ψj , j = 1, . . . , L.
Feedforward networks with wavelet-based processing
nodes were introduced by Zhang and Beneveniste (1992).

The MRW input information processing mapping Ψ
is structured as a composition of two mappings R and ψ
as Ψ = Rψ, as illustrated in Fig. 1. The mapping R is
defined as follows:

z(k) = [x(k), u(k)], (3)

dj = [d1,j , . . . , dK+M,j ], (4)

tj = [t1,j , . . . , tK+M,j ], (5)

A(z(k), dj , tj) = diag(dj)(z(k)− tj)
T , (6)

R(z(k), dj , tj) = aj(k)

= [AT (z(k), dj , tj)A(z(k), dj , tj)]
1
2 ,
(7)

where vectors di,j , ti,j and i = 1, . . . ,M + K are
composed of the j-th MRW parameters d1,j , t1,j , j =
1, . . . , L, and l = 1, . . . ,M +K . Solving Eqns. (3)–(7)
yields

aj(k) =
( M∑

i=1

(
di,j(xi(k)− ti,j)

)2

+

M+K∑

i=M+1

(
di,j(ui(k)− ti,j)

)2) 1
2

. (8)

It can now be seen from (8) that the components
of the parameter vector dj are scaling coefficients for
the network inputs, both external and internal, produced
by the internal feedback loops from the internal outputs
delayed by one lag. The components of the parameter
vector tj perform translations of the inputs. Both the
parameter vectors help to efficiently handle the multiple
time scales in the system dynamics due to supply in
demand shocks occurrence in the global economy, for
example. Finally, the mapping ψ in Fig. 1 constitutes
a one-dimensional Morlet wavelet function (Grossmann
and Morlet, 1984):

ψ(aj) = exp
(
− 1

2
a2j

)
cos(5aj). (9)

Equations (1)–(9) define an input-output model in
a state space form with the weights wi,j , scaling and
translation factors di,j , ti,j , respectively, that are the
continuously valued model parameters to be determined,
as well as numbers of the internal states M and data
processing wavelons L, which are the discretely valued
model structure parameters. Let us denote by w, d, t the
vectors of continuously valued parameters.

4.2. Determining SSWN inputs and outputs. Let us
consider trading sessions during the day k − 1 and k.
Let k − 1 be a discrete time instant located between the
session k−1 closing time and the session k opening time.
For the k-th session, let EURPLNcl(k) and EURPLNop(k)
denote the closing and opening exchange rate values,
respectively. The following 7 inputs are selected for the
SSWN to produce the k-th session (daily) prediction of
EURPLNcl(k|k−1) of EURPLNcl(k) performed at instant
k−1 that is after closing the session k−1 and at the same
time before opening the session k:

• u1(k) ≡ EURPLNcl(k − 1): the exchange rate value
at the end of the previous trading session;
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• u2(k) ≡ EURPLNcl(k−1)−EURPLNcl(k−2)
EURPLNcl(k−2) : the daily

relative change in the EUR/PLN exchange rate value
over the previous day, that is, day k − 1;

• u3(k) ≡ EURPLNcl(k − 1) − EURPLNop(k − 1):
the session exchange rate change over the previous
trading session, that is, session k − 1;

• u4(k) ≡ DAXcl(k−1)−DAXcl(k−2)
DAXcl(k−2) : the daily relative

change in the German equity index DAX value over
the previous day, that is, day k − 1;

• u5(k) ≡ GOVPL10cl(k−1)−GOVPL10cl(k−2)
GOVPL10cl(k−2) : the daily

relative change in the Government of Poland 10 year
maturity bond price value over the previous day, that
is, day k − 1;

• u6(k) ≡ WIG20cl(k−1)−WIG20cl(k−2)
WIG20cl(k−2) : the daily relative

change in the Polish equity index WIG20 value over
the previous day, that is, day k − 1;

• u7(k) ≡ VIXcl(k−1)−VIXcl(k−2)
VIXcl(k−2) : the daily relative

change in the volatility index value over the previous
day, that is, day k − 1.

Due to the SSWN training properties, the input
variable values are scaled to the intervals [−1, 1] for the
variables u2, . . . , u7, which can take both positive and
negative values and [0, 1] for u1, which is positive. At
the instant k − 1, the SSWN network operates as follows:
first, the new state at k is calculated from (1) as xi(k) =∑L

j=1 wN+i,jΨj(x(k− 1), u(k− 1)), i = 1, . . . ,M , and
next the network output is calculated according to (2).
Let us notice that most of the inputs are of incremental
type. Therefore, the same structure of the SSWN output
is assumed. Hence,

y(k) = ΔEURPLN(k|k − 1)

=
EURPLNcl(k|k − 1)− EURPLNcl(k − 1)

EURPLNcl(k − 1)
.

(10)

As the quantities y(k) and EURPLNcl(k−1) are known at
k− 1, the forecast EURPLNcl(k|k− 1) is calculated from
(10) in a straightforward manner.

4.3. Determining SSWN parameters. Having
defined the SSWN inputs and outputs, it remains to
determine suitable values of the network parameters. This
is done by using the historical data and searching for
parameters values such that the corresponding prediction
error is minimal. The procedure is called network
training (Zhang et al., 1998; Borowa et al., 2007). The
SSWN structure for one-session-ahead prediction with
parameters to be optimised is illustrated in Fig. 3.

Let us denote the initial state discharge time
by J . It is determined by simulation performed for
representative network parameter sets. The learning data
series is then composed of the historical trading sessions
used to calculate the prediction errors and the initial
sessions during which the initial network state discharges.
Optimising the performance function E(w, t, d) with
respect to the parameters is performed by a simulated
annealing solver. Each iteration of the solver starts
from discharging the network state initial condition for
the actual parameter values. This is done by running
the network over the first J sessions to discharge the
initial condition applied at the beginning of session 1
and determine the initial state corresponding to the actual
parameters with which the prediction error over the next
N session is evaluated. The parameter search can be
performed by solving the following optimisation problem:

minE(w, t, d, L,M) =
N∑

i=1

e2i (w, t, d, L,M), (11)

ei = y(i)− EURPLNcl(i)− EURPLNcl(i− 1)

EURPLNcl(i− 1)
, (12)

where i denotes the session number, ei stands for
the prediction error for session i, E signifies the total
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prediction error over N consecutive sessions. The
resulting SSWN is then validated by using different data
sets in order to assess its generalisation properties.

As the parameters are mixed-integer and the
SSWN is described by nonlinear mapping solving, the
optimisation problem is a very challenging task for any
known optimisation solver. Hence, we shall separate
determining the number of states M and the number of
wavelons L, which are the integer valued SSWN structure
parameters, from determining the continuously valued
parameters of the SSWN, i.e.,W , d and t. Hence, network
training is structured in the form of a bi-level optimisation
scheme, where at the upper level a direct intelligent search
is employed to vary M and L while a dedicated powerful
stochastic optimisation Metropolis Monte Carlo (MCC)
algorithm (Brdyś et al., 2009) supported by the simulated
annealing (SA) mechanism is applied to optimise (11) and
(12) under the prescribed values of M and L.

The MCC search was proposed by Metropolis et al.
(1953). The SA component (cooling schedule) was added
by Kirkpatrick et al. (1983). The alternative cooling
schedules were proposed by Hajek (1988), Jacobson
et al. (2005), Karafyllidis (1999) and Locatelli (2000)
with some convergence analysis provided. In spite
of the bi-level structuring of the solver and optimising
parameters of the stochastic algorithm at the lower level,
the overall computational effort was high. The good
choice of the initial network structure parameters at the
upper level was crucial for reducing this effort. The final
structure of the one step ahead predictor is illustrated in
Fig. 3 and Table 2.

Table 2. Selected structure parameters of the SSWN.
SSWN parameters EURPLN forecast

one-session-ahead

Number of inputs 7
Number of wavelons 10
Number of states 10

4.4. Adaptive prediction. A preliminary validation of
the predictors on data different than those used for training
have shown results not entirely satisfactory. This is
mainly due to not including certain variables as the inputs,
which have non-negligible influence on the predicted
exchange rate value. Some of them are not included
as they are not measurable; the others have not been
identified. The predictor trained on a selected data set
accommodates these uncertainties in the parameter values.
If the uncertain inputs remain constant or they slowly
vary, the predictor still performs well on different data
sets. Otherwise, the parameters need to be updated
on-line during the predictor operation. This leads to an
adaptive predictor where initially the SSWN is trained
off-line based on longer data sets as described earlier. The
same training schema is then applied on-line to update
the network parameters to actual values of the uncertain
variables. However, the training performance function
Ek(w, t, d) at instant k is now modified by introducing
the weights with which the prediction errors during the
previous sessions k, k − 1, . . . , k − N , contribute to an
overall prediction error over the last N trading sessions.
Namely,

Ek(w, t, d, L,M) =

k∑

i=k−N

ω(i)e2i (w, t, d, L,M), (13)

where ω(i) = 2i/N and the i-th session ei is
defined as in (12). The weights ω(i) are linearly
growing in time reaching the highest value for the last
prediction error. Hence, the actual uncertainty input
values are best accommodated into the resulting network
parameter values w(k), t(k), d(k) obtained at the instant
k. The optimisation solver starts from the parameters
w(k − 1), t(k − 1), d(k − 1) determined at the last time
instant k − 1.

5. Forecast combinations

The general rationale behind the use of the forecast
combinations methodology in forecasting is that we do not
know the true model that generates the time series of our
interest. This true model is described in the econometric
and statistical nomenclature as the data generating process
(DGP), which is assumed to be highly complex and
non-linear in its structure. The structure of the DGP
is almost always not known to econometricians. Its
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dynamics are often difficult to approximate by any single
regression. For these reasons, single regression forecasts
are very likely to be unstable over time and yield relatively
poor forecasts, even if a regression is re-estimated on
a timely basis. Combination of forecasts from a set of
single regressions may be an attractive alternative to any
single regression forecasts since it usually turns out to
produce more accurate and stable forecasts over time than
single regressions separately. This often happens because
we approximate the complex DGP by a set of single
regressions, and not by one regression only.

Similarly, the same holds for the dataset underlying
the true model. Even if the structure of the DGP were
known by an econometrician, the analysis would fail to
achieve its goal due to data unavailability. Specifically,
the data set used in regression analysis is restricted
to data that are observed, can be easily and precisely
quantified, and are regularly collected by some data
provider. Because we do not know the structure of the
DGP and we are dealing with very limited information
included in the available dataset (not necessarily even
being an input to the true DGP), we can only approximate
the behaviour of this complex unknown system via
regression analysis. Although regressions used in forecast
combinations have an erroneous structure by assumption,
the more regressions we use to approximate the complex
non-linear DGP, the more likely it is that we approximate
the true DGP with greater accuracy over a relatively
longer period of time.

Particularly, below we approximate the complex
DGP of the EUR/PLN series via combinations of linear
regressions using 8 available explanatory variables. These
regressions are estimated on the available data set.
Those with the best prediction accuracy over the past
trading days are used to generate final forecasts of the
combinations model.

5.1. Data description and the model structure. The
underlying dataset consists of 9 time series of seasonally
unadjusted daily data from the period of 11/08/2011 to
14/04/2014, which is the same as in the case of the SSWN
model. Before entering the regression analysis, all time
series had been log-1st-pre-processed. For example, in the
case of EUR/PLN, the log-1st-difference of the EURPLN
series, denoted by DEURPLN, is defined as

DEURPLN(t) = ln
( EURPLN(t)

EURPLN(t− 1)

)
. (14)

The same transformation is applied to the remaining 8
time series, DAX, SPX, EURUSD, FTSE, PL106670,
STOXX50, VIX and WIG20, yielding the transformed
DDAX, DSPX, DEURUSD, DFTSE, DPL106670,
DSTOXX50, DVIX and DWIG20. The DEURPLN(t)
series is a dependent variable in all regressions. This

time series is stationary for the subjected period and is
characterized by the existence of volatility clusters and
outliers. The 8 time series DDAX, DDSPX, DEURUSD,
DFTSE, DPL106670, DSTOXX50, DVIX and DWIG20
are used as regressors in regression analysis.

In total 3 different combination models using
different versions of the linear autoregressive distributed
lag (ARDL) model are tested for their forecast accuracy.
The three ARDL regressions applied in combination
models aim at capturing volatility clustering and existence
of outliers in the DEURPLN series using a different
modelling approach. ARDL regression is most suitable in
the context of this analysis (over different versions of, e.g.,
factor models) since the underlying data set consists of a
relatively small number of explanatory variables (Stock
and Watson, 2004).

Each of the 3 combination models is built on
one but different ARDL regression, which is modified
within the given combination model by adding the
8 explanatory variables available to it. Specifically,
the numerical procedure applied to any of the 3
combination models tests regressions with all possible
combinations of 8 regressors being added to the base
regression (initial ARDL regression with autoregressive
term DEURPLN(t − 1) only). In this way,

∑8
k=0 C

8
k=0

different regressions are tested in each combination
model. The base regression (regression with the smallest
number of explanatory variables) of the first combination
model is as follows:

DEURPLN(t)
= ρ0 + ρ1DEURPLN(t− 1) + ε(t), (15)

where ε(t)|ϑ(t − 1) ∼ N(0, σ2) by standard assumption
(ϑ(t − 1) denotes the information set of all information
through time t − 1). This assumption is used in
the maximum likelihood estimation procedure for this
and subsequent regressions. It will not be further
examined in the present and further cases whether this
particular assumption behind the regression’s error term is
admissible. This assumption should not discredit further
forecast combination analysis for was already mentioned
in the preface of Section 5 that linear regressions already
have an erroneous structure because of the nonlinear
complex structure of the true DGP of the EURPLN series.

Similarly, regression with a maximum number of
regressors in the first combination model is as follows:

DEURPLN(t) = ρ0 + ρ1DEURPLN(t− 1)

+

8∑

i=1

ρi+1REGi(t− 1) + ε(t), (16)

where ε(t)|ϑ(t − 1) ∼ N(0, σ2) by standard assumption,
and

∑8
i=1 ρiREGi(t−1) denotes the sum of all 8 different

regressors lagged by 1 trading day, multiplied by their
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coefficients values: REG1 = DDAX, REG2 = DSPX,
REG3 = DEURUSD, REG4 = DFTSE, REG5 =
DPL106670, REG6 = DSTOXX50, REG7 = DVIX and
REG8 = DWIG20.

The second combination model has a slightly
changed structure in comparison to the first model, i.e.,
two additional dummy variables are added to the base
regression in order to account for the existence of outliers
in the DEURPLN series. By this arbitrary choice of
the threshold value of 0.01 and −0.01, special treatment
is given to approximately 1% of extreme observations
(specifically, 31 out of 2348) in the estimation procedure.
More over, this value of the threshold makes it possible to
estimate all regression coefficients on samples consisting
of 160 and more observations, allowing comparison
between the 3 models:

DEURPLN(t)

= ρ0 + ρ1DEURPLN(t− 1)

+ ρ2DUMMY1(t) + ρ3DUMMY2(t) + ε(t), (17)

where ε(t)|ϑ(t− 1) ∼ N(0, σ2) by assumption, and

DUMMY1 =

{
1, DEURPLN(t) ≥ 0.01,

0, otherwise,

DUMMY2 =

{
1, DEURPLN(t) ≤ −0.01,

0, otherwise.

Importantly, when forecasts for date t are generated
from this type of regression further on in this paper,
all dummy variables at time t are set equal to 0. The
numerical procedure which tests all combinations of
different sets of 8 regressors added to the above-described
base regression is also applied here, in the same way as in
the first combination model.

As to the third model, its regression base also
consists of one regressor, as in the case of the first model;
however, here the generalized autoregressive conditional
heteroskedasticity, GARCH(1,1), structure is applied to
the regression error term:

DEURPLN (t)

= ρ0 + ρ1DEURPLN (t− 1) + ε(t), (18)

σ2(t) = α0 + α1σ
2(t− 1) + α2ε

2(t− 1),

where ε(t)|ϑ(t − 1) ∼ N(0, σ2(t)) by assumption. The
conditional variance σ2(t) (conditional on the information
available at time t − 1) is not directly observed and is
assumed to change over time in the GARCH type of
model, as Eqn. (18) indicates. It is assumed to depend
on σ2(t − 1) and the squared forecast error ε(t − 1)
from the previous period. All α and ρ parameters

of the model are estimated by means of maximum
likelihood estimation (MLE). Specifically, the estimation
incorporates an iterative procedure where the conditional
variance σ2(t) is computed for each observation day
given a set of parameters, and is inserted into the main
log-likelihood function. A detailed description of the
estimation procedure is given by Bollerslev (1986).

Here again, the numerical procedure testing∑8
k=0 C

k
8 different regressions is applied in this model,

in the same manner as in the previous two combination
models.

Final forecasts obtained from the above-described
three combination models depend on the set of three
input parameters: r, the number of single regression
forecasts pooled into the final forecast; p, the number of
observations prior to forecast date that enter the estimation
sample; and m, the number of one-step ahead forecasts
prior to the forecast date which are taken to assess the
historical forecast accuracy of a regression. Specifically,
the implemented forecast combination procedure tests∑8

k=0 C
k
8 different regressions for their historical forecast

accuracy. Then it chooses r single regressions with the
best historical forecast accuracy, estimated on the sample
length of p observations and assessed on the period of
m trading days prior to forecast, and pools them into
one final forecast of the given combination model. The
assessment of historical forecast accuracy prior to forecast
date t is performed by the mean absolute error (MAE)
statistics measuring the one-step-ahead forecast error over
the last m trading days prior to date t:

MAE

=
1

m

t−1∑

s=t−m−1

| ̂DEURPLN(s; p,m, r)|ϑ(s− 1)

− DEURPLN(s)|, (19)

where ̂DEURPLN(s; p,m, r)|ϑ(s−1) is the forecast value
at time s given all information available at s − 1 and
parameter set values (p,m, r).

Next, r single regressions with lowest MAE out
of all

∑8
k=0 C

k
8 different regressions are chosen to

yield the final forecast of the combination model
̂DEURPLN(s; p,m, r)FC|ϑ(t − 1) for the trading day t,

given parameter values (p,m). This final forecast of the
combination model is computed as the simple arithmetic
average of forecasts from r regressions.

Finally, the overall forecast performance of each
combination model is evaluated for the period of
01/01/2013 to 14/04/2014 also by means of the MAE
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Table 3. Validation results of the accuracy of the one-session-ahead predictor.
Prediction accuracy measure Units

Minimum prediction error 0.80129%
Average prediction error scaled to range +1/− 1 0.63561
Annualised standard deviation of the EUR/PLN exchange rate 35.34%
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Fig. 4. Results of validation of the one-session-ahead predictor using normalised real data records of the EUR/PLN exchange rate and
normalised forecasted output prediction of the EUR/PLN exchange rate for 73 trading sessions ahead.

statistic, which is defined as

MAE =

14/04/2014∑

t=01/01/2013

| ̂DEURPLN(t; r)FC|ϑ(t− 1)

− DEURPLN(t)|. (20)

In each of the combination models, m is
set to be 7, 9, 11 while p is set to be equal to
160, 180, 200, 220, 240. Results of the overall forecast
performance of combination models are compared
for values of r equal to 1, 3, 5, 7, 9. By pooling r
forecasts from single regressions into one final forecast,
combination models are expected to take advantage of
forecast averaging. Some significant findings in the
domain of applied econometrics on forecast combinations
show that forecast averaging improves forecast accuracy
of regressions; in particular,

1. combining forecasts from different single regressions
is likely to improve forecasts as compared with
any of the single regressions treated separately
(Timmermann, 2006; Guidolin and Timmermann,
2009; Hyndman et al., 2011; Kawakami, 2013);

2. combining forecasts produced by single regressions,
which are estimated on the same time series
but on samples of different length, is likely to
improve forecasts as compared with any of the
single regressions treated separately (McCracken and
Clark, 2009; Pesaran and Pick, 2011);

3. combining forecasts produced by single regressions
by means of simple weights often improves forecasts
as compared with any of the single regressions
treated separately (Rapach et al., 2010; Tian and
Anderson, 2014).

6. Forecast results

6.1. SSWN model. The one-session-ahead predictor
was validated based on the data records composed of
73 subsequent sessions over the period of 01/01/2013 to
14/04/2014. The SSWN-based forecasts were validated
on the basis on real data series recorded by the European
Central Bank. The summary of the results is displayed
in Table 3, validated on the accuracy and volatility of
one-session-ahead predictor. Further results obtained are
displayed in Fig. 4 for the one-session-ahead predictor
using normalised real data records and normalised output
prediction for a 73-session frame.

The validation results show that the predictor can be
effectively used to perform an on-line one-session-ahead
forecasts of the EUR/PLN exchange rate. Due to a high
volatility exhibited in the forecast range of the EUR/PLN
exchange rate, volatility jumps have decreased on-line
accuracy. Indeed, the SSWN is unable to predict volatility
jumps but rather adjusts accordingly on-line to efficiently
accommodate predictions and learn intelligently based on
current variable inputs. The historical input data used in
the SSWN model were taken as actual real time series
daily data from 15/08/2011 to 31/12/2013 for EURPLN,
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PL106670, WIG20, DAX and VIX, comprising 673 daily
time series data. This input range is rather too long for the
SSWN and results suggest a prediction error higher than
average. In fact, a much better data range is 72 sessions
prior to the forecasted period of daily 73 sessions. This is
due to the phenomenon of overloading the SSWN, which
decreases the wavelons processing power during off-line
learning period.

Overall, the structure of the SSW over the 73
sessions frame is constant. On the other hand, forecast
combinations require a larger pool of historical data to
average out volatility jumps and to optimize the unknown
model based on the selected time series range. In fact,
they complement the SSWN predictions although do not
increase the insight of a risk manager as to what the risk
drivers are. The non-linearity component is efficiently
modelled by using rates of change as inputs in the SSWN
structure as well as incorporating a EUR/PLN t − 1, . . . ,
t− 2 loop with increasing efficiency and accuracy. On the
other hand, forecast combinations use logarithmic returns
as input variables due to the statistical stability of the
modelled returns.

6.2. Forecast combinations model. Forecast results
generated by combination models 1–3 are depicted
in Fig. 5. Results are presented for the period of
01/01/2013–14/04/2014 in terms of MAE×102 of the
one-step-ahead forecast of the DEURPLN series. The
MAE refers to the mean absolute error of daily EUR/PLN
log-1st-difference forecast. It is calculated from (20). The
horizontal axis depicts r parameter values denoting the
number of best regressions entering the final forecast of
the combination model. The remaining two parameters,
m (the number of one-step-ahead forecasts prior to
the forecast day that are taken to assess the historical
forecast accuracy of a regression) and p (the number of
observations prior to forecast date that enter the estimation
sample), are automatically chosen by the forecast routine

0.27

0.271

0.272

0.273

0.274

0.275

0.276

1 3 5 7 9M
AE

∙1
00

 (0
1/

01
/2

01
3 

-1
4/

04
/2

01
4)

number of single forecasts (r) entering the final 
forecast 

Model 1 Model 2 Model 3

Fig. 5. Forecast results of combinations models 1–3.
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Fig. 6. Forecast results for combinations model 2, r = 1, m
(number of trading days) and p (sample length) varying.

in each of the 3 combination models.
Figure 5 clearly indicates that model 2 outperforms

models 1 and 3 in terms of forecast accuracy, producing
MAE of forecast ranging from 27.17×10−4 for r = 1
to 27.03×10−4 for r = 9. The differences between the
models’ predictive power are relatively small; however,
model 2 produces consistently better results for all r
parameter values for this data set. Model 2 is found to
produce the best forecasts in this dataset most likely due
to high variability and existence of many outliers in the
DEURPLN series.

Another interesting observation derived from Fig. 5
is that the MAE statistics of the final forecast results
generally decrease with increasing values of r. This
pattern in the final forecast results means that the pooling
of the best forecasts from different single regressions or
the same regressions estimated over different samples
improves forecast accuracy of combination models.

Partial results from combination models presented
in Fig. 6 allow closer analysis of forecast results with
respect to the m and p parameters. Here, parameter r
is set equal to 1, indicating that only one best regression
is considered for the final forecast. As a general rule,
higher forecast accuracy is obtained for relatively larger
estimation samples (parameter p) and longer samples on
which the predictive power of each regression is assessed
(parameterm). Partial forecast results for the r = 1 range
from 27.93 ×10−4 for m = 1, p = 180 to 26.73 ×
10−4 for m = 9, p = 24. Due to the relatively high
variability of partial model results over parameter pairs
(m, p), forecast averaging is advantageous.

7. Conclusions

The results obtained so far are conclusive in adaptive
nature under high volatility conditions of a multi-input
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forecasted financial instrument EUR/PLN exchange rate.
More simulation results and comparisons with other
prediction methods are subject to further research. A
novel research work is under way on application of
model predictive control to on-line risk-based optimised
portfolio management. The on-line predictions of
financial instruments are the inputs to the model-based
optimisation problem of MPC. Their accuracy is crucial
for the quality of the decision produced by solving
this problem in spite of the powerful receding horizon
mechanism of MPC, which helps to reject the uncertainty.
Currently, the SSWN and FC methods are integrated in
order to optimally utilise their advantages. However, this
still requires a better understanding of the advantages and
disadvantages of these two approaches when applied to
this application-driven problem. For the time being, we
shall conclude as follows.

7.1. SSWN model. The paper has considered the
prediction of the EUR/PLN currency exchange rate by
using an adaptive dynamic state space wavelet network
model of the exchange rate. The approach can be
applied to developing tools for predicting changes of
other financial indicators. The EUR/PLN exchange
rate has been effectively forecasted during increased
volatility periods. The main advantage of the SSWN
is that it does not compose any statistical constraints
or assumptions in generating credible predictions and
therefore is ideal for modelling financial time series
instruments in volatile market conditions. The SSWN
methodology accommodates for on-line learning by
adaptive learning process and searches for the best an
solution of w, t, d parameters adding to the accuracy
and robustness of forecasting credibility. Correlation
changes between output and input variables are adjusted
daily by optimising the function E(w, t, d) with respect
to the parameters outlined in this paper. Indeed, the
non-linearity phenomenon is a more realistic reflection
of financial markets returns and price movements derived
from globalisation growth and integration.

Clearly, on-line update of the SSWN structure would
improve the forecast performance. This would be
done based on the moving measurement data window
on the basis of a suitably defined indicator of the
current structure potential. As the SSWN is a universal
approximator, this update would be done in the time
scale much slower than the SSWN parameter update fit
scale, as opposed to the FC method. This is subject to
future research work. The SSWN model non-parametric
assumptions incorporate this characteristic with elegance
and sophistication. Currencies today are subjected to
more than ever changing variables, often fluctuating daily
in magnitude, weights and degree of correlation. The
SSWN model can deal with this scenario and act as an
early warning system anticipating changes as they happen,

leading to an ex ante risk management approach.

7.2. Forecast combinations. In order to improve
the results of the presented combination models, one
could either alter the regression model underlying our
combination models or change the set of regressors
in the analysis or apply another selection criterion
for the choice of the set of regressions entering the
final forecast of the combination model. Introducing
changes to the construction of the selection criterion is
our favoured direction towards improving the predictive
power of combination models, since it is considerably less
dependent on the underlying dataset as compared to the
structure of the regression model. As to the selection
criterion defined in this paper, instead of choosing the
model with the lowest MAE over the last m trading days,
one could also take into account, e.g., regressions that
yield higher but constant or switching forecast errors over
the period of length m and/or pick up regressions which
best point to the sign of the DEURPLN series in the period
ahead. As well as that, specific changes to the algorithm
choosing the best single regressions for the final forecast
can also be made. This algorithm can be extended by the
use of a more general autoregressive criterion of choice,
where in-sample forecast errors are weighted differently
with respect to their proximity to the final forecast date.
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