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Internet shopping has been one of the most common online activities, carried out by millions of users every day. As the
number of available offers grows, the difficulty in getting the best one among all the shops increases as well. In this
paper we propose an integer linear programming (ILP) model and two heuristic solutions, the MinMin algorithm and the
cellular processing algorithm, to tackle the Internet shopping optimization problem with delivery costs. The obtained results
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1. Introduction

The acquisition of products online is one of the most
common activities for which the Internet is used today.
This is because setting up online shops is easier than ever
before, especially for small enterprises and individuals.
On the other hand, the increase in competition leads to a
reduction in the prices of the products, making them more
attractive for potential buyers.

For sellers, the main advantage is that their offers
are available to a larger audience, without most of
the associated costs, like rent, taxes, maintenance, and
advertising. Buyers have the convenience of being able
to make their purchases from anywhere, at any time, with
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better prices and from a wider range of products, as long
as they have access to the Internet.

Tenders are not limited to physical items. For
instance, one can notice cloud brokering, which is a
flourishing industry (Guzek et al., 2015) that offers a
huge variety of services. From the point of view of the
optimization of Internet shopping, they can be treated
exactly as physical items sold via the Internet.

However, as a worldwide market is becoming more
common, clients searching for products on their shopping
list can feel overwhelmed by the process, due to the
immeasurable amount of shops that exist online.

The Internet shopping optimization problem (ISOP)
(Musial, 2012) arises when a customer with a shopping
list wants to purchase the products in a set of online
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shops at the minimum cost, taking into account also the
delivery costs associated with the shops where one or
more products are bought.

This problem was formally modeled as an
optimization problem by Blazewicz et al. (2010),
who presented a proof that it belongs to the NP-complete
set and proposed two deterministic polynomial algorithms
to solve special cases of the newly described problem:
greedy (Wojciechowski and Musial, 2010) and forecasting
(Blazewicz et al., 2014b). These heuristics are used to
validate the correctness and performance of the proposed
solution methods presented in this article.

In previous research, different versions
(specializations) of the ISOP have been examined,
e.g., a version with price sensitive discounts (Blazewicz
et al., 2014a; 2014b) and dual discounting functions, both
for price and shipping discounts (Blazewicz et al., 2016).
For example, due to the NP-hardness of the optimization
problem, Wojciechowski and Musial (2010) designed a
heuristic solution to optimize the shopping basket and
evaluate it for the customer basket optimization problem
to make it applicable for solving complex shopping
cart optimization in on-line applications. The first idea
of an algorithm solving the ISOP with discounts was
presented by Blazewicz and Musial (2011). Moreover, it
has been proven that the problem is not approachable in
polynomial time (Blazewicz et al., 2010). The archetype
of the presented problem was a web-based customer
assistance system dedicated to pharmacy shopping that
helps customers to find shops in a geographically defined
area where the entire shopping list could be fulfilled at
the best total price (Wojciechowski and Musial, 2009).

In this paper, we propose an exact solution and two
approximate methods to solve the ISOP. The proposed
exact solution is an integer linear programming (ILP)
model. The first approximate approach is a cellular
computing-based algorithm, which consists of simple
processing cells that operate on their own population
and that share information with other cells to improve
the performance of the whole system. The second
approximate algorithm is a deterministic heuristic with a
local search that selects iteratively the product with the
minimum cost from all products and is purchased from
the shop in which its cost is also a minimum.

In order to test the correctness and performance
of the proposed methods, both exact and approximate
instances of the ISOP were created according to the
method described by Blazewicz et al. (2010), where the
name of the instance describes its size, m represents the
number of shops, and n the number of products. For
example, an instance set 5n20m contains instances of the
ISOP with shopping lists of 20 products, available from at
most 5 shops.

Therefore, three sets of different sizes, a Small
instance set (subsets 3n20m, 4n20m and 5n20m), a

Medium instance set (subsets 5n240m, 5n400m and
50n240m), and a Large instance set (subsets 50n400m,
100n240m and 100n400m), were generated. To evaluate
the performance in a real case scenario, the algorithms
were tested with an instance involving the prices and
availability of products from existing online shops.

The results indicate that the ILP model delivers
the exact solution in a reasonable time for instances of
small sizes. For larger instances, the cellular computing
approach obtains better quality solutions than previous
algorithms described in the literature. The quality of the
solutions is consistent as the size of the instances being
solved increases.

To complement Introduction, it is worth mentioning
different aspects of Internet shopping. The price
optimization tool is definitely a new feature that benefits
the customer. Moreover, we can point to such a positive
aspect as the much easier stage of information searching
(Rose and Samouel, 2009). Furthermore, it should be
noted that the Internet customer is under the influence of
many factors (Cheung et al., 2005) while shopping online
(both internal and external ones).

However, there is evidence that the new kind of
shopping experience, where we use the Internet as
a shopping platform, may lead to some problematic
behavior. One can say that some customers doing
the shopping via the Internet may become addicts,
very similarly to addictions connected with gaming and
general Internet dependency. Many addictive forms of
consumption, as well as negative behavior connected
with shopping, have been already widely described in
business and medical journals. Following the definition
of BusinessDictionary.com , one can say that
shopping is “the process of browsing and/or purchasing
items in exchange for money.” The platform is a less
important aspect when we think globally about shopping.
Therefore, it is natural that many of these negative
behaviors known from the business and medical literature
can be included in the Internet shopping experience.
One may consult Rose and Dhandayudham (2014) for
more information about different types of online shopping
behavior and addiction.

Since we have observed many different aspects
of online shopping, it could be possible to tackle
the shopping problem from a very general perspective
and to introduce it as a multi-objective problem, a
multi-objective decision-aided ISOP, a system/tool where
a customer makes some decisions with respect to their
personal shops, such as trust, delivery time, negative
factors, and all other significant elements. While facing
the problem, customers could be attracted by and provided
with the specific tool in an attempt to help them make
reasonable decisions (decisions that will not change the
price significantly). We refer to the work of Sawik (2012)
to see an interesting approach to providing decision

BusinessDictionary.com
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Table 1. Table of notation.
Symbol Explanation

M set of shops
N set of products
m number of shops, |M |
n number of products, |N |
i shop indicator
j product indicator
Ni multiset of products available from shop i
di delivery price of all products from shop i
cij cost of product j in shop i
xij 0–1 usage indicator for product j in shop i
yi 0–1 usage indicator for shop i
T cumulative value of all products bought in all shops
Ti cumulative value of all products bought from shop i

fi(Ti) piecewise function for all products (Ti) bought from shop i
X = (X1, . . . , Xm) sequence of selections of products from shops 1, . . . ,m

F (X) sum of product and delivery costs
δ(X) 0–1 indicator function for x = 0 and x > 0
X∗ optimal sequence of selections of products
F ∗ optimal (minimum) total cost

makers with a simple tool that helps them to make good
decisions in the financial market.

A multi-objective general ISOP could be an
interesting further step in our research. However, our
attention is now focused on price optimization. The price
optimization problem, models, and algorithms have to be
presented, discussed, and solved to enable further study.

This paper is organized as follows. Section 2
presents a formal definition of the ISOP with the notation
used throughout the paper. Section 3 describes related
research and existing approaches to solving the ISOP.
Section 4 describes the exact methods that have been
proposed to solve to optimality instances of the ISOP.
Section 5 presents the approximated methods that have
been developed to solve larger instances of the ISOP
with delivery costs. A description of the computational
experiments performed can be found in Section 6, and
the obtained results are presented in Section 7. Finally,
we conclude in Section 8 with an analysis of the obtained
results and a proposal for future research.

2. Problem definition

The notation used in this paper is given in Table 1. The
ISOP is defined in the following way: Suppose being
given a shopping list N = {j = 1, . . . , n}, where n
is the number of products, and a list of available shops
M = {i = 1, . . . ,m}, where m is the number of shops.
The multiset Ni contains the products available from shop
i. Each product j ∈ Ni costs cij and has a delivery cost
from that shop of di. The delivery cost is charged once if
one or more products are purchased from shop i.

The ISOP is the minimization of the total cost of

the shopping list N , including delivery costs. This is
formally described as the finding of a disjoint selection
of the products purchased from the different shops X =
(X1, . . . , Xm), such that from the selection of products
that are available at a given shopXi ⊆ Ni, all the products
in the shopping list are purchased,

⋃m
i=1 Xi = N , and the

total cost, including the delivery cost from the shops from
which one or more products are selected, is minimized:

F (X) =
∑m

i=1

(
δ (|Xi|) di +

∑
j∈Xi

cij

)
, where |Xi| is

the cardinality of the multiset Xi, and δ(x) = 0 if x = 0
and δ(x) = 1 if x > 0.

3. Related research

There are some similarities between the ISOP and the
well-known facility location problem (FLP). A simple
FLP is the Weber problem (Weber, 1929), which is
based on Simpson’s idea (Simpson, 1750). The main
characteristics of the FLP are the space, a metric, given
customer locations, and given or not given positions for
facility locations. A traditional FLP is to open a number of
facilities in arbitrary positions of the space (the continuous
problem) or in a subset of given positions (the discrete
problem), and to assign customers to the opened facilities
so that the sum of the opening costs and the costs related
to the distances between customer locations and their
corresponding facility locations is minimized.

Discussions of FLPs can be found in the vast
literature (Revelle et al., 2008; Krarup et al., 2002; Eiselt
and Sandblom, 2004; Melo et al., 2009; Iyigun and
Ben-Israel, 2010). The traditional discrete FLP is NP-hard
(Garey and Johnson, 1979) in the strong sense. Note,
however, that the general ISOP with price discounts
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cannot be treated as a traditional discrete FLP because
there is no evident motivation for a discount on the
cumulative cost in the sense of distances. It can be noted
that this problem and the ISOP are not sub-cases of each
other, while the traditional discrete FLP is a special case
of none of these problems.

Taking into consideration the ISOP and price
discounts, one can note some similarities with the total
quantity discount problem (TQD) (Goossens et al., 2007).
To show the similarities and, most of all, to show
distinct differences, we should include a mathematical
formulation of the TQD. One can define G as a set of
n goods, indexed by k, and S as the set of n suppliers,
indexed by i. For each good k in G, dk is the given
amount of good k to be procured. To each supplier
i in S, we associate a sequence of intervals Zi =
{0, 1, . . . ,max(i)}, indexed by j. Furthermore, for each
supplier i ∈ S and interval j ∈ Zi , lij and uij define the
minimum and maximum number of goods, respectively,
that need to be ordered from supplier i to be in the interval
j. Finally, for each supplier i ∈ S, for each interval
j ∈ Zi, and each good k ∈ G, let cijk be the price of
one unit of good k purchased from supplier i in its j-th
interval.

The similarities between the ISOP with price
discounts and the TQD problem can be noticed if we treat
the products to be bought N as goods G (dk is the amount
of the same good k), and the shops M as suppliers S.
A piecewise discounting function fi for shop i will be
associated with a sequence of intervals Zi for supplier
i. The price cij of product j from shop i can be seen
as the price pik for one unit of good k purchased from
supplier i. The piecewise function for shop i applied to a
product price fi (cij ) should be treated as pijk: the price
for one unit of good k purchased from supplier i in its j-th
interval. However, the ISOP includes shipping costs that
are specific to each shop. This feature makes the ISOP a
new enhanced version of the TQD problem.

It is worth noting that the decision version of the
TQD problem is strongly NP-complete. Moreover, no
polynomial-time approximation algorithm with a constant
worst-case ratio exists for the TQD problem (unless the
complexity class P is equal to the complexity class
NP ). More information on many variations on the TQD
can be found in the literature (Goossens et al., 2007;
Mirmohammadi et al., 2009; Munson and Hu, 2010;
Krichen et al., 2011).

As can be seen, the related literature has been
focused on the complexity of the problem, while in
this paper we will concentrate on the optimization point
of view by proposing exact and approximate solution
methods for the ISOP with delivery costs. Note that
the ISOP will be applied to shopping on an Internet
website in the future, and therefore it is significantly
important to minimize the algorithm’s computation time

(Marszalkowski et al., 2014; Marszalkowski and Musial,
2011).

4. Integer linear programming model

To solve instances of the ISOP with delivery costs to
optimality, we proposed an INTEGER LINEAR PROGRAM-
MING (ILP) MODEL that will be described next. For the
details of the notation used in this model, one can consult
Table 1.

The binary variable xij indicates whether a product j
is purchased from shop i, the binary variable yi indicates
if at least one product is purchased from shop i:

min
m∑

i=1

n∑

j=1

cijxij +

m∑

i=1

diyi (1)

such that

xi,j ∈ {0, 1}, ∀i ∈ M, ∀j ∈ N, (2)

yi ∈ {0, 1}, ∀i ∈ M, (3)
m∑

i=1

n∑

j=1

xij = n, (4)

m∑

i=1

xij = 1, ∀j ∈ N, (5)

nyi −
n∑

j=1

xij ≥ 0, ∀i ∈ M. (6)

In this ILP, the objective function is shown in (1),
which is the total cost of purchasing a shopping list from
the selected shops, including delivery costs, subject to
the following constraints. The constraint (4) ensures that
the number of purchased products is equal to the number
of products on the shopping list, while constraint (5)
guarantees that only one product of each kind is selected;
the constraint (6) ensures that the variable yi takes the
value of 1 when a product is purchased from shop i.

As one can see, this is an integer model, since
the decision variables, xij and yi, are integer-valued.
Additionally, the model is linear inasmuch as the objective
function and the functions in the constraints are linear.

The correctness of the proposed ILP was validated
with an enumerative algorithm. This method generates
all the mn combinations of shopping lists, which ensures
obtaining the optimal solution in all cases, but only for
instances of a very small size.

The same group of instances was solved with ILP
and both results were compared, to detect discrepancies.
This test confirmed that ILP obtained the correct optimal
solution on the Small instance set.
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5. Heuristic methods

In this section we will present some heuristic approaches
to solving the ISOP with delivery costs. The methods that
we propose include variants of the MinMin algorithm with
a local search stage (MinMin) and a cellular computing
approach (cellular processing algorithm) that will be
described in the following subsections.

5.1. MinMin and its variants. The MinMin algorithm
is well known in the field of scheduling and widely
described in the literature (Freund et al., 1998; Diaz
et al., 2014; Nesmachnow et al., 2013) as a representative
of static task scheduling algorithms, where each task
should be assigned to a resource. It is divided into two
phases:

– the first phase is to set/calculate all possible expected
completion times for every task and resource: a
matrix of dimensions t× n;

– during the second phase, all tasks are scheduled,
based on the minimum completion times. In every
step of this algorithm, the task with the minimum
completion time is assigned to the corresponding
resource and removed from the list of tasks left to
schedule.

One of the main advantages of this approach is that,
in general, it is capable of obtaining good quality solutions
with a relatively small computational cost.

The MinMin pseudocode is shown in Algorithm 1.
The algorithm starts with an empty sequence of selection
of products X . From the set N of available products, we
search for the one that has the lowest price if added to X ,
taking into account the selling price of the one and the
delivery cost of the shop.

The element that the least increases the total cost of
the current solution is added to X . After that, the product
previously assigned is removed from the shopping list N
and from the multiset Ni.

This process continues until all products have been
purchased, in other words, when the shopping list N is
empty. The MinMin algorithm is polynomial with a time
complexity of O(mn2).

One of the main issues with this heuristic is that
it is prone to stagnation due to its deterministic nature.
Moreover, its operation may lead to obtaining locally
unoptimal solutions since there is an additional flat
delivery cost that is connected with each shop, and this
factor should be noticed as one of the main differences
between the MinMin algorithm and the greedy one, which
was used for comparison with the presented new methods.

A potential strategy to lessen this issue consists of
applying one or more local search methods, such as the

Algorithm 1. MinMin algorithm.

Generates a solution by using the MinMin algorithm.

Input: Ni: Multiset of available products per shop.
N : Shopping list.
M : List of shops.

Output: X = (X1, . . . , Xm): Sequence of selection of
products.

{F : sum of product costs and delivery costs}
1: X = (X1 = ∅, . . . , Xm = ∅)
2: while N �= ∅ do
3: min = ∞
4: for all i ∈ M do
5: for all j ∈ N do
6: assignProduct j to Xi

7: if F (X) < min then
8: min = F (X)
9: j′ = j

10: end if
11: deleteProduct j from Xi

12: end for
13: end for
14: assignProduct j′ inShop i to Xi

15: deleteProduct j′ from N and product j′ from Ni

16: end while
17: return X

one shown in Algorithm 2. This algorithm starts by
creating a vector of pair values that contains products j
as assigned in the sequence of selection of products Xold

with its cost, which includes cij and di from the multiset
Ni.

The vector V is sorted in ascending order. Then,
the sequence Xold is assigned to the sequence X and
its current objective value is stored in the variable
oldT otalCost.

Then, we check, for each product j in V , starting
with the more expensive products, from which shop we
could buy it to reduce the total cost of the selection of
products X .

When the search finishes for that product, it is moved
to a new shop, which might or might not be different
from the current shop. This process continues until all
the products j in V have been reallocated.

Additionally, the local search algorithm can be
applied to partial states of the solution generated by
the MinMin algorithm to guide the process to a better
region in the search space. The local search algorithm is
polynomial with a time complexity of O(n2).

In the experimentation, the three versions of
the MinMin algorithm were compared to determine
the quality of the solutions and the consumption
of time associated to each version: the original
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Algorithm 2. Local search algorithm.

Improves a solution to its local optimum in the search
space.

Input: Xold = (Xold1 , . . . , Xoldm): Sequence of
selection of products to improve.
Ni: Multiset of available products per shop.

Output: X = (X1, . . . , Xm): Improved sequence of
selection of products.

{F : sum of product costs and delivery costs}
1: add products j and cost = cij + di from Xoldi to V
2: sort V by cost in ascending order
3: X = Xold

4: oldT otalCost = F (X)
5: for all j ∈ V do
6: deleteProduct j from Xi

7: for all i ∈ M do
8: assignProduct j to Xi

9: if F (X) < oldTotalCost then
10: oldT otalCost = F (X)
11: i′ = i
12: end if
13: deleteProduct j from Xi

14: end for
15: assignProduct j inShop i′ to Xi

16: end for
17: return X

MinMin, the MinMin+Local Search algorithm and the
MinMin+MidLocal Search algorithm.

The second variation of this method is presented
in Algorithm 3. This algorithm starts by generating
the solution with the MinMin method (Algorithm 1) to
immediately improve it to its local optimum, using the
local search method described in Algorithm 2.

The MinMin+Local Search algorithm is polynomial
with a time complexity of O(mn2). The time complexity
of the local search O(n2), is omitted, because it falls
within the order of the MinMin algorithm.

Lastly, the third variation, shown in Algorithm 4,
applies a local search algorithm to the partial solutions
constructed by the MinMin algorithm to improve them
and guide them to a better region in the search space.
The moment when the local search method is applied is
controlled by the variable α, which depends on the size
of the instance being solved. The MinMin+MidLocal
Search algorithm is polynomial with a time complexity
of O(mn4) in the worst case, where the local search
algorithm is applied every time a new shop is added to
the partial solution.

5.2. Cellular processing algorithm. The cellular
computing approach is described by Sipper (1999) as

Algorithm 3. MinMin+Local Search algorithm.

Generates an initial solution using the MinMin
algorithm that is improved by a Local Search method.

Input: Ni: Multiset of available products per shop.
N : Shopping list.
M : List of shops.

Output: X = (X1, . . . , Xm): Sequence of selection of
products

{minMin: MinMin heuristic in Algorithm 1}
{localSearch: Local search in Algorithm 2}

1: X = minMin(Ni, N,M)
2: X = localSearch(X,Ni)
3: return X

an algorithm design philosophy that is based on three
interrelated principles. The principle of simplicity states
that a processing cell ideally performs very simple tasks
that consume little time. Next, the parallelism principle
deploys lots of individual cells in order to solve a single
task. The third is the locality principle, which states that,
given the high number of cells, communication between
all of them is impractical, therefore local communications
between neighboring cells is preferred.

This paradigm is especially suitable for use in cloud
computing or data centers, as it takes advantage of the
large number of processors available.

The ISOP is found naturally in these kinds
of environments, where central servers with several
computing units are required to attend to the petitions of
various users around the world in the minimum period of
time. This is the main reason why a cellular processing
algorithm that follows the cellular computing philosophy
was considered.

Cellular processing algorithms were proposed by
Terán-Villanueva et al. (2015), initially to solve, with
promising results, the linear ordering problem with
cumulative costs, a combinatorial problem.

Often compared with the hyper-heuristic approach
(Burke et al., 2003), this differs from our cellular
processing approach, since each processing cell has
complete knowledge of the problem that is being solved.
In contrast, the hyper-heuristic approach has a domain
barrier between the controller and the low level heuristics.
The second main difference is the fact that the processing
cells are adapted and matched to the problem that is
being solved, while the hyper-heuristic approach depends
on generic low level heuristics that can be applied to a
greater variety of optimization problems, according to
Burke et al. (2003).

The cellular processing algorithm relies on
independent processing cells that maintain their own
population and processes them with their own mechanism.
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Algorithm 4. MinMin+MidLocal Search algorithm.

Generates a solution by using the MinMin algorithm
that is improved by a local search method during the
construction of the solution.

Input: Ni: Multiset of available products per shop.
N : Shopping list.
M : List of shops.

Output: X = (X1, . . . , Xm): Sequence of selection of
products.

{localSearch: Local search function Algorithm 2}
{F : sum of product costs and delivery costs}
{updateAlpha: determines next iteration in which
localSearch will be applied}

1: X = (X1 = ∅, . . . , Xm = ∅)
2: while N �= ∅ do
3: min = ∞
4: for all i ∈ M do
5: for all j ∈ N do
6: assignProduct j to Xi

7: if F (X) < min then
8: min = F (X)
9: j′ = j

10: end if
11: deleteProduct j from Xi

12: end for
13: end for
14: assignProduct j′ inShop i to Xi

15: deleteProduct j′ from N and product j′ from Ni

16: if currentIteration == α then
17: X = localSearch(X,Ni)
18: updateAlpha(α)
19: end if
20: end while
21: return X

The components of each cell are shown in Fig. 1: the Pool
contains a candidate solution or a set of them that will be
modified by the Processing component.

The Processing component is a method or heuristic
that solves and improves the candidate solutions in the
Pool. The method that is included in the Processing
core can be the same with minor variations or completely
different across the cellular processing algorithm.

The Cell Controller component is in control of the
stagnation of the Pool, being able to take corrective
measures such as generating a new set of candidate
solutions in the Pool, moving the existing ones to another
region of the search space, or stopping its own execution
to avoid the misuse of computational resources such as
computational processing time and memory space.

To improve the execution of each cell, the cells
communicate with other nearby cells during their

Cell Controller

Pool

Processing

Fig. 1. Representation and components of an individual pro-
cessing cell.

Fig. 2. Communication between processing cells.

execution or after the processing cells have evaluated all
their individuals in their respective Pools. This process is
illustrated in Fig. 2.

The whole process usually finishes when most of the
cells converge to a local optimum that might or might not
be the optimal solution for the instance being solved.

In this particular implementation of a cellular
processing algorithm, applied to the ISOP, the number
of processing cells was limited to five and the stopping
criterion was five iterations without improvement of the
best solution. This configuration was found by decreasing
the values of the parameter set, initially set to high values,
to the point where the quality of the solutions obtained by
the algorithm on the medium-sized set was not affected by
the new established values.

The algorithm starts by constructing an initial
solution with the MinMin method for each cell, which is
then improved by applying a local search algorithm.

The implementation of all the cells in the cellular
processing algorithm as a processing unit of iterative local
search is presented in Algorithm 5.

The following iterative local search algorithm
parameters were established: maxNoImprov that
controls the maximum number of iterations without
improvement was set to 10 iterations, the variable
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percentage that controls the percentage of the solution
being randomly rearranged was set to 0.5. The local
search algorithm finds the best position for every element
in the solution, and, if no other position improves the
objective value, the element is left in its original place.

Algorithm 5. Iterative local search.

Improves a given solution by reallocating all the
elements in the sequence to a better position, until a
local optimum value is found.

Input: Ni: Multiset of available products per shop.
Output: X = (X1, . . . , Xm): Sequence of selection of

products.

{perturbSolution: Randomly reallocates a
percentage of the elements in X}
{localSearch: Local search function Algorithm 2}
{F : sum of product and delivery costs}

1: bestX = X
2: while noImprov < maxNoImprov do
3: perturbSolution(X, percentage)
4: X = localSearch(X,Ni)
5: if X < bestX then
6: bestX = X
7: noImprov = 0
8: else
9: noImprov ++

10: end if
11: end while
12: X = localSearch(bestX,Ni)
13: return bestX

The communication in this case is performed by
sharing all the solutions with all cells after each iteration
is completed.

6. Computational experimentation

The experimentation will consider the evaluation of the
three newly proposed solution methods: ILP, MinMin
and its variants (Algorithms 3 and 4), and the cellular
processing algorithm.

To generate instance cases of the ISOP, a realistic
model was created. We studied the relationship between
the competitive structure, advertising, price, and the
price dispersion over Internet shops. As a group of
representative products to be taken into account in our
computational experiment, we chose books, because of
their wide choice in virtual (Internet) shops and the
frequency of purchase through this kind of shopping
channel.

We adopted for our model some information
and computational results reported by Pathak (2012),
Ratchford et al. (2003), Pan et al. (2003) or Clay et al.

(2001). We focused mainly on a model definition of
electronic bookstores (concentrated mostly on books, CDs
with music, DVDs with movies), prices, the acceptance
factor, the retailer brand (Chu et al., 2005), and, which
is important for the definition of the model of the
optimization problem, price dispersion. One should
also notice that consumers may choose from a large
number of Internet bookstores. The data for our sample
were collected from 32 shops and covered the largest
shops based in the United States, including Amazon,
BarnesandNoble.com, Borders.com,Buy.com,
and Booksamillion, as well as the top sellers among
Internet bookstores in Poland, such as empik.com and
merlin.pl. We decided to review and upgrade the
model presented by Blazewicz et al. (2010). Our goal was
to create a new, more sophisticated (focused not only on
books), and even more realistic model than the previous
one. The new model was used in parallel by Blazewicz
et al. (2016).

The working model was prepared on the basis of data
from the above-mentioned publications, as well as our
own observations of many Internet shops. It is assumed
that each shop has all the required books. In each instance,
the following values are randomly generated for all i and
j in the corresponding ranges. Reference price (ref ) of
a product j: refj ∈ {2, 4, . . . , 100} with a percentage
of occurrence: 40% between 0 and 20, 16% between
22 and 30, 12% between 32 and 40, 16% between 42
and 60 and 16% between 62 and 100, respectively. The
price of product j from shop i: pij ∈ [aij , bij ], where
aij ≥ 0.75refj , bij ≤ 1.36refj, and the structure of
intervals between [aij , bij ] is as follows:

[8%]
minimum

minimum+ (ref−minimum)
4

[3%]
minimum+ (ref−minimum)

2
[9%]

minimum+ (ref−minimum)
1.25

[21%]
ref

[24%]
ref + (maximum−ref)

4
[9%]

ref + (maximum−ref)
2

[10%]
ref + (maximum−ref)

1.25
[16%]

maximum

Every shop is connected with a delivery fee, taken
arbitrarily between 0 and 20.

With the previously described method of generating
instances, we created three sets of different sizes to
perform the computational experimentations that will be
presented next; a Small set, with three subsets of 3n20m,

BarnesandNoble.com
Borders.com, Buy.com
empik.com
merlin.pl.
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4n20m and 5n20m, each one with 30 cases; a Medium
set, with three subsets: 5n240m, 5n400m and 50n240m,
each one with 20 cases, a Large set with three subsets:
50n400m, 100n240m and 100n400m, each one also with
20 instances of the problem.

To determine the correctness of ILP, we solved the
instances from the Small set with an enumerative method
and with ILP, and compared the results obtained by both
methods to verify whether the two reached the same
solution.

For the second test, the Medium and Large sets
were solved with ILP without a time limit to obtain
the optimum values in all the cases. Then, with the
known optimal values, we compared the performance of
the proposed solution methods, MinMin+Local Search
and the cellular processing algorithm with the heuristics
proposed by Blazewicz et al. (2010), greedy and
forecasting.

The last test was performed on an instance consisting
of real data obtained by a web crawler to investigate the
performance of this method in a real case scenario. The
recollected data set consisted of 400 distinct products
from 57 shops offering in all 6387 tenders, since not every
shop could offer all of the products.

ILP was implemented in the Java programming
language, version 1.7.0 45, using the API provided by the
CPLEX optimization suite, 12.1, developed by IBM.

The greedy, forecasting, cellular processing and
MinMin algorithms were developed using the PHP
programming language, seeing that it was originally
proposed in the literature as a core coding language for
testbed web-site applications.

The specification of the hardware on which the
computational experimentations were conducted includes
an Intel i5 processor at 2.3 GHz. with 8 GB of DD3 RAM
at 1333 GHz and an SSD drive of 256 GB.

The instance sets used in this experimentation will be
available via the Internet Shopping Optimization Project
web page.1

7. Results

In this section, we will present the results obtained in the
computational experiments previously described.

In the case of ILP, we selected the family sets of
products 5n, 50n, and 100n from the Small, Medium and
Large sets. This family was used to measure the time
required by ILP to solve instances of different sizes.

To observe the behavior of ILP we present the
results in the notched box plot shown in Fig. 3. The
box plot divides all the observations into quartiles,
where the whiskers represent the minimum and maximum
observations, excluding outliers.

1http://www.cs.put.poznan.pl/ishop/.

The box represents the central quartiles, i.e., 50% of
the occurrence of the observations, where the size of the
box indicates how spread the data are in that range. The
median is depicted by the line drawn inside the box, taking
into account the observations between the whiskers.

The notches in the boxes were added to indicate that
the medians of the subsets are statistically different from
each other. When the differences are not significant, those
overlap with the notches of the other subsets.
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Fig. 3. Set of instances with 5 products.

For the set 5n, the median time used by ILP to solve
each instance is close to 0.25 seconds. For the 50n set,
the time increases by as much as one minute in the cases
of the instances of the subset 50n400m, with the median
time close to 30 seconds and for the subset 50n240m less
than 10 seconds. In the case of the 100n set, the maximum

http://www.cs.put.poznan.pl/ishop/.
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Fig. 4. Time comparison of the ILP, MinMin+Local Search and cellular methods.

time used to solve an instance was 800 seconds, from the
100n400m subset, while for most of the instances, the
time needed is close to 200 seconds.

The test with data recollected from online shops
under real conditions, such as prices, delivery costs,
and the differing inventories of each shop, shows solid
performance of the ILP model since an optimal solution
for the instance of 400 products and 52 shops was
obtained in 1.05 s.

The usage of ILP in solving instances of the ISOP
in real case scenarios is presented in Fig. 4. Here
one can observe the instance sets that are solved by
ILP, MinMin+Local Search and cellular in less than one
second. Moreover, it is noticeable that ILP is able to
match, or outperform, the time of the two other main
methods proposed.

For the bigger sets, the use of heuristics is preferred,
given that the time increase factor of ILP is noticeably
higher than the one in the heuristics. Therefore, the
Cellular and MinMin+Local Search methods are more
suitable to solve bigger instances with less computational
resources. This last remark is critical, given the context in
which the ISOP is found.

Once the correctness of the proposed ILP model was
established, and a benchmark with optimal values from
the Medium and Large sets obtained, we proceeded to
evaluate the performance of the newly proposed heuristics
along with the ones described by Blazewicz et al. (2010).

To achieve this, the four proposed methods (MinMin,
MinMin+MidLocal Search algorithm, MinMin+Local
Search algorithm, cellular processing algorithm) were put
to solve the Medium and Large sets, until reaching their
own stop conditions. The results obtained are shown in
Fig. 5 in the case of the Medium set and in Fig. 6 for
the Large set. In the figures, the x axis represents an
instance of the set, and on the y axis, the objective value
on the left, and the computational time on the right side

of the plot. As the ISOP is a minimization problem, lower
values in the objective value, just as in the case of time,
are considered better.

In the Medium set, shown in Fig. 5, all heuristics
return similar solutions in terms of the objective value
for the subsets 5n240m and 5n400m, but the cellular
processing algorithm is slower than the heuristics based
on the MinMin algorithm.

In the instance sets of 50 and 100 products, we
start to see that the cellular heuristic gets better quality
solutions than the heuristics based on MinMin, but also at
the expense of the computational time used.

In the case of the heuristics based on MinMin, the
versions that included the local search algorithm in their
process also obtained better solutions: they were more
consistent in terms of the quality of the solutions obtained
when compared with the basic MinMin. However,
there were no significant differences that would justify
including the local search algorithm in the construction
process, or as a final step, to the already constructed
solution. The most significant difference appeared in
the time needed by each heuristic to solve the instances.
MinMin+Local Search needed as much as one-half of the
time of MinMin+MidLocal Search.

With those results, we selected the proposed
heuristics, MinMin+Local Search and the cellular
processing algorithm, to compare them in terms of
the quality of the solution with the one described by
Blazewicz et al. (2010).

The results of this experiment are shown in Fig. 7.
In this graph, the x axis represents an instance from the
Medium or Large sets, while the y axis indicates the
percentage error regarding the optimal value, represented
by the dashed line. Values closer to 0 are better.

We can observe, in the case of the subsets 5n240m
and 5n400m from the Medium set, that all heuristics are
able to achieve optimal values in most cases, but the
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Fig. 5. Results obtained by the heuristics on Medium set instances.
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Fig. 6. Results obtained by the heuristics on Large set instances.
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Fig. 7. Percentage of error of the heuristics from the optimum value.
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forecasting and cellular heuristics are the ones with the
least amount of errors compared with the heuristics from
the literature.

For the instances from the Large set, we observe
that the gap between the heuristics increases with the
size of the instance. Moreover, the heuristic that obtains
the best solutions in general is the cellular processing
algorithm, followed by the forecasting heuristic. It is also
remarkable that the deviation from the optimal value of
the cellular processing algorithm falls consistently in the
range from zero to ten percent, independently of the size
of the instance set being solved.

8. Conclusions

This article presented an ILP model applied to the ISOP
that optimally solves generated instances of small and
medium size. Additionally, the MinMin algorithm with
two variants and a cellular processing algorithm which
solves bigger instances in an approximate way were
proposed.

Exact solution methods that are adequate to deliver
optimal values for small instances of the ISOP can be
useful to test and evaluate the performance of the proposed
and future heuristics as well as approximation algorithms.

The proposed ILP is able to solve optimally the
instances of the ISOP generated with the algorithm
described by Blazewicz et al. (2010) with the sizes up to
400 shops and 5 products, which can be reasonable for
most users who employ price comparison sites.

In the case of the instance that was created by
recollecting data from real shops, which considered the
search of a shopping list of 57 items among 400 shops,
with some of the products unavailable from some shops,
the ILP model was able to obtain the optimal solution
in 1.05 seconds. The performance of the algorithm
improves in real case scenarios when not all products can
be purchased from all shops.

In addition to the previously described ILP model,
we proposed four new heuristics, one based on the concept
of cellular computing, described by Sipper (1999), and the
other three based on the MinMin algorithm that is found
in the area of allocation of resources and grid computing.

Taking into account the results of the
experimentation, the cellular processing algorithm is
the one with the best performance, including those
previously proposed in the literature. The measures
also showed that the time needed by the cell algorithm
increases in a linear fashion, in contrast to other methods,
whose computational complexity is bigger. This means
that, for small instances, the algorithms from the state of
the art have better performance than the cell algorithm,
but as the instances increase in size, this tendency is
reversed.

Meanwhile, the algorithm MinMin+Local Search,

based on the MinMin algorithm, shows performance
similar to that of the state-of-the-art heuristics, but with
a better in terms of time, since it also presents the linear
complexity as the instance grows in size.

In the case of larger instances, where the ILP model
is unable to offer a solution in a reasonable amount of
time, the cellular processing algorithm presents solutions
with less than 10% of errors, in a fraction of the time used
by the exact method.

For instances with a larger number of products, in the
cases such as buying items from online supermarkets and
grocery shops, the ILP model can be useful to determine
the gap between the optimal solution for medium size
instances and the objective values calculated by the
heuristics proposed by Blazewicz et al. (2010).

In the future, we plan to extend the Internet shopping
model to include additional constraints such as minimum
delivery time (using the experience in modelling delivery
systems in flexible manufacturing systems will be helpful
(Blazewicz et al., 1994)) and incomplete shopping list
realization. The experimental results demonstrated the
potential of the new cellular processing optimization
algorithm. However, one of the main concerns for its
applicability to the ISOP is the time needed to find a
solution. In order to alleviate this problem and also deal
with scalability, we will consider investigating a parallel
version of the algorithm within the framework of the
general purpose computing on graphics processing units
(GPGPU).

It is worth noting that shopping optimization can be
considered not only from the customers point of view,
but also from the service providers point of view. To
complete customer orders, Internet shop owners must
solve many scheduling problems, similar to the ones met
in production systems (cf., e.g., Sterna, 2007). Within
future research we would like to study the problem of
scheduling tasks corresponding to assembling, packing
and shipping customer orders to minimize the late parts
of those orders, which might be modeled as a job shop
system (Blazewicz et al., 2007).
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and Wojciechowski, A. (2010). Internet shopping
optimization problem, International Journal of Applied
Mathematics and Computer Science 20(2): 385–390, DOI:
10.2478/v10006-010-0028-0.

Blazewicz, J. and Musial, J. (2011). E-commerce
evaluation—multi-item internet shopping. Optimization
and heuristic algorithms, in B. Hu et al. (Eds.), Operations
Research Proceedings 2010, Springer-Verlag, Berlin,
pp. 149–154.

Blazewicz, J., Pesch, E., Sterna, M. and Werner, F. (2007). A
note on the two machine job shop with the weighted late
work criterion, Journal of Scheduling 10(2): 87–95.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P. and
Schulenburg, S. (2003). Hyper-heuristics: An emerging
direction in modern search technology, in F. Glover
and G.A. Kochenberger (Eds.), Handbook of Metaheuris-
tics, International Series in Operations Research &
Management Science, Vol. 57, Springer-Verlag, Berlin,
pp. 457–474.

Cheung, C.M., Chan, G.W. and Limayem, M. (2005). A
critical review of online consumer behavior: Empirical
research, Journal of Electronic Commerce in Organiza-
tions 3(4): 1–19.

Chu, W., Choi, B. and Song, M. (2005). The role of on-line
retailer brand and infomediary reputation in increasing
consumer purchase intention, International Journal of
Electronic Commerce 9(3): 115–127.

Clay, K., Krishnan, R. and Wolff, E. (2001). Prices and price
dispersion on the web: Evidence from the online book
industry, Journal of Industrial Economics 49(4): 521–539.

Diaz, C.O., Pecero, J.E. and Bouvry, P. (2014). Scalable,
low complexity, and fast greedy scheduling heuristics for
highly heterogeneous distributed computing systems, The
Journal of Supercomputing 67(3): 837–853.

Eiselt, H. and Sandblom, C.-L. (2004). Decision Analysis, Lo-
cation Models, and Scheduling Problems, Springer-Verlag,
Berlin.

Freund, R., Gherrity, M., Ambrosius, S., Campbell, M.,
Halderman, M., Hensgen, D., Keith, E., Kidd, T., Kussow,
M., Lima, J., Mirabile, F., Moore, L., Rust, B. and
Siegel, H. (1998). Scheduling resources in multi-user,
heterogeneous, computing environments with smartnet,
Proceedings of the 7th Heterogeneous Computing Work-
shop, Orlando, FL, USA, pp. 184–199.

Garey, M. and Johnson, D. (1979). Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, W.H.
Freeman & Co., San Francisco, CA.

Goossens, D.R., Maas, A., Spieksma, F.C. and Van de Klundert,
J. (2007). Exact algorithms for procurement problems
under a total quantity discount structure, European Jour-
nal of Operational Research 178(2): 603–626.

Guzek, M., Gniewek, A., Bouvry, P., Musial, J. and Blazewicz, J.
(2015). Cloud brokering: Current practices and upcoming
challenges, IEEE Cloud Computing 2(2): 40–47.

Iyigun, C. and Ben-Israel, A. (2010). A generalized Weiszfeld
method for the multi-facility location problem, Operations
Research Letters 38(3): 207–214.

Krarup, J., Pisinger, D. and Plastria, F. (2002). Discrete
location problems with push–pull objectives, Discrete Ap-
plied Mathematics 123(1): 363–378.

Krichen, S., Laabidi, A. and Abdelaziz, F.B. (2011). Single
supplier multiple cooperative retailers inventory model
with quantity discount and permissible delay in payments,
Computers & Industrial Engineering 60(1): 164–172.

Marszalkowski, J., Marszalkowski, J.M. and Drozdowski,
M. (2014). Empirical study of load time factor in
search engine ranking, Journal of Web Engineering
13(1&2): 114–128.

Marszalkowski, J. and Musial, J. (2011). Database scheme
optimization for online applications, Foundations of Com-
puting and Decision Sciences 36(2): 121–129.

Melo, M.T., Nickel, S. and Saldanha da Gama, F. (2009).
Facility location and supply chain management—A
review, European Journal of Operational Research
196(2): 401–412.

Mirmohammadi, S.H., Shadrokh, S. and Kianfar, F. (2009).
An efficient optimal algorithm for the quantity discount
problem in material requirement planning, Computers &
Operations Research 36(6): 1780–1788.

Munson, C. and Hu, J. (2010). Incorporating quantity
discounts and their inventory impacts into the centralized
purchasing decision, European Journal of Operational Re-
search 201(2): 581–592.

Musial, J. (2012). Applications of Combinatorial Optimization
for Online Shopping, NAKOM, Poznań.
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of Technology. His research interests include e-commerce, Inter-
net shopping, cloud brokering, algorithms, applications of combina-
torial optimization and operations research. He has a Ph.D. in com-
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